
 

 

Abstract—Flash-based solid state disks(SSDs) provide high 

I/O performance, low energy, and shock resistance. However, 

random writes limit its application in the update intensive 

applications such as Web services. Existing buffer management 

schemes usually employ a hot page detection mechanism to 

reduce random writes. Since the mechanisms usually take reuse 

distance or frequency as a parameter to identify frequently 

updated page/block, which become inefficient in handling fast 

changing workloads. In this paper, an efficient buffer manage- 

ment scheme, named HWB, is proposed, which reduces rand- 

om writes by identifying frequently updated page/block. To 

improve both buffer hit rate and data sequentiality, HWB 

divides write buffer space into a hot region, a warm region, and 

a cold region. Frequently updated date is stored in the hot and 

warm region at page granularity, meanwhile infrequently 

updated date is kept in the cold region at block granularity. A 

replacement and flush policy, which combined with a 

temperature predictor, is designed to improve buffer hit ratio 

and reduce random write. HWB is evaluated using extensive 

trace-driven simulations. Its evaluated results show that HWB 

significantly reduces random write and extends SSD lifetime 

compared to existing buffer management schemes. 

 
Index Terms—Lifetime extension, Buffer partitioning model, 

Temperature predictor, Buffer management scheme 

 

I. INTRODUCTION 

AND flash-based solid state drives(SSDs) have been 

widely deployed, ranging from portal devices to enter- 

prise storage systems. SSDs offer high I/O performance, low 

energy consumption, and shock resistance[1], however, they 

suffer from the overhead of small random writes due to the 

physical nature of NAND flash memory such as the erase- 

before-write, and limited endurance. Random write could 

incur more erase operations, while its erase count is limited 

for a given block. For example, the erase limit of multi-level 

cell (MLC) is about 103, and that of triple-level cell (TLC) is 

only about 102 [2]. NAND flash memory should be worn out 

quickly if it is left untreated. 

To overcome this issue, build-in RAM such as DRAM is 

widely employed in SSDs to absorb repeated write requests 

and change access patterns for NAND flash memory. If the 

size of a DRAM is configured as 0.1% to 0.3% of its back-end 

magnetic disk storage, the disk can fully leverage buffer and 

greatly reduce random writes[3], however, it is unfeasible to  

 
Pingguo Li is a lecturer of the College of Biomedical Engineering, Hubei 

University of Science and Technology, Xianning 437000, P. R. China 

( e-mail: lpg@hbust.edu.cn)  

increase the capacity of a single-chip DRAM duo to energy 

consumption and cost. A manufacture normally integrates a 

relatively small-size DRAM to an SSD. Some classic buffer 

management algorithms such as LRU, LFU and ARC[4] are 

proposed to overcome the disadvantageous influence caused 

by limited buffer space. Since the natural characteristic of 

NAND flash memory is rarely considered, they become ineff- 

ective once the working set size of a workload is more 

significant than the capacity of the buffer space. 

Recently, several buffer management approaches are prop- 

osed to prolong the lifetime of an SSD.CFLRU[5] divides 

buffer into a working region and a clean-first region, and 

always selects clean pages in the clean-first region as victims 

over dirty pages unless there are not any clean pages. Based 

on CFLRU, CFDC[6] divides the clean-first region into a 

clean page region and a dirty-page region to reduce the search 

cost. The proposed mechanisms try to reduce random write by 

discarding clean pages first. However, they become invalid 

when write requests prevail over reading requests in a 

workload, because they cannot efficiently identify whether a 

dirty page is cold or not, and class hot pages may be mistaken 

as class cold pages and be evicted prematurely, which 

increase erase operations to NAND flash memory. Note that 

class cold pages are infrequently updated pages, and class hot 

pages are frequently updated pages. Random write usually 

includes class cold and hot pages. LRU-WSR [7] identifies if 

a dirty page is cold or not by a reuse distance threshold, and 

only class hot pages can be stored in buffer. Note that a re-use 

distance represents the number of distinct pages between two 

consecutive accesses to the same page in a request sequence. 

