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Abstract—This paper proposes a nonlinear observer-based
tracking controller design using piecewise multi-linear models.
The controller is based on feedback and observer linearizations.
The piecewise model is a nonlinear approximation and fully
parametric. Feedback linearization is an effective method to
stabilize nonlinear systems. However the stabilizing conditions
are conservative. Further, observer linearization conditions are
more conservative than feedback one. There are not many
nonlinear systems to which these methods can apply. This
paper shows the proposed piecewise multi-linear controller can
be applied to a wider class of nonlinear systems. Example is
shown to confirm the feasibility of our proposals by computer
simulation.

Index Terms—observer-based control, nonlinear control,
feedback linearization, tracking control, piecewise system.

I. INTRODUCTION

P Iecewise linear (PL) systems which are fully paramet-
ric have been intensively studied in connection with

nonlinear systems [1], [2], [3], [4]. We are interested in
the parametric piecewise approximation of nonlinear control
systems based on the original idea of PL approximation. The
PL approximation has general approximation capability for
nonlinear functions with a given precision.

PML approximation [5] also has general approximation
capability for nonlinear functions with a given precision. We
note that a bilinear function as a basis of PML approxi-
mation is, as a nonlinear function, the second simplest one
after a linear function. The PML model has the following
features. 1) The PML model is derived from fuzzy if-then
rules with singleton consequents. 2) It is built on piecewise
hyper-cubes partitioned in the state space. 3) It has general
approximation capability for nonlinear systems. 4) It is a
piecewise nonlinear model, the second simplest after a PL
model. 5) It is continuous and fully parametric. So far we
have shown the necessary and sufficient conditions for the
stability of PML systems with respect to Lyapunov functions
in the two dimensional case [6] where membership functions
are fully taken into account. However, since the stabilizing
conditions are represented by bilinear matrix inequalities
(BMIs) [7], it requires a long computing time to obtain a
stabilizing controller. To overcome the difficulty, we derived
the stabilizing conditions [8] based on a full-state feedback
linearization approaches. Although the PML controllers are
simpler than the conventional feedback linearization con-
troller, the control performance based on PML model is the
same as the conventional one.

This paper deals with an observer-based tracking controller
design for nonlinear systems via observer linearization.
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We proposed some observer design methods for piecewise
systems in [9], [10], [11]. The paper [11] dealt with the
necessary and sufficient conditions for observer linearization
and showed the PML model based linearized observer could
be applied to a wider system than the conventional one.
However it is difficult to design the observer-based control
system via observer linearization because the control system
is not robust to modeling errors and perturbations. We pro-
posed a robust observer-based PML controller design [12] for
nonlinear systems using a robust PML controller [13]. This
paper proposes a nonlinear observer-based tracking controller
using piecewise multi-linear models. Further, we apply the
proposed methods to TORA (Translational Oscillator with
Rotating Actuator) system, which is one of the benchmark
problem for nonlinear control. Example is shown to confirm
the feasibility of our proposals by computer simulation.

II. CANONICAL FORMS OF PIECEWISE MULTI-LINEAR
MODELS

A. Open-Loop Systems

In this section, we introduce PML models suggested in
[5]. We deal with the two-dimensional case without loss of
generality. We consider a two-dimensional nonlinear system:

ẋ =f(x)

Define vector d(σ, τ) and rectangle Rστ in two-dimensional
space as d(σ, τ) ≡ (d1(σ), d2(τ))

T ,

Rστ ≡ [d1(σ), d1(σ + 1)]× [d2(τ), d2(τ + 1)].

