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Abstract—This paper introduces a novel concept for customer
load scheduling in the Smart Grid (SG). The concept is based
on the forthcoming internet of things (IoT). Approximate
optimization algorithms are deduced for optimum customer
load scheduling, maximization of electric power suppliers per-
formance, and fairness in scheduling customers load. Using
these approximate optimization algorithms as constraints, some
loads are given priority. Other loads are scheduled in order
to control the maximum demand load and electricity bills.
To evaluate the effectiveness of the algorithms, we utilize
the Mixed Integer Linear Programming (MILP). Simulations
are carried out and the impact on reducing the peak-to-
average power ratio (PAPR), the electricity bills, and ensuring
fairness in customers load schedules are investigated. Simulation
results establish that our algorithms significantly cut down
on electricity bills, maximizes utility performance, and deliver
fairness in customers load schedules..

Index Terms—demand response (DR), electric vehicle (EV),
internet of things, load scheduling, mixed integer linear pro-
gramming, optimization algorithms, power management system
(PMS) and smart grid.

I. INTRODUCTION

THE future of the traditional electricity grid is the SG.
There are many reasons to locomote the electricity

grid architectures from centralized, closed power systems to
smarter, highly automated power grids [1], [2]. Todays power
systems are designed to meet peak power demands. However,
this peak power can be much higher than the average power
consumption. Power systems can be said to have high PAPR
energy requirements [3]. This problem is expected to worsen
as EV hit the streets at a faster rate in the coming years [4].
This requires the concept of Distributed Generation (DG)
and the use of renewable energy sources (RES) such as
wind turbines and solar cells to generate additional and
cleaner energy [5]. In addition, the excess energy generated
can be stored for later use. This is done by connecting the
energy storage elements to the power grid. One of the main
characteristics of SG is the optimal adaptability to efficiently
meet temporal requirements [6]. This characteristic reflects
SGs intelligent character.

There are many levels of energy management in SG.
The power management schedules between resources (solar,
wind, storage, micro-grid, etc.) to achieve specific goals
such as meeting load requirements, minimizing costs, and
maximizing the performance of the power suppliers [7]. To
achieve these objectives in terms of the market value of
electricity, the concept of DR is used. A program that utility
companies implement to allow controlled access to consumer
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devices is called Demand Side Management (DSM) [4] and
it simplifies energy demand according to customer demands
[5]. Some objectives like reduction of electricity bills, peak
power demand, strategic load growth, flexible load shape,
peak clipping, and load schedules are met with DSM [8],
[9].

In existing works, DR concepts are explored from different
viewpoints. In [10], [11], a MILP formulation is presented
which optimally schedules the loads to reduce electricity
bills within the limits of the scheduling requirements. The
authors of [12] used convex programming to significantly
reduce electricity bills and PAPR. In [13], [20], users are
incentivizing to reschedule their power consumption patterns
in order to reduce operating costs, but this requires the
customer to change the desired load consumption pattern.
The authors of [7] used game theory to investigate the DSM
and presented a win-win situation between the utility and
the customer. Gaur et.al [14] used a genetic algorithm to
reduce the costs of PAPR and electricity bills. Reference
[15] proposed a pricing model that takes fairness [20] into
account. The paper shows how the demand curve flattens out
over the course of the day. Nevertheless, the paper settled on
a win-win situation between the utilities and the customer.
Per the works above, customer satisfaction and fairness in
load schedules are not guaranteed.

In this paper, we present customer load schedules based
on our proposed PMS. We derived mathematical formulas to
maximize utility performance, optimize load scheduling, and
ensure fairness in load schedules. Our proposed algorithms
give the customer the opportunity to adhere to the desired
load pattern. The algorithms finally give customers the ability
to determine the load that can be re-scheduled within the
schedulable loads. Thus, granting fairness and customer
satisfaction.

The rest of the paper is organized as follows; The proposed
model is presented in Section II. Mathematical formulations
for minimizing electricity bills, maximizing utility productiv-
ity, and fairness in scheduling customer loads are presented
in Section III. Section IV presents performance analysis and
Section V concludes.

II. PROPOSED MODEL

We consider the PMS of a Low Voltage (LV) power dis-
tribution network. The operational concept for the proposed
PMS is shown in Fig. 2. In SG, energy can be obtained
from various energy sources like hydropower, wind power,
biomass, solar power, etc. Each source is labelled as power
source PSi The PMS decides how much power should be
used from each power supply such as 0≤ PSi≤ PSmi

ax where
PSmi

ax is the maximum power that can be drawn from each
PSi. However, the peak available power from all the power
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Fig. 1. Flow Chart of the Proposed Model

sources could be noted as Pmt
ax. The subject of an optimum

selection of power sources to maintain certain objectives is
very well researched as in [15], [16], [17].

