
Two Alternative Approaches To Rounding Issues In
Precision Computing With Accumulators, With Less

Memory Consumption
Roy P. Gulla, Jr.

Abstract— Recent developments in numerical
formatting have introduced a new system and a new
emphasis on the use of accumulators for numerical
computation. There also has been a recent development in
this Posits numerical system, designed by John Gustafson,
utilizing logarithmic bases. Here an alternative in light of
these new developments is presented in a way to
incorporate a design feature of Gustafson's format which
negates the need for fractional bits in his system. One
possible hardware design for implementation of the
formatting is also briefly mentioned.

I. INTRODUCTION

In recent computation the IEEE float type has fallen short
with its approach to precision and subsequently various
methods have been employed to maximize the exactness of
representations of numbers, including those most recently
introduced by John Gustafson’s posit system. None of these
methods are easy on memory consumption, and memory
constraints on such number formats and the space allotted for
them are not considered by most supercomputing systems as a
high priority, particularly with recent advances in
supercomputing architectures.

Given the amount of efforts to control performance issues
on such large systems where precision is of the utmost priority,
and exactness at each stage of the computation makes the
difference between a truncated value of zero and an order of
10s of thousands, certain well known scientific computing
numeric expressions are stored in the form of a floating point
constant.

In a system of clustered machines, bytes representing such a
constant are typically indexed in a large register file for the
purposes of reloading the value for multiple processes to
access. And this is a design choice of necessity with some
double values in certain representations, since reciprocal clos-
ure of a numerical format can be achieved with well designed
fractional mappings of these stored values.

For instance, in [5], one fractional mapping includes √2 in
the form, and this needs to be stored, as its calculation can be
quite expensive[3]. All of this architecture calls for controlled
memory accesses, necessitating the creation of memory
barriers.

Roy P. Gulla is a Sports/Racebook Writer for the Mesquite Gaming Corp.
Mesquite, NV 89027 (Phone:725-208-2328; email: rgulla01@saintmarys.edu)

In these wide bitfield implementations with fractional
mappings, it is the reloading and storing of these values which
can prove expensive on memory and performance of the
processing unit, as the instruction set can become bloated,
particularly when multiple precision floating values are being
represented.

To worsen matters with stored computing values, with
current advances in quantum supercomputing hardware there
is an inherent built-in guaranteed error in reading stored
bitfields that needs to be accounted for in processing
information. In [1], the authors are excited to report that a
probability of accurately reading a stored array in a quantum
information channel was found to be 1/polylog(n), with n
being the rank of the matrix!

Regardless of the processor type or manufacturer, floating
point values repeatedly require more machine cycles than their
integer type counterparts when performing computations, or
even when simply performing loading and storing of the
values. And as it is stated immediately above, it is the storage
of these values, whether in intermediate or finalized tabulated
form, that is a source of major concern where precision and
memory constraints are mixed.

In the second portion of this paper, a method will be
introduced which takes advantage of the POSIT's minposis
mapping, and bypasses the need for the fractional bits of this
IEEE float formatting, since POSIT has fractional bits as an
optional bitfield anyhow.

II. HARDWARE BACKGROUND

Due to the difference in types of accumulator issues between
integer and floating point registers, the following well known
but slightly outdated High Performance Super Computing is
presented here to simply demonstrate which operations prove
more expensive on these IEEE float types. The volatility of
certain register operations in this ULTRA SPARC II processor
were demonstrated in [1] during a Sun Microsystems Research
study conducted with students at a point when multi processor
and multi threaded applications were becoming the industry
norm.

During this study, students performed computing tasks and
recorded the results observed on a performance counter over a
significant window of time.

The counter displayed that, in eight of the nine different
computing architectures tested the vast majority of compute
time was spent on loading and/or storing operations, versus the
simple reading and writing from registers.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021

In the ninth architecture, Intel's GNU system displayed the
vast majority of time was spent in “misprediction” stalls, or
when the processor incorrectly predicted the memory allocator
branch taken when a cache miss occurs. Another potential
performance hit in these particular parallel architectures can
occur when these floating point block load and stores are
allowed access to the same memory registers as atomic load
and stores.

In order to maximize the usage of compute resources, in
light of these performance issues, recently a premium has been
placed on allocating a chip on a single atom of computer
architecture. With this recent achievement, when a single
nanometer of a computing device is used in some arithmetic
circuit now, then the order of 10 kilobytes of memory is being
consumed. To place a scope on the cost of certain arithmetic
circuits on performance, implementations of multiplier circuits
in machine learning networks are lucky if they cost 28
nanometers in computer memory width[6]..

To deal with these tradeoffs between precision and limited
space, today's architectures can turn to multiple precision
computing, in order to combine the space efficiency of single
(or even half) precision and the scientific precision of double
or higher precision.. One of the issues with these multiple
width register sets is that of denormalized values, occurring
typically with partial storage approaches to numerical values.
A major reason for the denormalized values is when
instruction sets are required to bit shift floating point values
varying amounts depending on the specified number of
exponent bits, which can be varied depending on how modular
the system is in it's design[5]. This will then sometimes result
in the truncation of the intermediate value to 0.