σ and τ are integers: −∞ < σ, τ < ∞ where d1(σ) <
d1(σ+ 1), d2(τ) < d2(τ + 1) and d(0, 0) ≡ (d1(0), d2(0))

T

(see Fig. 1). Superscript T denotes a transpose operation.
For x = (x1, x2) ∈ Rστ , the PML system is expressed as

ẋ =fp(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)f(i, j),

x =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)d(i, j),

f(i, j) =f(d1(i), d2(j)), d(i, j) = [d1(i), d2(j)]
T ,

(1)

where f(i, j) is the vertex of nonlinear system ẋ = f(x),

ωσ1 (x1) =
(d1(σ + 1)− x1)

(d1(σ + 1)− d1(σ))
,

ωσ+1
1 (x1) =

(x1 − d1(σ))
(d1(σ + 1)− d1(σ))

,

ωτ2 (x2) =
(d2(τ + 1)− x2)

(d2(τ + 1)− d2(τ))
,

ωτ+1
2 (x2) =

(x2 − d2(τ))
(d2(τ + 1)− d2(τ))

(2)
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and ωi1(x1), ω
j
2(x2) ∈ [0, 1]. In the above, we assume

f(0, 0) = 0 and d(0, 0) = 0 to guarantee ẋ = 0 for x = 0.
A key point in the system is that state variable x is also

expressed by a convex combination of d(i, j) for ωi1(x1)
and ωj2(x2), just as in the case of ẋ. As seen in equation (2),
x is located inside Rστ which is a rectangle: a hypercube
in general. That is, the expression of x is polytopic with
four vertices d(i, j). The model of ẋ = f(x) is built on a
rectangle including x in state space, it is also polytopic with
four vertices f(i, j). We call this form of the canonical model
(1) parametric expression.

B. Closed-Loop Systems

We consider a two-dimensional nonlinear control system.{
ẋ =f(x) + g(x)u(x),

y =h(x).
(3)

For x ∈ Rστ , the PML model (4) is constructed from a
nonlinear system (3).{

ẋ =fp(x) + gp(x)u(x),

y =hp(x),
(4)

where 

fp(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)f(i, j),

gp(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)g(i, j),

hp(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)h(i, j),

x =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)d(i, j),

(5)

and f(i, j), g(i, j), h(i, j) and d(i, j) are vertices of the
nonlinear system (3). The modeling procedure in region Rστ
is as follows:

1) Assign vertices d(i, j) for x1 = d1(σ), d1(σ+1), x2 =
d2(τ), d2(τ + 1) of state vector x, then partition state
space into piecewise regions (see Fig. 1).

2) Compute vertices f(i, j), g(i, j) and h(i, j) in equation
(5) by substituting values of x1 = d1(σ), d1(σ+1) and
x2 = d2(τ), d2(τ+1) into original nonlinear functions
f(x), g(x) and h(x) in the system (3). Fig. 1 shows
the expression of f1(x) and x ∈ Rστ .

The overall PML model is obtained automatically when all
vertices are assigned. Note that f(x), g(x) and h(x) in the
PML model coincide with those in the original system at
vertices of all regions. Due to lack of space, f(x), g(x), u(x),
and h(x) are represented as f , g, u, and h, respectively.

III. REGULATOR AND TRACKING CONTROLLER DESIGNS
FOR PML SYSTEMS

A. Feedback Linearization

This section deals with the PML controller for nonlinear
systems. Since the stabilizing conditions are represented
by bilinear matrix inequalities (BMIs) [7], it requires a
long computing time to obtain a stabilizing controller. To

d1(σ)

d1(σ + 1)

d2(τ)

d2(τ + 1)

f1(σ + 1, τ)

f1(σ, τ)

f1(σ, τ + 1)

f1(σ + 1, τ + 1)

ωσ+1
1

ωσ1

ωτ+1
2

ωτ2

f1(x)

Fig. 1. Piecewise region (f1(x) =
∑σ+1

i=σ

∑τ+1

j=τ
ωi1ω

j
2f1(i, j), x ∈

Rστ )

overcome the difficulty, we derived the stabilizing conditions
[14], [8] based on feedback linearization approaches.

We consider the PML system (4), where fp, gp and hp
are assumed to be sufficiently smooth in a domain D ⊂ Rn.
The mappings f : D → Rn and g : D → Rn are called
vector fields on D. The time derivative of the output y is
calculated until the input u appears. Then the PML controller
is obtained as

u(x) =α(x) + β(x)v, (6)

where

α(x) =
−Lρfph

LgpL
ρ−1
fp

hp
, β(x) =

1

LgpL
ρ−1
fp

hp
.