We assume that the power sources are arranged in de-
scending order in terms of available power. This means that
the PMS will first meet the load requirements from a power
source. If the load demand exceeds the available power of
the supplying power source, it will automatically switch to
supply power from the next power source, and so on. Each
power source has a weight value ci . Weight value represents
many parameters such as generation cost, environmental
impact, and possibly, public policy. (e.g. importing power
from other countries) [18].

In the PMS, each customer has three kinds of loads. Red
loads represent loads that must have power supply whenever
needed. Red loads are not schedulable in time regardless
of the tariff or regardless of the power supply and demand
balance [19]. There are several types of appliances that can
be classified in this category. In either case, customers can
classify which of their loads are red.

Orange loads represent the type of loads that must receive
certain active periods during the day, but those periods can
be rescheduled. There are three statuses for orange loads:
preferred periods, non-preferred periods, and fair periods.
Fair periods do not belong to a preferred period or a non-
preferred period. An example of such orange loads is the
washing machine with a non-preferred period of 22:00 -
6:00 due to the operational sound. Orange loads can be
rescheduled to meet the customer requirements as well as
the power supply-demand situation.

The green loads represent loads that can be scheduled
without any time constraints. Green loads can be scheduled
to meet customer requirements along with the total cost of
electricity and to manage the power supply-demand balance.
As a result, the electric power supplier must optimize the dis-
tribution of tariffs over time according to demand and supply
conditions. Higher tariffs for peak periods and lower tariffs
for off-peak periods encourage customers to voluntarily re-

Fig. 2. Power Management System.

allocate orange and green loads. However, the effectiveness
of scheduling the orange and green loads are major indicators
of electric power company performance and reputation. We
assume a monopsony system where electric power companies
compete for customers. Therefore, the Quality of Service
(QoS) of electric power suppliers is an essential parameter
to reflect customer satisfaction. Any electric power supplier
that does not consider the green loads in energy management
seriously will cause customer dissatisfaction, which can lead
to massive migration to other electric power suppliers. In
addition, the allocation of very high tariffs for peak periods
can also lead to customer dissatisfaction. Thus, optimal
scheduling is a very critical issue for the electric power
suppliers. Optimal scheduling will help maintain a stable
system even during peak demand periods and help customers
cut down electricity bills.

Failure probability can also be defined as the possibility
of remotely disconnecting loads (orange or green) during
normal operation to resolve critical technical problems. This
is also a parameter for accessing QoS. Red loads are not
included in the failure probability, as they should not be
included in any load scheduling. However, this may happen
due to a sudden supply interruption. In general, for the power
suppliers it is important to consider the following points:

1) The tariff values according to power supply-demand
situation, time of the day, etc.

2) The optimum time scheduling of orange and green
loads.

3) The highest reliability and stability of the grid.
4) Minimizing the probability of outage.
5) Fairness amongst customers.

Practically, all user loads require some time to complete
tasks. Along with the demand, the prices also fluctuate
over 24 hours. Hence, we optimize on a per-day basis by
scheduling appliances, yet, meeting all customer preferences
and technical limitations [20]-[23]. In actuality, the load
demands fluctuate over months/seasons. However, this is
not considered in our model. The time unit is ∆ minutes.
Therefore, the number of periods per day is given by
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N =
1440

∆
(1)

The energy consumed per day is written as

Et =
∆

60

N∑
i=1

P (i) (2)

where, P (i) is the peak power in kW within a time period
i. The total power at each time slot is expressed as

P (i) =
M∑
k=1

( rk∑
j=1

ηkj(i)Rkj+

ok∑
j=1

αkj(i)Okj+

gk∑
j=1

σkj(i)Gkj

)
(3)

where M is the total number of customers, rk is the number
of red loads of a customer k, ηkj(i) ∈ {0, 1} where {0, 1}
is an indicator that the jth red load of the kth customer at
the ith period is either ON or OFF. Rkj is the rating power
of the jth red load. Similarly, ok is the number of orange
loads of a customer k, αkj(i) ∈ {0, 1} where {0, 1} is an
indicator that the jth orange load of the kth customer at the
ith period is either ON or OFF. Okj is the rating power of
the jth orange load. Also, gk is the number of green loads of
a customer k, σkj(i) ∈ {0, 1} and {0, 1} is an indicator that
the jth green load of the kth customer at the ith period is
either ON or OFF. Gkj is the rating power of the jth orange
load.