Like LRU-WSR, BPAC[8] also identifies whether a dirty 

page is cold or not based on a re-use distance. The difference 

is that BPAC sets up two re-use distance thresholds: PIRD 

and BIRD. To avoid the disadvantageous influence caused by 

random writes, the write buffer is divided into a page region, 

and a block region. When the page region is full, the dirty 

page with over PIRD is moved to the block region. If the 

block region is also full, the block with over BIRD is evicted 

and written to NAND flash memory. The proposed mechan- 

isms identify whether a dirty page/block is cold or not by a 

re-use threshold, and only pages/blocks within the threshold 

can be stored in buffer to improve buffer hit ratio and reduce 

random writes, however, they become inefficient in handling 

fast-changing workloads because the re-use distance of a 

page/block usually fluctuates frequently over time, which is 

observed in Section II. 

In this paper, we propose a novel write buffer management 

A  Hotness-aware Write Buffer Management 

Scheme for the Lifetime Extension of 

Flash-based Solid State Drives 

Pingguo Li 

N 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



 

scheme, called HWB, to extend the lifetime of an SSD by 

identifying frequently updated pages/blocks. We first analyze 

the update behavior of dirty pages in several real-world 

workloads, and then provide our observations. Based on the 

observations, HWB is proposed to reduce erase operations 

due to random writes. Our experiments on simulation show 

that proposed HWB significantly reduces random writes, and 

prolongs the lifetime of an SSD over the state of the art 

schemes under enterprise workloads. 

We made the following contributions in the paper. 

We analyze the update behavior of dirty pages in real world 

workloads from[9][10],and find that the lifetime of an SSD 

are considerably related with class FS pages and class FL 

pages. Keeping them in buffer can extend SSD lifetime 

significantly. 

We propose a novel buffer management scheme, called 

HWB, which includes a temperature prediction model, a 

buffer partitioning policy and a replacement and flush policy. 

The temperature prediction model is used to compute the 

temperature value of a dirty page/block. The buffer partiti- 

oning policy adjusts dynamically region size according to 

workload access pattern. The replacement and flush policy 

decides where a page/block should be inserted into in buffer 

and which dirty page/block should be evicted first when 

buffer space is not free. 

We evaluate HWB using extensive trace-driven simulatio- 

ns. Our evaluation results show that HWB significantly redu- 

ces random writes, and prolongs SSD lifetime compared to 

existing buffer management schemes. 

II. OBSERVATION AND MOTIVATION 

A. Observation 

In this section, we study a wide range of real-world 

workloads from [9][10] to identify the update behavior of 

dirty pages. According to [11], dirty pages are also divided 

into class FS, FL, IS, and IL pages. Class FS and FL pages 

will be more likely to be updated again in the future than class 

IS and IL pages. Buffer pollution is mainly caused by class IS 

and IL pages.  

We plot the percentage and the update frequency of class  

FS, FL, IS, and IL pages in ten workloads in Fig.1.As shown 

in Fig.1(a),they show different distribution characteristics in 

every workload. For Exchange, class FS, FL, IS and IL pages 

are made up of 5%,4%,50% and 41% respectively, and the 

total number of class IS and IL pages is ten times more than 

that of class FS and FL pages, while for stg1, class FS, FL, IS 

and IL pages are made up of 35%, 47%, 1% and 17% respecti- 

vely, and the total number of class FS and FL pages is 4.6 

times more than that of class IS and IL pages. 

 
(a) the Percentage of Class FS, FL, IS, and IL Pages 

 
(b) the Update Frequency of Class FS, FL, IS, and IL Pages 

Fig.1 the Percentage of Class FS, FL, IS, and IL Pages (Fig.1(a)), the Update 

Frequency of Class FS, FL, IS, and IL Pages (Fig.1(b)) 

As shown in Fig.1(b), we can see that dirty pages have 

apparent features in update frequency. Specifically, the 

average update times of class FS pages is 104 more than that 

of class IS or IL pages, and the average update times of class 

FL pages is 102 more than that of class IS or IL pages. It 

means that SSD lifetime could be extended if class FS and FL 

pages are kept in buffer as long as possible. 

