
Poor Performance of Juggling Sequence Rotation
as Greatest-common-divisor Dependent

Joseph Agaroghenefuoma Erho, Member, IAENG, Bunakiye Richard Japheth, Member, IAENG,
Evans Fiebibiseighe Osaisai and Juliana Iworikumo Consul

Abstract—A previous study of two algorithms performances
in a given practical experiment using Java for four different
data types on a sequence of 20,000,000 elements showed striking
results. Focusing on type LONG, for instance, the average exe-
cution times showed that, three-way-reversal sequence rotation
took only 49.66761ms, whereas that of juggling rotation was
as big as 246.4394ms - approximately 496.18% difference! This
current study is therefore set out to investigate the actual source
of this huge up surge in the average execution time of the
juggling sequence rotation. Data were extracted from a large
pool of the previous study, presented in a different format and
analyzed. The current study shows that the juggling rotation
performance for some cycle gaps actually competes favorably
with three-way-reversal rotation (and even outperforms the
latter for certain cycle gaps), but performs poorly with some
other consecutive cycle gaps. This study observes that the poor
performance was worst and enormous with cycle gaps that
were around and closest to the square root of the sequence size.
The current study therefore advises application developers to
be mindful of the use of juggling rotation, if cycle gaps are
around the square root of sequence size and, in particular, if
the application is time critical. Concentrating only on scenario
of likely best performance behavior of the juggling rotation,
this study is restricted to greatest common divisors values that
are equal to cycle gaps.

Index Terms—GCD rotation, juggling algorithm, juggling
rotation, sequence exchange, sequence rotation.

I. INTRODUCTION

GREATEST common divisor (GCD) has been used in
juggling algorithm to exchange (or rotate) block or

section of sequence with another in an in-place sorting [1],
[2], internal buffer management in text editors [3] (see also
[4]). It had been determined that GCD based rotation or
”vector exchange” [5] is more efficient than some other
rotation algorithms [6], because ”the problem solution can
be reduced” [7], [8] to m+n+ gcd(m+n, n) moves [9] as
against its three-way-reversal counterpart that used as much
as 3(b(m+n)/2c+bm/2c+bn/2c) moves [5], where m+n
is the sequence size and n as the cycle gap.

It was also derived by [7] , using least common multiple
(LCM) and GCD [10], that GCD based rotation actually

Manuscript received November 5, 2020; revised April 28, 2021.
J. A. Erho is with the Department of Computer Science, Niger Delta

University, Wilberforce Island, P.M.B. 071, Amassoma, Bayelsa State,
Nigeria. e-mail: joseph.erho@mail.ndu.edu.ng.

B. R. Japheth is with the Department of Computer Science, Niger
Delta University, Wilberforce Island, P.M.B. 071, Amassoma, Bayelsa State,
Nigeria. e-mail: bunakiye.japheth@ndu.edu.ng.

E. F. Osaisai is with the Department of Mathematics, Niger Delta Uni-
versity, Wilberforce Island, P.M.B. 071, Amassoma, Bayelsa State, Nigeria.
e-mail: fevansosaisai@gmail.com

J. I. Consul is with the Department of Mathematics, Niger Delta Uni-
versity, Wilberforce Island, P.M.B. 071, Amassoma, Bayelsa State, Nigeria.
e-mail: ji.consul@ndu.edu.ng.

requires m+ n+ gcd(m+ n, n) elements moves and 2m+
3n − gcd(m + n, n) index moves for some implementation
style (see [9] for explicit GCD calculated rotation). Yet,
the study in [7] showed that, despite sizable number of
elements moves 3(m+ n− ev), and smaller indexes moves
m + n + 3 − ev, of three-way-reversal (ev = 0 or 1, due
to [11]), there is significantly huge discrepancy between the
average execution time of the GCD rotation and the three-
way-reversal approach across all four data types of LONG,
INT, SHORT, and CHAR in Java.

Taking one of the data type, LONG for instance, [7]
showed that, on the average, execution time for three-way-
reversal was only 49.66761ms, whereas that of GCD based
rotation was as huge as 246.4394ms! What could contribute
to this apparent big gap, given the theoretical derivation that
GCD based rotation used only m + n + gcd(m + n, n)
elements moves as against three-way-reversal rotation that
used as much as 3(m + n − ev) elements moves? The
interest of this current study is therefore to investigate the
source of the huge up surge in the average execution
time of the GCD based rotation. The aim is to give a
better understanding of the behavior of GCD based rotation
in order to achieve an objective of guiding implementer of
the juggling rotation. The study is limited to GCD’s that
are equal to cycle gaps, since these appear to give juggling
rotation better performance. Even though there are other
implementation styles [12], [13], including non-GCD explicit
version in [9], this study is restricted to the GCD based
implementation presented in [9]. The following notations are
used in this article: gcd-R – GCD based rotation; twr – three-
way-reversal rotation.