It is possible to control the total power consumption with
the switching parameters; ηkj(i), αkj(i) and σkj(i) for red
load, orange load and green load, on an item-by-item basis.
However, it is assumed that ηkj(i) is set by the customer not
by the electric power supplier. Since red loads are not to be
re-scheduled. For the orange loads, we have the following
requirement

N∑
i=1

= Tkj (4)

where, Tkj is the total number of periods that the jth orange
load of the kth customer should be connected per day. If we
assume that a certain orange load should be connected for
tkj minutes, then:

Tkj =
[ tkj

∆

]
(5)

where, [x] returns the round-up integer of x.
Finally, green loads are the most flexible load that can

be rescheduled. There are no constraints to be met with
respect to green loads. Nevertheless, the power companies
performance and reputation are in a way linked to ensuring
less green loads rescheduling. In the system model, we have
several constraints that should be achieved as:
• The maximum electricity bills that the customer will

want to pay.
• Achieving good profit for the utility provider.
• Providing constant electricity supply to the red loads.
• Balancing the electricity supply-demand without

geopadizing the grid stability.
The peak power demand is identified as

Ppeak = max
∀i=1,...N

P (i) (6)

In the next section, various mathematical optimization algo-
rithms are presented to achieve different criteria.

III. OPTIMIZATION ALGORITHMS

Optimization in this context is a tool to find the optimum
schedule of customer loads to achieve specific objectives
and constraints. The objectives are usually set by the elec-
tric power suppliers. Scheduling schemes can vary greatly
depending on the optimization criteria. Therefore, it is im-
portant for the electric power supplier to choose the right
purpose and the right scheduling scheme. In this section, we
present a variety of optimization algorithms and we show
the scheduling impact. The total electricity bills for the kth

customer is related to

Ck =
∑N
i=1

[∑rk
j=1 ηkj(i)Rkjf(i) +

∑ok
j=1 αkj(i)

Okjf(i) +
∑gk
j=1 σkj(i)Gkjf(i)

]
where, f(i) is the tariff at time period (i). It is normally

large during the peak power demands and low during off-
peak power demands. Hence, f(i) is a dynamic parameter
that depends on many factors such as the time, the power
source, and the electric power supplier. In all the proceeding
optimizations formula given next, we are looking for the
optimums αkj(i) and σkj(i) which are either on 0 or 1. It
is obvious that all the following optimization algorithms can
be classified as one form of Knapsack problems, Knapsack
problems are NP-complex problems as demonstrated in [10].

A. Optimization Formula 1: Minimizing Electricity Bills

Our criterion is to minimize the total electricity bills of the
consumers while respecting the constraints; the optimization
formula can be expressed as given in [7]

min
αkj(i),σkj(i)

M∑
k=1

Ck (7)

subject to

Ck ≤ Cmaxk ∀k = 1, ...M ;Ppeak ≤ Pmaxt (8)

N∑
i=1

αkj(i) = Tkj∀k = 1, ...M ; j = 1, ..., ok (9)

The above optimization problem guarantees minimum
electricity bills. Nevertheless, it has a serious limitation
that green loads are not being served. The behavior of this
algorithm is analyzed in simulation.

B. Optimization Formula 2: Maximizing Utility Performance

Utility performance is defined by the reliability, availabil-
ity, and efficiency of the power supply while maximizing the
utilitys revenue. This can be accomplished by the percentage
of supporting the largest green loads. However, other restric-
tions must be observed, such as maximum allowable bills
and maximum power supply. The optimization problem can
be formulated as follows:
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max
αkj

M∑
k=1

N∑
i=1

gk∑
j=1

σkj(i)f(i) (10)

subject to

Ck ≤ Cmaxk ∀k = 1, ...M ;Ppeak ≤ Pmaxt (11)

N∑
i=1

αkj(i) = Tkj∀k = 1, ...M ; j = 1, ..., ok (12)

The problem with this optimization is that it does not
guarantee fairness amongst customers in terms of the green
loads.

