
 

 
Abstract—The paper proposes the method to derive the 

explicit formula for Average Run Length (ARL) of moving 
average process with explanatory variable (MAX(1,r)) on 
Exponentially Weighted Moving Average (EWMA) control 
chart. In addition, proposes the numerical results from the 
explicit formula, Gaussian rule, and midpoint rule. The results 
show that ARL values from the three methods are in good 
agreement and useful to detect the change in the process. 

 
 

Index Terms— EWMA, Moving Average, Average run 
length, Explanatory variable, Exponential white noise. 

I. INTRODUCTION 

 uality control in the production process is one of the 
powerful tools to reduce various deficiencies in the 
production process. The statistical process control 

(SPC) is applying for the development and improvement of 
the process. The effectiveness tool for controlling the 
production process in real-time is the control chart. Walter 
A. Shewhart [1] gave the idea of the control chart in 1924 to 
reduce waste and improve quality in manufacturing 
processes. Control charts apply in detecting and monitoring 
changes in the quality of production processes in many 
applications, for example, industrial manufacturing, public 
health, computer network and telecommunication, financial 
and economic, environment science, and other areas. 
Nowadays, popular control charts are Shewhart, cumulative 
sum (CUSUM), and exponentially weighted moving 
average (EWMA) control charts. Robert [3] developed the 
EWMA control chart that is popular for detecting small 
changes in the mean of the production process. Usually, the 
production processes are normally and independently 
distributed data. 

The Average Run Length (ARL) is a famous criterion for 
evaluating the performance of a control chart, which is the 
signal's expectation of change in parameter distribution. The 
ARL0 represents the time between processes going out of 
control and should be large enough, whereas the ARL1 
represents the time between processes going out of control 
and should be smaller. The ARL has been examined using a 
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variety of methodologies, including Monte Carlo 
simulations (MC), Markov Chain Approach (MCA) [4]-[5], 
Martingale Approach (MA) [6], and Numerical Integral 
Equation Approach (NIE) [7]-[9]. 

In reality, data may contain serially correlated Lu and 
Reynolds [10] used the integral equation approach to 
determine the ARL when the data are AR(1) and 
ARMA(1,1) processes. The time series models are 
autoregressive (AR), moving average (MA) and 
autoregressive moving average model (ARMA) models. For 
this reason, some authors evaluate ARL value when the 
process is a serial correlation, Petcharat [9] derived the 
explicit formula for ARL of seasonal AR(p)L with 
exponential white noise for EWMA control chart and 
compared to CUSUM control chart. The results found that 
the EWMA control chart was more sensitive than the 
CUSUM control chart. Next, Petcharat [11] derived the 
explicit formula of ARL for EWMA control chart when 
observations are seasonal MA(Q)L process with exponential 
white noise. The comparison results between EWMA and 
CUSUM control charts observed that the EWMA control 
chart detected process changes faster than the CUSUM 
control chart. In addition, Paichit [12] presented the exact 
solution of ARL for the EWMA control chart when 
processes are autoregressive with an explanatory variable 
model. Later, Sunthornwa et al. [13] derived analytical 
ARL and approximately the numerical ARL for EWMA 
control charts using the long-memory ARFIMA with 
exponential white noise. Recently, Sunthornwat and 
Areepong [14] proposed an exact solution of ARL on the 
CUSUM control chart for both seasonal and non-seasonal 
moving averages processes by using integral equations and 
numerical integral equations. 

Consequently, the objective of this paper is to prove the 
explicit formula of the average run length (ARL) of the 
EWMA control chart for MAX(1,r) with exponential white 
noise and compare it with the numerical integration method. 
This article could organize in the following manner. The 
MAX(1,r) process describes in section 2. Section 3 contains 
the explicit formula of ARL based on the EWMA control 
chart when the observations are MAX(1,r) model with 
exponential white noise. Section 4 presents the numerical 
integration of ARL for the EWMA control chart. Whereas 
Section 5 explains the simulation study. Finally, the 
conclusion is in Section 6. 
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II. THE EWMA CONTROL CHART FOR MAX (1,r)  PROCESS 

This section presents the characteristics of the EWMA 
control chart for MAX(1,r). The EWMA control chart is a 
dominant tool in detecting a mean shift. Let be the sequence 
of a moving average process with explanatory variable, 
MAX(1,r). Then the MAX(1,r) with exponential white 
noise is defined as, 

 1 1
1

,t

r

t t i it
i

XZ     


    
(1) 

where t  is exponential white noise : ( )t Exp : , 

    is process mean, 

   is moving average coefficient , 11 1,    

The recursive equation of EWMA statistic based on 
MAX(1,r) process is defined by 

 

 1(1 )  ,   t 1,2,...t t tX X Z       (2) 

where  tZ  is sequence of MAX(1,r) process,  

   is a exponential smoothing parameter, 0 1  .  
The corresponding stopping time for (2) define as  
 

   0  ,C ,   .   inf 0;   t u b xt X b      (3) 

where b  denote control limit. 