The controller reduces the input-output map to y(ρ) = v,
which is a chain of ρ integrators. In this case, the integer ρ
is called the relative degree of the system.

In Section VI, we show the controller (6) based on PML
model is simpler than the conventional feedback linearzing
controller. Furthermore, we show the controller (6) can
stabilize a wider region than the conventional one.

Definition 3.1: The PML system is said to have relative
degree ρ, 1 ≤ ρ ≤ n, in a region D0 ⊂ D if

LgpL
i
fphp = 0, i = 0, 1, · · · , ρ− 2

LgpL
ρ−1
fp

hp 6= 0,

for all x ∈ D0. The feedback linearized system can be
formulated as {

ξ̇ = Aξ +Bv,

y = Cξ,
(7)

where ξ ∈ <ρ,

A =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
0 0 · · · 0 0

 , B =


0
0
...
0
1

 , C =


1
0
...
0
0


T

.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2019 
IMECS 2019, March 13-15, 2019, Hong Kong

ISBN: 978-988-14048-5-5 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2019



The stabilizing linear controller v = −Kξ of the linearized
system (7) can be obtained so that the transfer function G =
C(sI −A)−1B is Hurwitz. Due to lack of space, this paper
only deals with the relative degree ρ = n. This controller
design can be applied to the PML system with the relative
degree ρ ≤ n.

B. Tracking Control for PML Systems

We apply a tracking control [15] to nonlinear systems.
Consider the following reference signal model{

ẋr =fr,

yr =hr.
(8)

The controller is designed to make the error signal et =
y− yr = hp−hr → 0 as t→∞. The time derivative of the
error e is obtained as

ėt =Lfphp − Lfrhr.

The time derivative is calculated until the input u appears.
Then the PML controller is obtained as

ut(x) =αt(x) + βt(x)vt, (9)

where

αt(x) =−
Lρfphp − L

ρ
fr
hr

LgpL
ρ−1
fp

hp
, βt(x) =

1

LgpL
ρ−1
fp

hp
.

The controller reduces the input-output map to y(ρ) = v,
which is a chain of ρ integrators. In this case, the integer ρ
is called the relative degree of the system.

IV. OBSERVER DESIGN FOR PML SYSTEMS

A. Observer Linearization

This subsection deals with the observer linearization prob-
lem [16]. If there exists a coordinate transformation ζ = ϕ(x)
such that the system (4) can be transformed into the follow-
ing system:

ζ̇ =Aoζ + k(y) + r(y)u

y =Coζ

with (Co, Ao) observable and k, r : < → <n then it would
be possible to build a full order state observer [11]:

˙̂
ζ =Aoζ̂ + k(y) +H(ŷ − y)
ŷ =Coζ̂,

where

Ao =


0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 0

 , Co =


0
0
...
0
1


T

,

and H is the observer gain. The estimation error eo = ζ̂ − ζ
satisfies the linear differential equation

ėo =(Ao +HCo)e.

The estimation state is x̂ = ϕ−1(ζ̂). This problem is referred
to as the observer linearization problem. The following

theorem gives a necessary and sufficient condition for the
solution of the observer linearization problem.

Theorem 4.1: The observer linearization problem [16] is
solvable if and only if there exists the neighborhood V of an
initial condition x(0) satisfies the following two conditions.

C1: dim
(

span{dh, dLfh, . . . , dLn−1f h}
)
= n,

∀x ∈ V .
C2: [adifτ, ad

j
fτ ] = 0,

0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, x ∈ V .
The vector field τ satisfies(

dh, dLfh, . . . , dL
n−1
f h

)T
τ =

(
0, . . . , 1

)T
.

If the nonlinear system (3) is observer linearizable there ex-
ists a coordinate transformation ϕ(x) satisfies the following
condition.

L(−1)j−1adj−1
f

τϕi(x) =

{
0, i 6= j

1, i = j
(10)

A coordinate transformation can be constructed as ζ =
ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x))

T .