C. Optimization Formula 3: Fairness in Scheduling Appli-
ances

The utility performance could be measured by the percent-
age of supporting green loads. Nonetheless, other constraints
such as the maximum allowed bills and the maximum power
supply should be achieved. The optimization problem could
be formulated in the following manner:

max
αkj(i)σkj(i)

M∏
k=1

(
N∑
i=1

gk∑
j=1

σkj(i)

)
(13)

subject to

Ck ≤ Cmaxk ∀k = 1, ...M ;Ppeak ≤ Pmaxt (14)

N∑
i=1

αkj(i) = Tkj∀k = 1, ...M ; j = 1, ..., ok (15)

Since the product of the consumers green loads have been
used. This optimization algorithm will lead to fairer distri-
bution amongst consumers. Maximizing this leads to a fairer
allocation of power to the green loads.

IV. PERFORMANCE ANALYSIS

The performance analysis is carried out with simulations.
In the simulation set up, for the purposes of analysis, there
are 20 fixed customers and each customer has six red loads.
The red loads are determined by the customer and are not
included in any load schedules. Also, each customer has

TABLE I
THE POWER PROFILE OF THE CONSIDERED APPLIANCES

Appliances Power rating (Watts) Type Time (minutes)

Electric cooker 200 Red As needed

Television 120 Red As needed

Fridge 400 Red As needed

Security lamps 100 Red As needed

Computer 200 Red As needed

Electric iron 500 Orange 60 minutes

Dish washer 2000 Orange 45 minutes

Sew. machine 80 Orange As needed

Vacuum cleaner 650 Orange 45 minutes

Water pump 750 Green 90 minutes

Heater 700 Green 120 minutes

Water heater 450 Green As needed

four orange loads and three green loads. The loads with the
rated power are exhibited in Table I. The orange and green
loads have an ON-OFF schedule permitting by the PMS.
However, each load has an average number of being ON
per day and also the average time duration to be achieved.
The number of being ON follows a Poisson distribution and
the time duration is a random process with an exponential
distribution [8]. We divide a day into 288 periods, with the
length of each period been 5 minutes. On the load side, we
consider dynamic load represented by EVs. The dynamic
loads are connected randomly at a Poissonian rate to the
power network and consume 10kW. The details of the power
sources are as follows:
• Macrogrid supply with normalized tariff at $0.09/kW

between 7:00 - 18:00 and $0.05/kW between 18:00 -
7:00 (i.e. bi-tariff). The maximum power per day is
500kW.

• Renewable (solar, wind, storage battery, photovoltaic,
etc.) supply with uniform random power from 50kW to
100kW, with maximum energy per day as 500kW.

• Storage energy supply with power up to 200kW, but
with total energy per day of 500kW and at $0.09/kW
all day. (fixed tariff).

For verification purposes, we analyzed the use of home
appliances by customers at a fixed rate during the day and
another fixed-rate at night. This is known as the bi-tariff. The
said tariff is fixed at $0.09 at day and $0.05 at night and the
supply power is sourced from a non-RES source.

Fig. 3. Scheduling Customer Appliance based on Hourly Fluctuating Tariff.

This reflects the practical situation as electricity tariff is
usually higher at peak load periods and lower at off-peak
periods. Simulation results show that the optimal objective
value for scheduling the appliances using the MILP is $19.45.
This shows a significant reduction of the electricity bills com-
pared to the electricity bills of $22.45 without scheduling.

Using the hourly fluctuating tariff, where the said tariff
fluctuates between $0.05 and $0.09. The optimal objective
value of $17.34 is achieved showing gross decrement in the
electricity bills compared to the bills without scheduling.
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Fig. 4. Scheduling Customer Appliance based on Bi-tariff.

Fig. 5. Scheduling Customer Appliances with RES based on Hourly
Fluctuating Tariff.

Again, with power from a RES and simulated based on the
parameters given under the performance analysis in Table I,
using the bi-tariff mentioned. The optimum value is obtained
at $20.48. The graph is as shown in figure 5. The graph of
scheduling the appliances based on the hourly fluctuation
tariff is shown in fig 6. Simulation results determined the
optimal value at C19.45 showing decrement in the electricity
bills compared to the electricity bills of C22.45 without
scheduling. It is evident also in the simulation results that,
the green loads ON-OFF (0-1) constraints are met.

V. CONCLUSION

We analyzed the problem of scheduling customers load for
DR program in SG using a centralized MILP optimization
algorithm. We deduced approximate expressions to minimize
electricity bills, maximize utility performance, and ensure
fairness in customers load scheduling. The primary novelty
is that our proposed PMS supports customers desire load
consumption patterns, yet, reduces electricity bills. Another

Fig. 6. Scheduling Customer Appliances with RES based on Bi-tariff.

novelty is that the proposed model guarantees fairness within
the schedulable loads which is demonstrated by the extensive
computational experiments.
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