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Abstract—From the experimental data of the asy-
metric cleavage test at the bonded joint we studied the
crack length propagation as a function of the fracture
energy thanks an artificial neural networks. We used
the Nonlinear Autoregressive Exogenous (NARX)
neural network. The model predicts the crack length
with a good agreement with the experimental find-
ings. However, training of the stabilization crack on
too long time can cause over-training.
Keywords: Artificial Neural Network, Autoregressive
Exogenous NARX, crack length,prediction.

I. Introduction

R Ecent developments in structural adhesives with
increased performance, allow today’s bonding to

compete with conventional assembly techniques (brazing,
riveting, bolting ...). From an industrial point of view,
while structural bonding is interesting in terms of costs
and lightening of structures, there is still uncertainty as
to the reliability, in time and in use, of bonded joints.
Similarly, when assemblies are subjected to aggressive en-
vironments (high humidity, high temperature, corrosive
products, etc.). One of the main themes of adhesion is to
predict the behavior of the bonded joint in mechanical
stress, high temperatures and humidity environment.

Numerous predictive approaches make it possible to
evaluate the degradation over time of the bonded joint.
The experimental approach, based on mechanical tests,
makes it possible to predict the behavior of glued joints
from accelerated laboratory tests and empirical or semi-
empirical laws. The output data are either reductions
in mechanical strength or changes in breaking energies.
Cognard [1], using the cleavage test, interprets the drop
in fracture energy of bonded joints, with stainless steel
substrate, cleaved during the test as a decrease in the
strength of bonded joints, during the residence time in an
aggressive atmosphere. The advance of the crack, during
the cleavage test, shows a decrease in fracture energy as a
function of time. Plausinis and Spelt [2], introducing the
time parameter, have developed a method for estimating
the maximum load that an adhesive joint can withstand
without creep crack growth.

Mathematics is widely used also for predicting the
behavior of the bonded joint. In particular, numerical
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analysis makes it possible to simulate stress and strain
behavior in the adhesive joint [3] and provide solutions to
complex problems. The University of Surrey Engineering
School [4] proposes a coupled stress-diffusion analysis to
study the durability of hot / wet aged bonded joints.
Court et al [5] predict the breaking stress for single
shear-lap joints in a wet environment from the properties
of the mass adhesive before and after aging at 40C,
95%RH. Statistical and probabilistic tools are also used.
Reliability approaches are introduced with the partial
factor method, which takes into account the stochastic
nature of the effects of stress and resistance. Van Straalen
[6] applied this method to bonded joints.

The purpose of this article is to propose a tool
able to predict the evolution of the crack length ac-
cording to the energy of rupture. The data come from
experimental measurements of fracture energy and crack
length as function of time. There are several approaches
to material physics to time series predictions such as
statistical methods and more recent methods such as
artificial networks (RNA). The problem of real Time
prediction amounts to estimating, at each time t, the
future value of the time series, from it past value. The
measurements of the energy and the crack length are
performed with a time step of 10 min interval.

A. Time series prediction
Given the observations of breaking energy and crack

length, time series prediction is used to develop models
for describing the relationships between these two ob-
servations. We want to approximate the true underlying
function describing the data as accurately as possible.

There are different methods for predicting and analyz-
ing time series. Statistical, probabilistic and mathemati-
cal analysis in time series data consists in determining
the trend parameters as well as the stability of the
values (and their variation) over time. The mathematical
methods generally used to analyze and predict time series
data are regression analysis, autoregressive moving aver-
age (ARMA), autoregressive integrated moving average
(ARIMA), Bayesian analysis, Kalman filtering, and the
spectral analysis with the discrete Fourier transform and
the discrete wavelet transform. However other less tradi-
tional approaches are also used such as those borrowed
from AI.

Time series prediction is implemented in many areas
such as meteorology, stock forecasting ... In the study of
the behavior of materials and in particular in the lifetime
of composites, the models of automatic learning like the
networks of artificial neural networks have a lot of success
[7].
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More and more scientists are applying neural networks
to their forecast models. To predict the time required for
the crack to grow until the critical length is reached, at
which point fracture occurs [8]. In [9] they predicted fa-
tigue crack propagation life of aluminum alloys under the
influence of load ratio by using artificial neural network
(ANN). Other researchers have evaluated the lifetime of
a composite material through neural networks with non-
linear auto-regressive exogenous structure NARX [10]. In
the present paper, NARX structure is developed.

This paper is organized as follows: section I presents
briefly the experimental procedure. Crack length prop-
agation modeling with NARX structure is presented in
section II, followed by results and discussion in section
III. The section V concludes the paper.