In this paper, section I contains the introduction that
clearly states the problem. Section II highlights the tools and
methods used in the experimentation. Section III presents
and analyses the results. In discussing the results section IV
explains the implication of the outcome. Finally section V
concludes the paper, giving some direction for future scope.
We begin with the tools used and the way experiment was
carried out to achieve our results.

II. MATERIALS AND METHODS

The data presented in this study were extractions from the
ones studied in [7] but distinctively presented in different
forms. So the tools used were exactly the ones described
in the previous study. That study evaluated the performance
of juggling and three-way-reversal algorithms over LONG,
INT, SHORT, and CHAR data types in Java - testing to see
whether index size affects the performance. However, this
current study did not give attention to index moves execution

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



timing, since the concern here was on influence of cycle gaps
/ GCD on execution timing. Also, the sampled data used here
were selection of only one record per cycle gap instead of
five (each from every next 100 records) of the previous study.

In the current study, extract of 71 records, representing
the different cycle gaps, from the data of [7] are presented
below. Table I is extracted from the LONG data type records
sample. The table is arranged in such a way that several
cycle gaps records can be viewed side by side. The table-
page columns should be seen as sequential. For example,
table-page 2 column follows table-page 1 column, in that
order. The serial number (S/N) column of the rows are used
to number the 71 cycle gaps and represents same in the
horizontal entries of the graphs. On the table, serial numbers
1 to 5, for example, represent cycle gaps 1, 2, 4, 5, 8 and
serial numbers 69, 70, 71 represent 400000, 500000, and
10000000 respectively. The table is arranged in descending
order of both the cycle gaps and the serial numbers in line
with the running of the algorithm code on the cycle gap
values. Sequel to this, the horizontal entries of the graph for
serial number 1, 3, and 5 represent the cycle gaps 1, 4, and 8
respectively. Although, three-way-reversal rotation behavior
is not given separate analysis, its data are placed alongside
the juggling rotation for an easy comparison of the deviations
from uniform efficient performance. What are our findings?

III. RESULTS

A quick look through the first few cycle gaps in the table
of rotation execution timing shows that GCD based rotation
actually performs better than three-way-reversal rotation.
Yet, reference [7] successfully showed that, on the average,
execution time for three-way-reversal is only 49.66761ms
whereas that of GCD based rotation is as big as 246.4394ms!
What could be reason for this apparent big gap?

A. Analysis Of The Graphs

Though fig. 1 is not really necessary, since it represents
the table I, but we present it here for the purpose of easily
comparing it with the other figures [14]. The three-way-
reversal rotation graph is plotted alongside the juggling
rotation for a clear comparison and a feel of the deviations
from efficient performance. Plotting the extracted data in
Excel, the look of all four graphs tends to be like bell shapes.
This means that GCD rotation efficient performance is lowest
around a consecutive range of cycle gaps, quite some points
away from both ends and concentrating around the middle
of the cycle gaps listing. For data type LONG, the range is
between point 9 and 44 representing cycle gaps 25 to 16,000.
But notice the high performance indication from point 45 to
65, representing cycle gaps 20,000 to 1,000,000 and even
outperformed three-way-reversal rotation at point 66 to 71.
This trend is similar with those of integer data type (see fig.
1 and 2 graphs).

The case is a bit different for short and character data
types. With these types the bell shapes are still visible but
with some sort of down skewness close to the peak of
the bells, tending to split the single bells into two instead,
respectively. This occurs around point 18 to 31, representing
cycle gaps 160 to 1600. In similarity with types LONG and

INT, the SHORT and CHAR also have high performance
indication from point 1 to 5, representing cycle gaps 1 to
8 and from point 50 to 71, representing cycle gaps 50,000
to 10,000,000. Type char even have higher performance
indication from point 1 to 3, representing cycle gaps 1, 2,
and 4 (see fig. 3 and 4 graphs).