In fact, a very modular system has been proposed by
Lawrence Livermore National Laboratory that proposes a
variable number of exponent bits, and new mappings of
fraction bits[5]. One of these fractional mappings is
mentioned above in light of the current paper's proposal.

III. TRADITIONAL APPROACHES
TO ROUNDING OR TRUNCATION.

This new proposed implementation of certain rational
numbers avoids the one issue that is common to all of the
architectures.mentioned above, storage and retrieval of values.
Simply put, the difficulties in the rounding stage of
computation are not merely limited to differences in machine
precision between a source and a target machine, but rather
arise in the storage of intermediate values, particularly in
partial summation schemes (as found in accumulators), and the
use of these memory operands in the necessary comparisons
the machine makes in order to make the final necessary
adjustments to the numerical representation of the value.
These difficulties arise as multiple comparisons performed on
floating point values leads to an additional intermediate
(difference) term each time a compare is performed, and
ultimately it is the source and not the destination precision
settings which take precedence. If the source has chosen

truncation as its option for optimizing the floating point unit
computation, the effects can be very pronounced.

The use of these stored memory operands was such a
hindrance to performance that Intel completely engineered
them out of the comparison stage of computation long ago,
and so registers(whichever size and type) are the only allowed
operands in comparisons for its floating point values today.

The following example using the Intel floating point register
st(0) demonstrates the point:

ST(0) REGISTER

val
st(0) =2.0

ASM INSTRUCTION
fload val
fsqrt
fmul ST(0), ST(0)
fsub val

Final ST(0) val: 4.4408921E-016

No. Of FPUs used 1

Figure 1 Intel Floating Point register issue with a non-representable number.

The above issue occurred amazingly on a single processor
system, with a single FPU. In multiple processor systems the
issue could become more pronounced.
The problem being addressed can be demonstrated with the
following tabular display of a commonly encountered issue
with any binary numbering format, showing how memory
constraints can become a huge problem in any system. (It is
important to note that by the 10th fractional bit in the following
diagram, the represented number is still .0008 off the true
value. And after 8 more bits,it overshoots the desired number.

Decimal Value

Binary Representation

.2 (2/10)

.00110011001100110011...(etc)

No. Of Bits Required INFINITE

Figure 2: In this instance engineers are tempted to incorporate an alternative exponent
in the floating point value, thereby mixing varying registers, which may lead to zeroing
out of system values

.IV. A TABULAR DEMO OF MODEL TO FOLLOW
When accelerators become involved in the intermediate

stages of computation, as happens in partial product circuitry,
and multiple registers become incorporated in the arithmetic
circuits, optimizations can be (and should be) made for certain
register types (and their widths). And although Posits share
some similar fields as the IEEE floating point type, there is a
very distinct difference in their treatment of the fractional
bitfield, which is what the last section here hopes to present as
one of its most attractive qualities.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021

With a repeating bit pattern as that shown in the above
Figure 2, the obvious culprit is a repeating remainder term in
the binary fractional division scheme, which itself cannot be
transformed into binary formatting. Here the fractional bits
are in fact an engineering flaw and a source of both memory
and accuracy issues. This particular example is shown as its
proposed representation below can be utilized for all numbers
of the form 1/10ⁿ, utilizing the accumulator scheme proposed
in [7]. In such a case, the proposal is as follows below:

Decimal Value

Alternate Expanded
Form, in as much
binary as possible->

.2 (2/10)
1/4 – 1/4(1/5)

1/4(1 – (1/4(1 – 1/5)

1/4(1-(1/4(1-(1/4(1-.1/5)

etc.

Floating Term 1-1/5=4/5

Figure 3:By the fourth iteration in the expanded form in binary, the
computation is within .0015 of the actual number , and only 2 bits have
been used. After another iteration, we are within .0003 of the number. 16
digits of precision is reached after 18 iterations, using these same two bits.

In the above representation of the decimal value of .2, the
first sequence showing the 1/5 term is 1/4 – 1/4(1/5), or 1/4(1
- .2), and the second sequence would be 1/4(1 – (1/4(1 - .2)),
and the third 1/4(1-(1/4(1-(1/4(1-.2) etc. Via this route we
are within .008 after 3 iterations, and after 6 iterations, within
.00001 of the desired number, while avoiding the
unrepresentable term. It takes 21 iterations to achieve
machine level precision, and in modern supercomputing
processors, such mathematical instructions take picoseconds,
not nano. Again, only 2 bits from the stack are used. And
the problems which follow from the storing and loading of the
value in some suitable form, both to and from a table, are
completely avoided.

Without loss of generality, the case of 3ⁱ(specifically,its
reciprocal field) is presented here. The other fields have
similar expanded representations of those numbers not
representable in binary form. In each case, the repeated bit
term used in the calculation is simply weighted in the
implemented circuit. This use of weights is fundamentally
important to the last section's treatment of a particular
scientific constant.