Observation 1, class FS, FL, IS and IL pages show different 

distribution characteristics in the update frequency in every 

workload, and the average update times of class FS/FL pages 

is significantly more than that of class IS/IL pages. 

 
(a) Class FS and IS Pages 

 
(b) Class FL and IL Pages 

Fig.2 Trends of Re-use Distance of Class FS and IS Pages(Fig.2(a)), Trends 

of Re-use Distance of Class FL and IL Pages(Fig.2(b)) 

To analyze the update behavior of all pages, we select a few 

pages from each class, and draw their re-use distance over a 

period of time as shown Fig.2.We can see that class FS, FL, IS 

and IL pages shows different characteristics in the re-use 

distance. Specially, the re-use distance of class FS pages 

fluctuates frequently between greater extremes. For example, 

the re-use distance of class FS pages in Exchange workload is 

ten at time 105, while one hundred at time 1012. Compared 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



 

with the re-use distance of class FS pages, the reuse distance 

of class FL pages fluctuates less, but it is usually longer. We 

find that the re-use distance and the update frequency of class 

IS and IF pages also have similar characteristics with these of 

class FS and FL pages before they are not accessed again. It 

means that a page/block is hard to be categorized based on 

frequency or re-use distance, especially early in the course of 

the access. Similar phenomenon is also observed in other 

workloads as shown fig.2. 

Observation 2, Class FS/FL pages are easily mistaken for 

class IS/IF pages, or vice versa in the early phases of the 

access. 

B. Motivation 

Compared to a hard disk drive, an SSD shows higher I/O 

performance, however, it could suffer from random writes, 

especially writes caused by frequently updated pages. 

Buffer hit helps to absorb frequent updates, and reduce the 

amount of random writes to NAND flash memory. However, 

it is not efficient when the working set size of a workload is 

bigger than the capacity of buffer space. Since our observ- 

ations show that there are a lot of infrequently updated pages/ 

blocks, we are motivated to design a buffer management 

scheme to improve buffer hit ratio and reduce random writes 

by identify frequently updated pages/blocks. 

III. DESIGN OF HWB 

A. Overview  

As shown Fig.3, HWB includes a temperature predictor, a 

partitioning model and a replacement and flush policy. The 

temperature predictor is used to evaluate the temperature of a 

dirty page. Buffer space is divided into three regions by the 

partitioning model, and the size of each region is adjusted 

dynamically when a workload pattern changes during runtime. 

The replacement and flush policy is in charge of managing 

dirty page/block insertion and eviction. When a write request 

is coming, the temperature prediction model is called to 

evaluate the temperature value of the page/block, and then the 

replacement and flush policy inserts the page/block into 

corresponding buffer region based on its temperature value. 

 
Fig.3  An Overall Architecture of HBM 

B. Temperature predictor 

In general, with the increasing frequency and shortening 

reuse distance, a page’s temperature is gradually rising, as a 

result, it has more opportunity to be re-accessed in the future, 

or vice versa. Based on above reasons, we compute the tempe- 

rature of a page/block combining frequency and reuse 

distance. The temperature of a page/block can be derived as 

Equation 1. 

                                                                                 (1) 

     Where         is the updated frequency of current page in the 

last time period,      is the average updated frequency of all 

dirty pages in the last time period,      is the average re-use 

distance of current page,            is the reuse distance of current 

page when it is re-accessed in the future. The predicted 

distance is attained through a distance predictor discussed 

later. The value of                     and                   represent the long- 

term popular and the short-term temporal correlations of 

current page, respectively. σ is an adjustment factor to adjust 

the influence caused by                  and                   .σ is set to 0.5 

when a system boots, and then dynamically is adjusted 

according to access pattern.  