IV. DISCUSSION

In the previous study by reference [7], it was shown that
GCD based rotation demonstrated, on the average, a huge up
surge of 246.4394ms execution timing as against three-way-
reversal time of just 49.66761ms. This was approximately
496.18% difference. What this current research has shown is
that the GCD rotation performance for some of the cycle gaps
actually compete favorably with three-way-reversal rotation
- that is, maintaining a good and balanced efficiency in
performance. This can easily be seen from the two extremes
of all four graphs.

Surprisingly though, the plot suddenly jumped up after few
cycle gaps and then down before some few remaining cycle
gaps. The pattern produced appears to be bell shaped. This
could not have been mere outliers, otherwise it would not
have maintained somewhat uniform pattern across all four
graphs. The conclusion reachable here is that there could be
a phenomenon playing out - for some cycle gaps (close to
1 downwards and close or up to half of the sequence) the
performance is quite efficient but very poor otherwise.

A careful look at table 1 shows that the peak of this poor
performance is with cycle gaps that are around the square
root of the sequence size and all four graphs conform to this
fact. For instance, the sequence size used for this experiment
was 20,000,000 and the square root was approximately
4,472.14. The table has it that about seven (7) cycle gaps
to both left and right of the square root value (4,472.14)
fall into the peak poor performing values for the GCD based
sequence rotation. This range of cycle gaps corresponds to
the range 30 to 43 horizontal entries for the graphs. This
appears to cut across all four data types as can be seen from
the graphs.

Some form of skewness is also observed depending on the
data types. It appears that as the data type decreases from
long (LONG) to character (CHAR), the skewness becomes
more and more pronounced. This pattern tends to split the
single bell apparently into two in the case of SHORT and
CHAR types. These points of skewness tend to improve
the GCD rotation performance a little. Next is concluding
remarks.

V. CONCLUSION

This paper has analyzed the relationship between sequence
cycle gaps, which was used to compute the GCD, and
the performance of GCD based rotation. Using randomly
sampled data, extracted from [7] but presented in a different
format, the study found that efficient performance of the
algorithm depended on the cycle gap, which determined
GCD. For cycle gaps that were close to 1 downwards and/or
close or up to half of the sequence, the performance was
quite efficient.

Perhaps, this might explain the reason some previous
studies quickly concluded that GCD rotation performed

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



TABLE I
SAMPLED DATA FOR GCD ROTATION AND THREE-WAY-REVERSAL ROTATION, ONE RECORD PER CYCLE GAP OF 71 (see [7]).

Table Page 1 Table Page 2 Table Page 3 Table Page 4

gcd-R twr cycle gap S/N gcd-R twr cycle gap S/N gcd-R twr cycle gap S/N gcd-R twr cycle gap S/N
45 49 10000000 71 133 49 80000 53 464 50 3200 35 270 48 128 17
43 48 5000000 70 144 53 78125 52 437 51 3125 34 281 48 125 16
43 48 4000000 69 78 49 62500 51 448 59 2500 33 284 49 100 15
44 51 2500000 68 99 49 50000 50 405 50 2000 32 303 48 80 14
50 48 2000000 67 105 52 40000 49 427 50 1600 31 270 48 64 13
48 51 1250000 66 212 49 32000 48 440 48 1280 30 257 48 50 12
61 52 1000000 65 123 49 31250 47 397 49 1250 29 305 49 40 11
131 54 800000 64 102 50 25000 46 376 48 1000 28 315 49 32 10
74 49 625000 63 152 50 20000 45 390 48 800 27 321 51 25 9
69 59 500000 62 407 48 16000 44 398 50 640 26 292 48 20 8
108 52 400000 61 379 49 15625 43 382 52 625 25 272 49 16 7
84 48 312500 60 406 49 12500 42 411 48 500 24 207 50 10 6
67 48 250000 59 490 48 10000 41 376 50 400 23 173 49 8 5
99 47 200000 58 433 47 8000 40 381 49 320 22 106 48 5 4
195 49 160000 57 479 50 6400 39 303 47 256 21 89 49 4 3
113 57 156250 56 469 49 6250 38 347 49 250 20 54 49 2 2
66 51 125000 55 466 48 5000 37 309 49 200 19 43 48 1 1
116 51 100000 54 462 49 4000 36 310 49 160 18

better than three-way-reversal rotation. Mostly in an in-place
sorting, the block to rotate with another would likely be about
half of the sequence under consideration. In such a case, the
implementation simply fell in the range of cycle gaps that
were GCD rotation friendly - compare fig. 4 and the data
type used in [9].