II. Experimental approach

It was at the Laboratory of Production Engineering
(LGP) of the National School of Engineers of Tarbes
that most of the experimental manipulations took place.
Within this laboratory, a research activity on the dura-
bility of structural bonded joints with metallic and es-
pecially ceramic substrates has been developed in recent
years. The experimental data come from the experience
of the asymmetric wedge cleavage test and from J.
Evieux’s thesis [11]. The test AlN / adhesive / aluminum
alloy studied consists of aluminum nitride, glued, using
the epoxy adhesive, to a 2024 aluminum alloy blade.
This blade was previously anodized to prevent breakage
at the aluminum / epoxy interface. The introduction
of the wedge into the test tube is carried out at a
speed, generally used for this type of test, of 10 mm /
min. It causes cracking of the glue joint. The initiation
of this crack occurs around 8 mm penetration for the
test piece with A N simply degreased. The cracking is
directly interfacial, consequence of a weak adhesion. The
test piece is then stored in a desiccator (20C, 40%RH),
for 24 hours, the minimum time to stabilize the crack
propagation. Once the crack length has been measured,
the test specimen is placed in the aggressive medium (for
example, immersion in brine at 70C or in the climatic
chamber humidity medium, 70C, 90%RH).

Fig. 1. Asymmetric wedge cleavage test.

The thickness of the adhesive is 0.2 mm, and the
thickness of l’AlN is 4 mm. The cracks are all located
at the substrate/adhesive interfaces, regardless at the
surface treatment of the substrates. The crack lengths
are regularly measured.

A. Experimental results
Our attention is focused on the evolution of the crack

length at the AlN/adhesive, as a function of the im-
mersion time in the aggressive liquid. We choose two
cases where the AlN substrate is digressed and where
AlN is treated with a laser (1 J/cm2). The majority of
the cleavage test information is at short time when the
state of stress is greatest and the adhesive and interfacial
bonds are the more stressed.

Fig. 2. Fissure.

The curve represents the average value of the crack
length taken from four to five test pieces. We are inter-
ested in the crack length during the aging and on the
absence or presence of the crack stabilization.

Fig. 3. Energie.

For all observations, the fracture energy decreases with
the immersion time in the liquid.

From these curves we collect in a first time a sample
of 120 points (for 20H duration) with a time step of
∆T = 10 mn corresponding to the specimen AlN di-
gressed and the destroyed test tube. In a second time, we
collect a sample of 133 points (for 22H duration) always
for a ∆T = 10 mn and a specimen AlN treated with a
laser at 1J/cm2 corresponding to the crack stabilized.

III. Prediction of joint durability with the
NARX artificial neural network

Because crack length and fracture energy are time
series we develop in Matlab langage an artificial neural
network NARX which is a good predictor of time series.
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The non-linear autoregressive network with exogenous
inputs (NARX) is a recurrent dynamic network, with
feedback connections which enclose multiple layers of
the network. NARX can model a variety of nonlinear
dynamic systems. The artificial neural network NARX
is a two-layer network, with a sigmoid transfer function
in the hidden layer and an activation function, which
is linear, in the output layer. NARX model can be
represented as :

y(t) = f(y(t − 1), y(t − 2), y(t − 3), ...y(t − k),
x(t − 1), x(t − 2), ...x(t − k)) (1)

where the output variable y(t) is regressed from its
previous values and exogenous variables x delayed by
k periods. The NARX network can be executed in two
architectures :
- Series-parallel architecture named open-loop. In this
execution, the real output is used instead of returning
the estimated output and given by the equation:

ŷ(t + 1) = f(y(t), y(t − 1), y(t − 3), ...y(t − k),
x(t + 1), x(t), ...x(t − k)) (2)

Using true values as input of the feedforward network
gives precision.

- Parallel architecture or close-loop
The close-loop means that the output of the NARX

network is returned to the network input by delays.
Which gives the following equation

ŷ(t + 1) = f(ŷ(t), ŷ(t − 1), y(t − 3),
...ŷ(t − k), x(t + 1), x(t), ...x(t − k)) (3)

A. The model
We use as input the fracture energy data and for the

target the crack length. The NARX network consists in
three layers: input with the true values of the fracture
energy, hidden and output, with weights and a bias.
In practice, the structure is chosen by successive tests
on weights and delay until the most satisfactory perfor-
mance is obtained. We considered three types of learning
while keeping the same number of hidden neurons and
delay time ; we have an artificial neural network model of
9 hidden layers with a delay of 2 periods. The weights and
biases vectors are randomly generated only once, in the
first training phase. The Matlab software Deep Learning
toolbox was used to train, validate and test the predicted
NARX prediction model.