In order to compute page’s temperature, a ghost buffer is 

used to maintaining the metadata of access pages. The 

metadata of each page includes ID,        ,           ,       ,and      . 

ID is a page address,          is the frequency of a page,              and 

       are the page’s last but one re-use distance value and last 

re-use distance value respectively, and        is the average value 

of previous re-use distances. 

Based on Section II, we know from the observations that 

the effective distance of a page depends on their previous 

experiences. When the previous distance is gradually 

increased, the predictive distance usually is increased 

accordingly, or vice versa. In conclusion, the effective 

distance of a page can be derived as Equation 2. 

                                                                                 (2) 

Where λ is a scaling factor to estimate how much a page’s 

re-use distance value will change. λ depends on its access 

pattern, specifically, if the value of last but one re-use distance 

is smaller than that of last re-use distance, it means that page’s 

temperature is getting cold, and then it may have to wait a 

little longer for next re-access, or else it may need only to have 

shorter wait  time. Thus, for the former, λ is set to a value of 

                  ,while, for the latter, λ is set to a value of 0. β is 

the difference between actual observed value and estimate 

value.  

C. Partitioning model 

The partitioning model is in charge of buffer partitioning. 

In general, all pages may be divided into class hot and cold 

pages. Class hot pages should be kept in buffer as long as 

possible to improve buffer hit ratio and reduce random writes. 

Based on Section Ⅱ,we know from the observations that class 

hot pages are easily mistaken for class cold pages, or vice 

versa. As a result, an observation period should be needed to 

reduce the chances of false positives. 

Based on above reasons, the buffer space is divided into a 

hot region, a warm region and a cold region, as shown in Fig.4. 

Class hot pages and class cold pages are kept in the hot region 

and the cold region respectively, while other pages are stored 

in the warm region. HWB manages the hot region and the 

warm region at page granularity to improve the buffer hit ratio, 

and the cold region at block granularity to convert random 

write into sequential write and reduce erase operations to 

NAND flash memory. 

The size of three regions may be dynamically adjusted 

according to access pattern, Specifically, adjustment method 

is as follows: at the beginning of time, the size of each region 

is equal. At run time, when a dirty page in a region is hit, the 

replacement and flash policy is called to decide whether the 

page should be moved to a higher temperature region. If yes, a 

threshold value(H) is increased by 1. The partitioning model 

checks H perilously. If H is more than a threshold value(A), 

and then the size of current region is reduced by 1, and the size 

predictavgavgself DDFF /)1(/Tpage 

selfF

avgF

avgD

predictD

avgf F/Fsel predictD/Davg

avgf F/Fsel predictD/Davg

selfF

one-lastD

lastD

avgDlastD

selfF
one-lastD

avgD

  lastpredict D2D

onelastD /Dlast

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



 

of the corresponding region is increased by 1. On the contrary, 

when a region is full, the page with lowest temperature in the 

region is moved to a lower temperature region, and L is 

increased by 1. If L is more than A, the size of the region is 

decreased by 1, and the size of the corresponding region is 

increased by 1 accordingly, as shown in Fig.4. 

 
Fig.4 Adjustment Partitioning 

D. Replacement and flush policy 

   A SSD could benefit from buffer hit, however, buffer 

pollution diminishes the potential benefits. Buffer manage- 

ment policy is an efficient method to reduce the harm caused 

by buffer pollution. Since buffer pollution is caused mainly by 

class cold pages. Therefore, class cold pages should be 

evicted first when buffer is not free. 

How to replace a cold page: when a write request is coming, 

there are five possible scenarios in our approaches if buffer is 

full. These scenarios can cover all the case for a write request. 

We present each case and corresponding operation as follows: 

Case 1) buffer miss and ghost miss: If a write request A is 

not hit in the buffer and the ghost buffer, the block at the tail of 

the cold list is wrote back to the NAND flash memory, and 

then A is inserted into a corresponding block, and the block is 

moved to the head of the cold list. If the corresponding block 

is not found, A is inserted into the head of the cold list. 