Let (.)Ε  denote the expectation under probability 

density function ( , )f x  that the change -point occurs at 

point , where .  Thus by definition, the ARL for 

MAX(1,r) process with an initial value C0   = u is as follow 

 ARL   = ( ) ( ) .bH u    E  (4) 

III. THE AVERAGE LENGTH (ARL) FOR MAX (1, )r    

PROCESS BASED ON EWMA CONTROL CHART  

 In this section, the explicit formulas of average run 
length of EWMA control chart for MAX(1,r) process with 

exponential white noise is presented. Let  j u  denote the 

average run length for EWMA chart. We assume that, the 

process initially in-control 0C u . The integral equation 

defines in  j u as follow; 
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then the function  j u in (5) can written as  

        
1

0

1
bC u

j u L y e d y
   , 0 .u b   (6) 

 The right-hand side of (5) is continuous such that the 
solution of the integral equations (5) is continuous function. 

 Considering the complete metric space 

  ,C I


where  C I denote the space of all continuous 

function on I , where I  is a compact interval, with the 
norm  sup ( ) .

u I
j j u



  Then operator T  is named as a 

contraction, if there exist a real constant 0 1q   such that 

1 2 1 2( ) ( )j L j L q j j    for 1 2, ( )j j C I  . In this case 

let T be an operation in the class of all continuous 
function  C I  where  0,I b  defined by 

 

 

 
 

( ( )) 1

1 11 11
(y)

0
.

T j u j u
r

Xt i ittuy ib
j y e e d

    
  



  

    
  

(7)

 According to Banach’s fixed point theorem, if an 
operator T  is a contraction, then the fixed point equation 

   ( )T j u j u  has a unique solution. To prove the 

uniqueness of solution of (7), then prove Theorem 1 that T 
is contraction. 

Theorem 1. On the metric space   ,C I


with the 

norm sup ( )
u I

j j u



  the operator T is a contraction 

Proof 

 First, showing T is a contraction for any u I , 
and 1 2, ( )j j C I .The inequality 1 2 1 2( ) ( )T j T j q j j  

 
for 1 2, ( )j j C I  with 0 1q  . According to (7), then 
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Triangular inequality has been used and the fact that is 
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 Therefore, the uniqueness of solution is guaranteed via 
Theorem 1 and the Banach fixed point theorem. Then, using 
the Fredholm integral equation of second kind to derive the 
ARL for MAX(1,r)  process. 
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 Therefore, the uniqueness of solution is guaranteed via 
Theorem 1 and the Banach Fixed Point Theorem. Then, 
using the Fredholm integral equation of second kind to 
derive the ARL for MAX(1,r) process. 
The explicit formula of ARL of EWMA chart defined as 
follows: 
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where process in-control parameter 0   and process 

out-of-control parameter 1  , moving average 

coefficient 11 1,    is the smoothing parameter and  b 

is control limit.   
IV. NUMERICAL INTEGRAL EQUATION (NIE) OF 

ARL FOR MAX (1,r) ON EWMA CONTROL CHART 

 In this section we present numerical method to 
approximate the ARL value of EWMA control chart for 
MAX (1,r) with exponential white noise process satisfying 
(1) and  according (2) can be written as 
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where t 1, 2,... , 0 0 uX Z  . Let ( )j u% denote ARL for 

MAX(1,r), if 0t    LCL=0 and UCL=b, respectively. 

Then function ( )j u%  can be derived by Fredholm integral 

equation of the second kind. The ( )j u%  define as follows: 
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Equation (10) can use numerical quadrature rules for 
approximation [15].  In this research, there are two 
methods, namely Gaussian Rule and Midpoint Rule.  
 