B. Observer Based Controller Design

We consider observer-based PML controllers [12]. Substi-
tuting the estimation state x̂ = ϕ−1(ζ̂) into the controller
(6), the observer-based PML controller can be designed as

u(x̂) =α(x̂) + β(x̂)v

where v = −Kξ̂ and ξ̂ = (h(x̂), Lfh(x̂), . . . , L
ρ−1
f h(x̂))T .

We propose an observer-based PML tracking controller.
Substituting the estimation state x̂ = ϕ−1(ζ̂) into the
controller (9), the controller can be designed as

ut(x̂) =αt(x̂) + βt(x̂)vt

where vt = −F ξ̂r and ξ̂t = (h(x̂) − hr, Lfh(x̂) −
Lfrhr, . . . , L

ρ−1
f h(x̂)− Lρ−1fr

hr)
T .

V. TORA SYSTEM

The TORA (Translational Oscillator with Rotating Ac-
tuator) system [17] has a cart of mass M connected to a
wall with a linear spring (constant k). The cart can oscillate
without friction in the horizontal plane. A rotating mass m
in the cart is actuated by a motor. The mass is eccentric with
a radius of eccentricity e and can be imagined to be a point
mass mounted on a massless rotor. The rotating motion of the
mass m controls the oscillation of the cart. The motor torque
is the control variable. The dynamics of TORA system is

Fig. 2. Kinematic model of TORA system
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ż1 =z2

ż2 =
−z1 + εz24 sin z3
1− ε2 cos2 z3

− −ε cos z3
1− ε2 cos2 z3

v

ż3 =z4

ż4 =
1

1− ε2 cos2 z3
{
ε cos z3

(
z1 − εz24 sin z3

)
+ v
}

y =z1,
(11)

where z1 and z2 are the position and velocity of the cart.
z3 = θ and z4 = θ̇ are the angle and angular velocity of the
rotor. The parameter ε depends on the eccentricity e and the
masses M and m. v and y are the control input and output.

The TORA system dynamics has many nonlinear terms.
We consider the new variables:

x1 =z1 + ε sin z3

x2 =z2 + εz4 cos z3

u =
ε cos z3(x1 − ε sin z3(1 + z24)) + v

1− ε2 cos2 z3
Substituting the variables x1, x2 and u into TORA system
(11), we obtain

ẋ =f + gu =


x2

−x1 + ε sinx3
x4
0

+


0
0
0
1

u

y =h = x1,

(12)

where x ∈ R4, y ∈ R. In the paper, we consider the system
(12) as TORA system.

VI. PML MODEL-BASED CONTROLS FOR TORA
SYSTEM

A. PML Model

We construct the PML model [18] of TORA system (12).
The state variable x is divided by m1 × m2 × m3 × m4

vertices,

x1 ∈{d1(1), . . . , d1(m1)}, x2 ∈ {d2(1), . . . , d2(m2)},
x3 ∈{d3(1), . . . , d3(m3)}, x4 ∈ {d4(1), . . . , d4(m4)}.

The PML model is expressed as{
ẋ =fp + gpu

y =hp = x1,
(13)

where x ∈ Rσ1σ2σ3σ4
,

fp =

σ1+1∑
i1=σ1

σ2+1∑
i2=σ2

σ3+1∑
i3=σ3

σ4+1∑
i4=σ4

ωi11 (x1)ω
i2
2 (x2)ω

i3
3 (x3)ω

i4
4 (x4)

×
(
d2(i2) −d1(i1) + ε sin d3(i3) d4(i4) 0

)T
,

gp =
(
0 0 0 1

)T
,

ω
σj

j (xj) = (dj(σj + 1)− xj)/(dj(σj + 1)− dj(σj)),

ω
σj+1
1 (xj) = (xj − dj(σj))/(dj(σj + 1)− dj(σj)),
j = 1, . . . , 4.

The model is found to be fully parametric and the internal
model dynamics is described by multi-linear interpolation
of the vertices: d1(i1), d2(i2), d3(i3) and d4(i4). The PML
model can be represented by a lookup table (LUT).

Note that trigonometric functions of TORA system (12)
are smooth functions and are of class C∞. The PML models
are not of class C∞. In TORA system control, we have to
calculate the fourth derivatives of the output y. Therefore the
derivative PML models lose some dynamics. However the
PML model based control for TORA system can be applied
to a wider region than the conventional one.