Case 2) buffer miss and ghost hit: If a write request A is 

missed in the buffer, but hit in the ghost buffer, A’s temperatu- 

re is computed, and is compared with that of the page B at the 

tail of the warm list. If A’s temperature is higher, and then B is 

evicted, and A is inserted into the head of the warm list. Or 

else, the page is inserted into the head of the cold list.   

Case 3) buffer hit in the cold region: If a write request A is 

hit in the cold region, HWB computes its temperature and 

compares it to that of the page B at the tail of the warm list. If 

A’s temperature is higher, and then B is evicted, and A is 

inserted into the head of the warm list. Or else, the block 

containing the page is moved to the head of the cold list.   

Case 4) buffer hit in the warm region: If a write request A is 

hit in the warm region, HWB computes its temperature and 

compares it to that of the page B at the tail of the hot list. If A’s 

temperature is higher, and then B is evicted, and A is inserted 

into the head of the hot list. Or else, A is moved to the head of 

the warm list. 

Case 5) cache hit in the hot region: If a write request A is hit 

in the hot region, A is moved to the head of the hot queue. 

How to flush a victim page: There are three possible 

scenarios in our approaches when the flush policy is called. 

We present each case and corresponding operation as follows: 

Case 1) to evict in the cold region: When a dirty block A is 

evicted from the cold list, there are two kinds of policies: an 

active and a positive policy. 

For the active policy, firstly, HWB computes the effective 

distance(ED) of the block A at the tail of the cold list based on  

Equation 3. 

                                                                          (3) 

Where Pt is the total number of write requests when a page 

is accessed at last time. 

Secondly, the ED is compared with a current distance(CT). 

If the ED is less than the CT, A will be evicted immediately. 

Note that the CT is the total number of write requests after the 

boot time. 

For the positive policy, it is only called when there are not 

free in the cold region. In this case, the block at the tail of the 

cold list is evicted directly. 

Compared with the passive eviction, the positive eviction 

may improve the write performance because there are more 

free in the cold region, however, it may reduce write hit rate 

due to the blocks discarded early. 

Case 2) evict in the warm region: When the warm region is 

full, HWB moves the page at the tail of the warm list firstly 

into a corresponding block in the cold region, and then the 

block is moved to the head of the cold list. If the cold region is 

full, the block at the tail of cold list is discarded.  

Case 3) evict in the hot region: When the hot region is full, 

HWB estimates the temperature of the page A at the tail of the 

hot list firstly, and then compare A’ temperature with that of 

the page at the tail of the warm list. A is moved to the head of 

the warm list if A’ temperature is higher, or else, A is inserted 

into a corresponding block in the cold region, and the block is 

moved to the head of the cold list. If the cold region is full, the 

block at the tail of cold list is evicted. 

IV. VALUATION 

A. Experimental setup 

1) System settings 

We built an event-based trace-driven SSD simulator by 

adding a buffer management scheme into the SSDsim [12]. 

We implemented the following write management schemes in 

SSDsim simulator: 1) LRU, 2) LRU-WSR, 3) BPAC and 4) 

HWB.  

2) Workloads  

We use a set of workloads for experimental evaluation, 

which are collected from actual enterprise applications and 

are available in [9] and [10]. They include Financial (FIN), 

Source control(SCR), Web staging(STG), and Exchange. 

B. Experimental results  

1)Buffer hit ratio 

Fig.5 shows the hit ratio of four buffer management 

policies for all the workloads. Please note that buffer hit rate 

is calculated as the ratio between the number of pages hit in 

the write buffer and total number of writing pages. 