A. Gaussian Rule  
  The approximation for an integral is evaluated by the 
quadrature rule as follow the numerical integral equation 
method can evaluate the solution by the Gauss–Legendre 

quadrature rule. Let set of point { , 1, ..., }ka k m on the 

interval [0,b] and set of weights { ,k=1,...,m}wk as 

= / 0 ; 1, 2, ...,w b m k mk   . The approximation of an 

integral is evaluated by the quadrature rule as follows:  
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Let ( )j u%  be a numerical approximation for an integral 

equation solution in (10) which can be found as the linear 
equations as follows: 

  1
( ) 1 ( ) ( )1 1

1 1
j

m r
j u w a f Xk k t t i it

k i
         

 
% , (11) 

where 
1

=  ;  = 1, 2, ...,
2

a k k mk
m

b


 
 
 

. 

 
B.  Midpoint Rule 
 By using the midpoint rule, Let m be subinterval on 

[0,b]  and let
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The approximation for the integral is given by 
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V. NUMERICAL RESULTS  

In this section, we compare the ARL obtained from the 
explicit formulas according to (8) and (9) for EWMA 
control chart on MAX(1,r) process with exponential white 
noise and compare to the ARL from numerical integral 
equation (NIE) method using the Gaussian Rule and 
midpoint rule according to (11) and  (12) on m   = 500 
subintervals. We set ( )j u is ARL from explicit formula, 

( )j u% is ARL from NIE method using the Gaussian rule 

and ( )Mj u% is ARL from NIE method using the midpoint rule. 

We also compare computational time between three 
methods. The computational time of three methods are 
approximated by central processing unit (CPU) time 
(Operating system: Window 8 OEM, intel(R) core(TM)i 5 -
8265U CPU@1.60GHz 1.80 GHz Ram 8.00 GB (7.89 GB 
usable)) in seconds. 

In Table I, the parameters value b for EWMA control 
chart was selected by setting  = (0.01, 0.05, 0.15), 
ARL0=370 and 0 = 1 in the case of MAX(1,1) with 
parameter  = 1.0 and  =(0.25, 0.35, 0.45), respectively. 

Table I show that ARL0 from explicit solution is very 
close to NIE on m=500 subintervals. Nevertheless, the CPU 
time from the explicit formula is much less than the CPU 
time from the numerical method. Besides, the numerical 
method using the midpoint rule takes fewer CPU times than 
the Gaussian rule.  
 Table II and Table III, ARL values show the 
performance for detection change in processes between 
explicit formula and numerical integration method on 
m=500 subintervals with process mean are shifting. In in-
control state, the value of parameter 0     = 1 and out of control 

state parameter values   1 0 1     where shift size      =0.005, 

0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13 and 0.15.  In Table II, 
the initial ARL0    = 370 for  MAX(1,1) with parameters  = 0.45, 
with   = 2.0,  = 0.15 and b    = 0.032273923. In Table III, the 

initial ARL0    = 370 for  MAX(1,2) with parameters = 0.45, 
with 

1 = 0.75, 
2 = 0.5,  =0.1 and b   = 0.0563214. 

 The results from Tables II and III show that ARL0 from 
explicit solution and numerical integration method 
on m=500 subinterval are good agreement to detect changes 
in the process. Nevertheless, the CPU time of the explicit 
formula is much less than the CPU time from the numerical 
method. Besides, the numerical method using the 
midpoint rule takes fewer CPU times than the Gaussian rule, 
see Fig. 1 and Fig. 2, respectively. 

 
   
 
 
 
 
 
 

TABLE I 
ARL VALUES FOR IN CONTROL PROCESS FOR MAX (1, 1)  
USING EXPLICIT FORMULA AGAINST NUMERICAL INTEGRAL 

EQUATION METHOD GIVEN  = 1.0 FOR ARL0 = 370. 

    b 
( )j u  

(Time:  
seconds) 

( )j u%  

(Time: 
seconds) 

( )Mj u%  

(Time: 
seconds) 

 
0.01 

 

0.25 0.00472462 
370.5505 

(0.01) 
370.5505 
(9.437) 

370.5505 
(1.61) 

0.35 0.00522307 
370.7192 

(0.01) 
370.7192 
(9.453) 

370.7192 
(1.704) 

0.45 0.00577427 
370.6413 

(0.01) 
370.6413 
(9.703) 

370.6412 
(1.61) 

0.05 

0.25 0.02384914 
370.5107 

(0.01) 
370.5107 
(9.219) 

370.5106 
(1.72) 

0.35 0.02639200 
370.3867 

(0.01) 
370.3867 
(9.328) 

370.3867 
(1.75) 

0.45 0.02921009 
370.3755 

(0.01) 
370.3755 
(9.281) 

370.3754 
(1.72) 

0.15 

0.25 0.07332148 
370.3748 

(0.01) 
370.3748 
(9.226) 