In this study, serie-parallel architecture is using for the
training mode, see Figure III-A.

Fig. 4. Series-parallel architecture

The number of points of each curves 2, and 3 used
during the training phase has a strong influence on

the development of the network and the optimization
of the results. But for efficient learning this number
must be sufficient to allow the network and to detect
the variations of the curves. For The training phase we
have three kinds of target timesteps training, validation
and testing: it consists on 70% for training, 15% for
validation, these are used to measure network general-
ization, and to halt training when generalization stops
improving. and 15% for the test, these have no effect
on training and so provide an independent measure of
network performance during and after training.. For the
training we used Levenberg Marquardt’s algorithm (see
[12]) which is adapted to minimize nonlinear functions
then it is much more efficient compared to the more
general optimization algorithms.

1) The performance of the model: To more accurately
assess the quality of forecasts, we use the mean squared
error (MSE) for the three cases. Indeed, this indicator
makes it possible to compare the real and forecast data.
Low values of these indicators mean accurate forecasts.
The mean squared error is defined by

MSE =
∑N

1
|y−ŷ|2

N
(4)

where N denotes the numbers of patterns pairs.

B. The case of the destroyed test-tube
1) The training phase: We used 60 points (10 H) of

each learning curve and test, in the second time 80 points
and in the third time 100 points.

TABLE I
Estimation results for the different models.

models
number of points 60 80 100

MSE 0.000122 0.000743 0.000929

According to the calculation result of the average error,
a better learning is obtained for 60 points.

Fig. 5. Performance of the static neural networks NARX for 60
points

Fig III-B1 represents the error evolution MSE during
the validation.

Regression R Values measure the correlation between
outputs and targets. The outputs are correlated with
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Fig. 6. Correlation between the outputs and the target values.

the corresponding target values for training and testing,
and the R value is 0.99927 for the total response. There
is a relatively linear relationship between outputs and
targets. These results show a good fit in learning and
testing.

2) Prediction of the crack length: Here is how to design
a neural network that predicts the target series from past
values of inputs and targets. After the training phase,
the NARX is converted to the parallel architecture see
Figure III-B2 which is used for the multi-step-ahead
prediction phase. In order to evaluate the performance

Fig. 7. Parallel architecture

of the developed NARX network, we tested it on another
database. The prediction of the crack propagation is per-
formed on the remainder of the sample belonging neither
to the learning base nor that to that of the validation
or the test. A comparison is then made between the
predicted values and the true values. The best obtained
error performance is 0.000197 for MSE, for 60 points.
Then Figure III-B2 shows the crack length prediction
with with neural netwoks model:

The predicted crack length is relatively close to the
experimental values. The NARX model is therefore able
to predict the crack length and thus its stabilization
where not, despite a not very high number of points. Fig.
10 represents the measured and predicted values for this
sample.

Fig. 8. Comparison of predicted (NARX) and experimental crack
length for 60 points

TABLE II
Performance results for the stabilised crack.

models
number of points 73 93 113

MSE 0.000342 0.000796 0.000721

Fig. 9. Comparison of predicted (NARX) and experimental
stabilized crack for 60 points

C. Case corresponding to the crack stabilized
Now we study the sample of AlN laser treated 1 J/cm2,

we have 133 points, we used 73 points of each learning
curve and test, in the second time 93 points and in the
third time 113 points. We obtain for 2 times delay and 9
hidden layers, the following performance:

Despite learning a few more points, according to the
table II, the MSE error tells us that the network is less
efficient.

We see in particular on the figure III-B2 that the
prediction for 60 points in the case of the stabilized crack,
is not as efficient as for the first case. But we do see,
however, the tendency to stabilize the crack.

IV. Discussion
The simulations of this paper are performed using

samples of 120 and 133 points. The numbers of points is
important in the training phase. Il is sufficient to detect
and predict the stabilization of the crack.

The crack length being stabilized, if one considers
stabilization times too long, there is a risk of "over-
training" the part corresponding to the stabilization at
the expense of the crack propagation phase. Indeed, we
note the case where the training phase is performed on
a large part corresponding to the stabilized crack, the
NARX is less effective.
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V. Conclusion
This present paper demonstrates that developed

NARX is capable in predicting crack propagation. NARX
is good predictor for the real time forecasting of the
stabilization or not of the crack. This article is completed
by the study of D. Ghorbanzadeh on the change-point
which determines the point of change of state of the
breaking energy.
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