As we can see from the Fig.5, HWB outperforms LRU in 

terms of write buffer hit ratio under all workloads. With 

32MB write buffer, the buffer hit ratio of HWB is 48%, 60%, 

76% and 31% respectively. By contrast, the buffer hit rate of 

LRU is 30%, 52%, 57% and 27% respectively. Compared to 

LRU, our best-case write hit ratio comes from FIN workload, 

where we improve the write hit rate by 60%, while Our 

worst-case write hit rate occurs when running Exchange 

workload, where we only improve the write hit rate by 15%.  

Compared with LRU-WRS and BPAC, HWB also has 

higher performance because HWB can efficiently identify the 

hot page through the temperature predictor and keep them in 

buffer cache as soon as long, which significantly improve 

  lastD2PTED

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



 

buffer hit rate. Similar to HWB, BPAC also tries to identify 

hot page by the threshold policy, however, it makes no 

distinction between different kinds of pages, as a result, hot 

pages may be mistaken as cold pages, and evicted too early. 

As for LRU-WRS, which tries to keep hot pages in buffer as 

long as possible, often mistaken cold pages as hot pages and 

pollutes the limited buffer space in the end. 

 
(a) FIN 

 
                 (b) SCR 

 
（c）STG 

 
(d) Exchange 

Fig.5 Buffer Hit Ratio of FIN(Fig.5(a)), Buffer Hit Ratio of SCR(Fig.5(b)), 

Buffer Hit Ratio of STG(Fig.5(c)), and Buffer Hit Ratio of 

Exchange(Fig.5(d)) 

We note that the average write hit rate of Exchange 

workload is lower than that of any other workload, while the 

average write hit rate of STG workload is higher than that of 

any other workload. One main reason is that Exchange 

contains less class hot pages, such as class FL and FS pages, 

than any other workloads, while STG includes more hot pages 

than any other workloads. 

We also note that LRU-WSR write hit ratio is higher than 

that of BPAC. One main reason is that LRU-WSR manages 

buffer by page list, while BPAC manages buffer by block list, 

which makes hot pages easier to be evicted prematurely.  

2)Erase Count 

Erase count is number of blocks erased during garbage 

collection. Note that the erase number of a SSD is limited, so 

replacement policy should try to reduce erase operation. 

   
(a)FIN 

 
(b) SCR 

 
(c)STG 

   
(d) Exchange 

Fig.6 Erase Count of FIN(Fig.6(a)), Erase Count of SCR(Fig.6(b)), Erase 

Count of STG(Fig.6(c)), and Erase Count of Exchange(Fig.6(d)) 

Fig.6 plots the erase count of four buffer management 

policies for all the workloads. As we can see from the Fig.6, 

HWB outperforms LRU in terms of erase count under all 

workloads. With 32MB write buffer, the average erase count 

of HWB is 34050, 7058, 8102 and 4252 respectively. By 

contrast, the buffer hit rate of LRU is 48570, 7689, 14120 and 

4785 respectively. 

We note that BPAC outperforms LRU-WRS in terms of 

erase count under all workloads. The reason is that BPAC can 

transfer more random write into sequence write, which reduc- 

es the number of write operations to NAND flash memory. 

Similer to BPAC, HWB also use block list to manage cold 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



 

region, but it could be more effective in identifying hot pages, 

and reducing buffer pollution, therefore, HWB outperforms 

BPAC in terms of the number of erase under all workloads. 

3)Response Time 

Average response time is overall performance of write 

operation, which is related with not only write hit ratio, but 

also erase count. 

 
(a) FIN 

   
(b) SCR 

    
(c)STG 

  
(d) Exchange 

Fig.7 Repsonse Time of FIN(Fig.7(a)), Repsonse Time of SCR(Fig.7(b)), 

Repsonse Time of STG(Fig.7(c)),and Repsonse Time of Exchange(Fig.7(d)) 

Fig. 7 plots the response time of four buffer management 

policies for all the workloads. As we can see from the Fig.7, 

HWB outperforms any other algorithm in terms of response 

time under all workloads. For example, with 32MB write 

buffer, the response time of HWB is 110321ns, 67009ns, 

73021ns, and 98501ns respectively. By contrast, the response 

time of LRU is 143726ns, 78238ns, 107661ns, and 123171 ns 

respectively. The main reason is that HWB obtains not only 

higher buffer hit ratio, but also less erase operations compared 

with LRU. 