Note that there are some modeling errors because the PML
model is a nonlinear approximation. In proposed method the
vertices di(j) of an arbitrary number can be set on arbitrary
position of the state space. Therefore it is easily possible to
adjust the approximated error.

B. Regulators
1) Feedback Linearization of Original Nonlinear System:

We design the controller of TORA system (12) via the exact
feedback linearization [16]. We calculate the time derivatives
of the output y until the input u appears. Then the feedback
linearizing controller is obtained as

u =
−L4

fh

LgL3
fh

+
1

LgL3
fh
v. (14)

The Lie derivatives are calculated as

Lfh = x2, L
2
fh = −x1 + ε sinx3,

L3
fh = −x2 + εx4 cosx3,

L4
fh = x1 − ε sinx3 − εx24 sinx3, LgL3

fh = ε cosx3.

In equation (14), v is the linear controller for the linearized
system:

ξ̇ =Aξ +Bv

y =Cξ,

ξ =(h, Lfh, L
2
fh, L

3
fh)

T ,

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , B =


0
0
0
1

 , C =


1
0
0
0


T

. (15)

However the controller (14) is only well defined at −π/2 <
x3 < π/2 because the denominator of the controller is
LgL

3
fh = ε cosx3. Hence the rotor of TORA system can

only be rotated at −π/2 < θ < π/2.
2) Feedback Linearization of PML System: The time

derivative of the output y = x1 has to been calculated until
the input u appears. Then the PML controller [18] of (13) is
designed as

u =
−L4

fp
hp

LgpL
3
fp
hp

+
v

LgpL
3
fp
hp

(16)

The Lie derivatives are calculated as

Lfphp = x2, L
2
fphp = −x1 +

σ3+1∑
i3=σ3

ωi33 (x3)ε sin d3(i3),

L3
fphp = −x2 +

ε(sin d3(σ3 + 1)− sin d3(σ3))

d3(σ3 + 1)− d3(σ3)
x4,

L4
fphp = x1 −

σ3+1∑
i3=σ3

ωi33 (x3)ε sin d3(i3),

LgL
3
fphp =

ε(sin d3(σ3 + 1)− sin d3(σ3))

d3(σ3 + 1)− d3(σ3)
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In equation (16), v = −Kξ is the linear controller of the
linear system:

ξ̇ =Aξ +Bv,

y =Cξ,

ξ =(hp, Lfphp, L
2
fphp, L

3
fphp)

T

The matrix A and the vectors B and C are the same as (15).
If fs(i) 6= fs(i+ 1) and d3(i) 6= d3(i+ 1), i = 1, . . . ,m,

there exists a controller (16) u of TORA system (13) since
det(LgpL

3
fp
hp) 6= 0. Thus we have to construct the PML

model of TORA system such that fs(i) 6= fs(i + 1) and
d3(i) 6= d3(i + 1), where i = 1, . . . ,m. Note that the PML
model based controller (16) can be applied to a wider region
than the conventional feedback linearized controller.

C. Tracking Control

We design the tracking controller of TORA system using
PML model. Consider the following reference signal model
(8). The controller is designed to make the error signal et =
y− yr = hp−hr → 0 as t→∞. The time derivative of the
error e is obtained as

ėt =Lfphp − Lfrhr.

The time derivative is calculated until the input u appears.
Then the PML controller is obtained as

ut(x) =αt(x) + βt(x)vt, (17)

where

αt(x) =−
L4
fp
hp − L4

fr
hr

LgpL
3
fp
hp

, βt(x) =
1

LgpL
3
fp
hp
.

In equation (16), vt = −Fξr is the linear controller of the
linear system: 

ξ̇r =Aξr +Bν,

y =Cξr,

ξr =


hp − hr

Lfphp − Lfrhr
L2
fp
hp − L2

fr
hr

L3
fp
hp − L3

fr
hr


The matrix A and the vectors B and C are the same as (15).