The study found that the situation was quite different
when the cycle gaps were not in the ranges of GCD rotation
friendly. In fact, the poor performance was peak when the
algorithm used cycle gap that was within about seven (7)
cycle gaps to both left and right of the square root of the
given sequence size. However, some form of skewness was
also observed that depended on the data types. SHORT and
CHAR types in particular, exhibited this, tending to split
the single bells shaped pattern of GCD rotation into two
respectively. These points within the splitting region showed
slight improvement from the peak poor performance of the
algorithm.

Thus, the GCD based sequence rotation efficient per-
formance heavily depends on the greatest-common-divisor
which is a direct reflection of the cycle gaps. This research
will therefore strongly recommend that if application in-
volves sequence rotation with cycle gaps that are within
about seven (7) cycle gaps to both left and right of the square
root of the given sequence size, DO NOT use GCD based
sequence rotation. For applications that are time critical, DO
NOT use juggling rotation if the cycle gaps are not within
GCD rotation friendly range.

It is clear from this study that cycle gaps around the square
root of sequence size are heavily slow in juggling rotation.
The question is why is fewest number of elements assignment
not proportionate with execution time of juggling rotation?
There is need for further work on this.

REFERENCES

[1] B.-C. Huang and M. A. Langston, “Practical in-place merging,”
Communications of the ACM, vol. 31, pp. 348–352, 1988.

[2] X. Wang, Y. Wub, and D. Zhua, “A new variant of in-place sort
algorithm,” in Proceedings of the International Workshop on Informa-
tion and Electronics Engineering IWIEE (10-11 March 2012, Harbin,
Heilongjiang). China: Elsevier, 2012, pp. 2012, 2274–2278.

[3] A. A. Stepanov and D. E. Rose, From Mathematics to Generic
Programming. USA: Pearson Education Inc, 2015.

[4] J. Bentley, Programming Pearls, 2nd ed. USA: ACM Press/Addison-
Wesley Inc, 2000.

[5] K. Dudzinski and A. Dydek, “On a stable minimum storage merging
algorithm,” Information Processing Letter, vol. 12, pp. 5–8, 1981.

[6] P. S. Kim and A. Kutzner, “Ratio based stable in-place merging,” in
Proceedings of 5th International Conference on Theory and Appli-
cations of Models of Computation (25-29 April 2008, Xi’an, China),
M. Agrawal, D. Z. Du, Z. Duan, and A. Li, Eds. China: Springer,
2008, pp. 2008, 246–257.

[7] J. A. Erho, J. I. Consul, and B. R. Japheth, “Juggling versus three-
way-reversal sequence rotation performance across four data types,”
International Journal of Scientific Research in Computer Science and
Engineering, vol. 7, pp. 10–18, 2019.

[8] A. Symvonis, “Optimal stable merging,” The Computer Journal,
vol. 38, pp. 681–690, 1995.

[9] C.-K. Shene, “An analysis of two in-place array rotation algorithms,”
The Computer Journal, vol. 40, pp. 541–546, 1997.

[10] H. G. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, 4th ed. London: Oxford University Press, 1979.

[11] J. A. Erho and J. I. Consul, “Precise evaluation of execution cost
of sequence rotation by three-way-reversals,” International Journal of
Applied Science Research, vol. 2, pp. 99–104, 2019.

[12] C. A. Furia, “Rotation of sequences: Algorithms and proofs,” Cornell
University, USA, Tech. Rep., 2015.

[13] J. Bentley, “Code from programming pearls,” in Programming Pearls,
2nd ed., P. Gordon, Ed. USA: ACM Press/Addison-Wesley Inc, 2000,
ch. ’Column 2’, pp. 140–143.

[14] B. Gastel and R. A. Day, How to Write and Publish a Scientific Paper,
8th ed. United States of America: GREENWOOD ABC-CLIO, LLC,
2016.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



400

500

600

100

200

300

gcd-R

twr

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Fig. 1. gcd-R versus twr for LONG data type.

300

350

400

450

500

0

50

100

150

200

250
gcd-R

twr

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Fig. 2. gcd-R versus twr for INT data type.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



250

300

350

400

450

gcd-R

50

100

150

200

gcd-R

twr

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Fig. 3. gcd-R versus twr for SHORT data type.

250

300

350

400

450

gcd-R

50

100

150

200

gcd-R

twr

0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Fig. 4. gcd-R versus twr for CHAR data type.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021


	Introduction
	MATERIALS AND METHODS
	RESULTS
	Analysis Of The Graphs

	DISCUSSION
	CONCLUSION
	References