We note that BPAC outperforms LRU-WRS in terms of 

response time under all workloads even if its buffer hit rate is 

lower than that of LRU-WRS. It means that response time has 

more sensitivity to erase operation, therefore we should try to 

reduce erase operations to NAND flash memory at the 

expensive of driving down buffer hit rate.  

V. CONCLUSION 

In this paper, we propose HWB, a hotness-aware write 

buffer management scheme that reduces random writes by 

identifying infrequently updated page/block. To improve 

both buffer hit rate and data sequentiality, HWB divides 

write buffer space into a hot region, a warm region, and a 

cold region. Frequently updated date is stored in the hot and 

warm region at page granularity, and infrequently updated 
date is kept in the cold region at block granularity. We 

further design a replacement and flush policy combined with 

a temperature predictor to improve buffer hit ratio and 

reduce random writes. HWB is evaluated using extensive 

trace-driven simulations. Its evaluated results show that 

HWB significantly reduces random write and extends SSD 

lifetime compared to existing buffer management schemes. 

REFERENCES 

[1] N. Agrawal, V. Prabhakaran, T.Wobber, J. D. Davis, M. Manasse, and 

R. Panigrahy. Design tradeoffs for SSD performance[C]. In Proceed- 

ings of the 2008 USENIX Annual Technical Conference, 2008. 

[2] H. Yassine, J. Coon, and D. Simmons. Index programming for flash 

memory. IEEE Transactions on Communications, Vol. 65(5): 1886- 

1898,2017. 

[3] Karedla R, Love J S.Caching strategies to improve disk system perfor- 

mance[J]. Computer, 1994, 27(3):38-46. 

[4] Megiddo N.ARC: A self-tuning, low overhead Replacement cache[C]. 

USENIX File and Storaqe Technologies Conference (FAST'03), San 

Francisco, CA. 2003. 

[5] Seon-yeong Park , Dawoon Jung , Jeong-uk Kang , Jin-soo Kim, 

Joonwon Lee, CFLRU: a replacement algorithm for flash memory[C], 

Proceedings of the 2006 international conference on Compilers, 

architecture and synthesis for embedded systems October 2006 . 

[6] Ou Y , Theo H?rder, Jin P . CFDC: A Flash-Aware Buffer Management 

Algorithm for Database Systems[C]. Advances in Databases and Infor- 

mation Systems - 14th East European Conference, ADBIS 2010, Novi 

Sad, Serbia, September 20-24, 2010. Proceedings. DBLP, 2010. 

[7] Jung H , Shim H , Park S , et al. LRU-WSR: integration of LRU and 

writes sequence reordering for flash memory[J]. IEEE Transactions on 

Consumer Electronics, 2008, 54(3):1215-1223. 

[8] Wu G , Eckart B , He X . BPAC: An adaptive write buffer management 

scheme for flash-based Solid State Drives[C].2010 IEEE 26th 

Symposium on Mass Storage Systems and Technologies (MSST). 

IEEE, 2010. 

[9] Jstorage performance council.spc trace file format specification.http://  

traces.cs.umass.edu/index.php/storage/storage. 

[10] block traces from SNIA,http://iotta.snia.org/traces/list/BlockIO. 

[11] S. Park and C. Park.FRD: A filtering based buffer cache algorithm that 

considers both frequency and reuse distance[C]. Proc. 33rd IEEE Int. 

Conf. Massive Storage Syst. Technol. pp. 1-12 2017. 

[12] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang, Performance 

Impact and Interplay of SSD Parallelism through Advanced 

Commands, Allocation Strategy and Data Granularity[C], Proceedings 

of the international conference on Supercomputing (ICS), 2011, pp.96- 

107. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021