370.3747 
(1.69) 

0.35 0.08135870 
370.7690 

(0.01) 
370.7690 
(9.766) 

370.7688 
(1.74) 

0.45 0.09031750 
370.7075 

(0.01) 
370.7075 
(9.500) 

370.7072 
(1.70) 

 
 

TABLE II 
ARL VALUES FOR IN CONTROL PROCESS FOR MAX (1,1) USING 

EXPLICIT FORMULA AGAINST NUMERICAL INTEGRAL EQUATION 

METHOD GIVEN = 0.15, = 0.45,  = 2.0   

AND b = 0.032273923 FOR ARL0 = 370. 

shift 
   

( )j u  
(Time:  

seconds) 

( )j u%  
(Time:  

seconds) 

( )Mj u%  

(Time:  
seconds) 

0 370.685533 
(0.01) 

370.68553  
(9.375) 

370.68550  
(1.812) 

0.005 
61.164939 

(0.01) 
61.164938 

(9.375) 
61.164937 

(1.703) 

0.01 
33.691589  

(0.01) 
33.691589 

(9.453) 
33.691589  

(1.718) 

0.03 
12.497838 

(0.01) 
12.497838  
(10.359) 

12.497838  
(1.734) 

0.05 
7.936779 

(0.01) 
7.936779  
(9.578) 

7.936779  
(1.72) 

0.07 
5.947433 

(0.01) 
5.947433 
(9.438) 

5.947433  
(1.766) 

0.09 
4.833643 

(0.01) 
4.833643  
(9.281) 

4.833643 
(1.750) 

0.11 
4.121993 

(0.01) 
4.121993 
(9.226) 

4.121993  
(1.766) 

0.13 
3.628237 

(0.01) 
3.628237  
(9.375) 

3.628237  
(1.703) 

0.15 
3.265758 

(0.01) 
3.265758  
(9.549) 

3.265758  
(1.766) 
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TABLE III 
ARL VALUES FOR IN CONTROL PROCESS FOR MAX (1, 2) USING 

EXPLICIT FORMULA AGAINST NUMERICAL INTEGRAL EQUATION 

METHOD GIVEN = 0.1, = 0.45, 
1 = 0.75  

2 = 0.5   

AND b = 0.0563214 FOR ARL0 = 370. 

shift 
   

( )j u  
(Time:  

seconds) 

( )j u%  
(Time:  

seconds) 

( )Mj u%  

(Time:  
seconds) 

0 
370.78640 

(0.01) 
370.78640  

(9.375) 
370.78629  

(1.765) 

0.005 
79.65995 

(0.01) 
79.65995 
(9.734) 

79.65994 
(1.859) 

0.01 
45.03443 

(0.01) 
45.03443 
(9.672) 

45.03443 
(1.859) 

0.03 
16.98001 

(0.01) 
16.98001  
(9.703) 

16.98001  
(1.891) 

0.05 
10.77829 

(0.01) 
10.77829  
(9.750) 

10.77829 
(1.891) 

0.07 
8.05279 
(0.01) 

8.05279 
(9.609) 

8.05279 
(1.953) 

0.09 
6.52029 
(0.01) 

6.52029  
(9.470) 

6.52029 
 (1.875) 

0.11 
5.53799 
(0.01) 

5.53799 
(9.672) 

5.53799 
(1.906) 

0.13 
4.85456 
(0.01) 

4.85456 
 (9.719) 

4.85456 
(1.992) 

0.15 
4.35153 
(0.01) 

4.35153  
(9.813) 

4.35153  
(1.859) 

 
 

 
Fig.  1. The CPU times for evaluating ARL values  

of MAX(1,1) process on EWMA control chart. 
 
 

 
Fig.  2. The CPU times for evaluating ARL values  

of MAX(1,2) process on EWMA control chart. 

 

   

VI. CONCLUSION 

 This paper proposes an exact solution and numerical 
integration method using Gaussian and midpoint rules of 
ARL for moving average process with explanatory variable 
(MAX(1,r)) on EWMA control chart. Further, the existence 
and uniqueness of the explicit ARL have been proving. The 
results found that the ARL value from the proposed exact 
solution is much closed to the numerical integration 
method. The computational times for computing explicit 
formula take less than 1 second as well the numerical 
integration method takes no more than 11 seconds in the 
case of MAX(1,r). Besides, the numerical integration 
method using the midpoint rule takes fewer CPU times than 
the Gaussian rule. Therefore, the explicit formulas can 
decrease the computational times better than the numerical 
integration method. 
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