D. Observers

1) Observer Design of Original Nonlinear System: C1 of
Theorem 4.1 is calculated for the original nonlinear system
(12).

det
(
dhT , dLfh

T , . . . , dLn−1f hT
)T

= ε2 cos2 x3

From this result the above matrix is not linear independence
at x3 = ±π/2. One of the condition C2 is calculated for the
original nonlinear model as follows:[

ad0fτ, ad
3
fτ
]
=

2 sinx3
ε2 cos3 x3

The above equation is equal to 0 at x3 = 0 and the equation
cannot be defined at x3 = ±π/2. Therefore the nonlinear
system (12) is not observer linearizable.

2) Observer Design [11] of PML System: C1 of Theorem
4.1 is calculated for the PML system (13).

det
(
dhT , dLfh

T , . . . , dLn−1f hT
)T

= ε 6= 0.

C2 of Theorem 4.1 is also calculated for the original nonlin-
ear system (13).

[adifτ, ad
j
fτ ] = 0,

where 0 ≤ i ≤ 3, 0 ≤ j ≤ 3, and τ =
(
0 0 0 1/ε

)T
.

Therefore the PML system (13) is an observer linearizable.
From the condition (10), the coordinate transformation vector
is calculated as ϕ(x) =

(
εx4 εx3 x2 x1

)T
.

E. Observer-Based Tracking Control

We derive an observer-based PML tracking controller for
TORA system. Substituting the estimation state x̂ = ϕ−1(ζ̂)
into the controller (17), the controller can be designed as

ut(x̂) =αt(x̂) + βt(x̂)vt (18)

where vt = −F ξ̂r and ξ̂t = (h(x̂) − hr, Lfph(x̂) −
Lfrhr, . . . , L

ρ−1
fp

h(x̂)− Lρ−1fr
hr)

T .

VII. SIMULATION RESULT

The observer-based PML controller (18) is applied to
TORA system (12) in computer simulations. In the simu-
lation, the state variables x1, x2, x3, x4 of TORA system
are divided by the following vertices.

x1 ∈{−2.0, 0, 2.0}, x2 ∈ {−2.0, 0, 2.0},
x3 ∈{−π,−7π/8, . . . , π}, x4 ∈ {−2.0, 0, 2.0}

The parameter ε is 0.5 and the initial condition is x(0) =
(0.5, 0, 0, 0)T . We consider the following reference signal
model: {

ẋr =ar cos t,

yr =hr = xr,

where ar = 0.2. We use the feedback gain F =
(1.000, 3.078, 4.236, 3.078) such that the linearized
control system is stable and the observer gain H =
(10.00, 25.09, 26.47, 12.37)T such that the observer system
is stable.

Figs. 3, 4, and 5 show the simulation results using the
observer-based tracking controller (18). The controller (18)
stabilize the TORA system (12) with the estimation error
eo = ζ̂ − ζ and the tracking error et = y− yr. In Fig. 3, the
solid line and the dotted line of the upper figure mean the
control input y and the reference signal yr, respectively. The
solid line of the lower figure means the error signal y − yr.
In Figs. 4 and 5, the solid lines and the dotted lines mean the
state responses (ζ1, ζ2, ζ3, and ζ4) and the estimated states,
respectively.
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Fig. 3. Control output (y), reference signal (yr), and the error signal
(y − yr)
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Fig. 4. State responses (ζ1, ζ2) and the estimated states
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Fig. 5. State responses (ζ3, ζ4) and the estimated states

VIII. CONCLUSIONS

This paper has proposed a nonlinear observer-based track-
ing controller design using piecewise multi-linear models.
The controller is based on feedback and observer lineariza-
tions. The piecewise model is a nonlinear approximation
and fully parametric. Feedback linearization is an effective
method to stabilize nonlinear systems. However the stabiliz-
ing conditions are conservative. Further, observer lineariza-
tion conditions are more conservative than feedback one.
There are not many nonlinear systems to which these meth-
ods can apply. This paper has showed the proposed piecewise
multi-linear controller can be applied to a wider class of
nonlinear systems. Example has been shown to confirm the
feasibility of our proposals by computer simulation.
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