Decimal Value.

Alternate Expanded
form, in as much
binary as possible->

.333333...(1/3)

1/4 + 1/12 = 1/4(1+1/3)
=1/4(1+1/4(1+1/3))
=1/4(1+1/4(1+1/4(1+1/3)))
etc.

Floating Term 1+1/3 = 4/3

Figure 4: Another example of an expanded binary form of a rational number,
with a non-representable component. The same convergence rate to the
actual desired number is seen here as in Figure 3. This approach is useful
with expansions of rational numbers, or any reals in something other than an
alternating series, with weights, as is commonly encountered in certain
engineering and science applications.

V. A COMMON FLOATING POINT CONSTANT WITH A
WEIGHTED BIT REPRESENTATION

As the proposed final addition to the proposed alternative
formatting designed to deal with rounding issues, a weighted
representation of bits is used to compute a common constant
typically stored and loaded as a floating point constant, the
natural log base. It is presented here as an alternative to the
typical storage of the natural log base, which again can be
prone to the inherent error issues mentioned in [1].

The iteration scheme followed can be explained as follows:

If at any point in the calculation of the constant, the
inclusion of the next bit in the minposis bit set causes the value
to overshoot the desired one, simply skip the bit and proceed
to the next, and keep reading until the value overshoots, at
which point discard the previously read bit.

In the following table, a representation of the natural log
base is given to machine level precision, utilizing the extra
padded bit field (bits 49, 52, 54) incorporated in the tilepro
architecture. This is the suggested mode for any future
implementations of the model.

EXAMPLE OF THE ABOVE APPROACH USING THE
NATURAL LOG BASE

SET SIGNIFICAND
BITS

CORRESPONDING
BIT WEIGHTS

2,4,5,7,8,9,10,11,12,17,20,21,22,23,
24,25,26,27,29,30,31,32,33,34,35,3
6,37,38,39,40,42,43,44,45,46,47,49,
52,54*(57,60,65,66,69,70)

2,2,2,2,2,2,2,2,2,2,2,2,2,4,2,2,2,4,4,2,2
,2,2,4,2,2,2,8,4,4,8,8,8,4,4,4,2,2,2,2,1,
*(1+,1+,1+,1+,1+,1+)

+1 SUPERUNITARY
BIT§ 1

§Superunitary as it is used in[3]. Simply put, it is the subset of Reals greater
than unity.

Figure 5 The proposed weighted numerical formatting, using the natural log
base constant, represented to machine precision of 16 decimal places. No
fractional weights are in the list, so the model is implemented with a simple
hardware addition circuit.

VI. SUGGESTION FOR FURTHER USE OF THE
MODEL

The implementation design here for the natural log base
allows for the use of a multiple vector register set, such as that
utilized in the AltiVec processor by IBM. And as it has been
repeatedly emphasized in this paper, also seems suitable for
implementation with the POSIT's minposis subunitary
numbers, as described in [3].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021

���������	

��

�����
 �����
 �������
 ������
 �
 �����
 	�����
 ����
 �"��#��

$�"�%�#%
 �&���
 *+��%+�
 	��+<�%�"�
 "=
 �
 >�%��#
 	%"��?
 ��

*+��%+�
 >��"��QY
 *+��%+�
 Z�="���%�"�
 \�"^������Q
 �_

�`Q�``{|����}_Q`�~Q}��~Q�

�}

���"?��
 ��^���?
 �Q��
 >""���
 ��<<����
 \�<<����
 ��<<��

$\��="����^�
>"��%"����
��
�?���^�?
�"��+%���
��^��%�^%+��QY

	+�
>�^�"���%���
������^�
������"�

��

������
	Q
�������Q
������
 �Q�
���"�
�Q�
�+�
�
������
�Q
$\"��%

���%���%�^
 ���?&���
 Z��<����%�%�"��
 &�%�
 %��
 >����+�
 �"�%

����?��
��?
	�+���
�""%QY
�<�^%�"��^�
}
�^%"���
}`}`

��

�+�%�=�"��
 �"��Q
 �}`���Q
 ���
 ��?
 "=
 ���"��
 ��+�
 �"��+%���Q

�`Q�}`�|~{_���������}Q

��

��%%������
 ��==����
 ���?�%�"��
 \�%���
 �<"�?�
 	^"%%
 $��������<

�"?���
"=
%��
���<��
�<%����%����
%"
Z���
�<"�%QY
����+���
}`�_

��

�"���"��
 ��==
 �}`�_�
 $��%�������
 �<"�%���
 \"��%
 ="�
 ����

��������QY

�{

�"�����
 ��^�
 �
 ����^"<���
 ����?
 �
 ��^���^��
 �"��%���
 �

����"��^�
 ���%�Q
 �}`�{�Q
 $�
 ���?&���
 �^^�<���%"�
 ="�

�"��+%���
 ��
 �#�^%
 �"%
 \�"?+^%QY
 �����}�Q

�`Q��`~|��Z��Q}`�{Q�_Q

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021

