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Abstract—The objectives of this research are to derive an 

explicit analytical formula and develop numerical integration 

for evaluating the Average Run Length (ARL) of Cumulative 

Sum chart for a seasonal autoregressive with exogenous variable; 

SARX(P,r)L model with exponential distribution white noise. 

The integral equations for solving the close form for ARL and 

use the midpoint rule to approximate the numerical integration. 

The numerical results obtained from the proposed explicit 

formulas are compared with results obtained from numerical 

integration technique.  

 
Index Terms—Cumulative Sum chart, average run length, 

explicit formula, numerical integration, SARX(P,r)L model.  

I. INTRODUCTION 

HE main objective of Statistical Process Control (SPC) 

is to improve the capacity of the process. One of the 

instruments on the quality tool set is the control chart (Vargas 

et al., [1]). Control charts are an essential statistical tool of 

continuous quality control to monitor and improve quality 

characteristics of production processes, which are widely 

used for detecting changes in the mean or variance of the 

processes. Generally, the manufacturers wish to control the 

variability as an aid to effective problem solving. Control 

charts are widely used in many areas of applications such as 

economics, finance, medicine and engineering. It is used in 

monitoring and controlling the quality of processes.  

Control charts such as Shewhart, Exponentially Weighted 

Moving Average (EWMA), and Cumulative Sum (CUSUM) 

charts have been developed for detecting changes in the 

process means. The Shewhart chart was first introduced by 

Walter Shewhart in 1924 [2], it is effective when detecting 

large changes in process means ( >1.5). The effective 

control chart is used to detect a small shift, namely the 

Cumulative Sum (CUSUM) chart, which is proposed by 

Page [3]. The literatures concerning control of small shifts 

( < 1.5) are recommended such as Hawkins and Olwell 

[4] and Lucas [5] to show that the CUSUM chart is more 

efficient than the Shewhart chart in term of detection of 

small changes in the process means.  

Time series are defined as observations of a variable, often 

equally spaced time points such as the hourly air temperature, 

the daily closing price of a stock, or the monthly revenue of 
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a grocery store. In this research, we will focus on time 

dependent time series, i.e. observations at time t are correlated 

with the previous observations. Many time series display 

seasonality. In economics, time-series data tends to be seasonal. 

If seasonality is present, it must be incorporated into the time 

series model such as the monthly data, the period is 12 since 

there are 12 months in a year. 

Etuk [6] uses the seasonal autoregressive integrated moving 

average (SARIMA) process to model gross domestic product. 

Similarly, Eni et al. [7] use the SARIMA model to study the 

patterns of temperature. Ayinde and Abdulwahab [8] identify 

a time series model for crude oil exports through the SARIMA 

model. Doguwa and Alade [9] use SARIMA and SARIMAX 

models to model Nigeria’s headline, core and food inflation. 

An autoregressive integrated moving average with exogenous 

variables (ARIMAX) model, which has the capacity to identify 

the underlying patterns in time series data and to quantify the 

impact of environmental influences. 

The Average Run Length (ARL) is a measurement of the 

control chart’s performance. The ARL is the expected number 

of samples that should occur before a sample shows the out-

of-control condition. There are two characteristics of ARL: 

1) the average number of samples taken from an in-control 

process until the control chart falsely signals out-of-control 

is denoted by ARL0. An ARL0 will be regarded as acceptance 

if it is large enough to keep the level of false alarms at an 

acceptable level and 2) the average number of observations 

that fall within the control limits before giving an alarm that 

the process is out-of-control is denoted by ARL1. There are 

several methods that can be utilized to find the ARL0 and 

ARL1 of EWMA and CUSUM charts have been discussed in 

the literatures, e.g., Monte Carlo simulations (MC) method, 

Markov Chain approach (MCA) and Integral Equation 

approach (IE). For example, Monte Carlo simulation is a 

simple method used for checking the accuracy of analytical 

results, but it is very time consuming to run. Roberts [10], 

who first introduced the ARL for EWMA chart by using 

simulation to estimate the ARL. Crowder [11] used Integral 

Equations to find the ARL for Gaussian distribution. Lucas 

and Saccucci [5] have evaluated the ARL by using a finite-

state Markov Chain approximation. However, the limitations 

of the MCA, IE and MC methods provide the motivation for 

finding explicit formulas for evaluating the ARL. Recently, 

Sukparungsee and Novikov [12] used the Martingale approach 

to derive approximate analytical formulas of Average Run 

Length (ARL) and Average Delay (AD) in case of Gaussian 

and Non-Gaussian distributions. Later, Areepong and Novikov 

[13] derived the explicit formulas of ARL and AD for EWMA 

chart with Exponential distribution. Recently, Mititelu et al. 

[14] presented the exact solution of ARL by Fredholm Integral 
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Equation for one-sided EWMA chart with Laplace distribution 

and the CUSUM chart with Hyperexponential distribution.  

The choice of control charts to be used depends on the 

characteristics to be measured in the process, as well as the 

way that these samples are taken. Control charts are usually 

designed under the assumption that the observations from a 

process are independent and identically distributed. However, 

there are many situations in which the process is autocorrelated 

such as in chemical process, so it needs to be monitored by 

appropriate control charts. Some authors evaluate the ARL 

when the process is serially correlation, such as Mastrangelo 

and Montgomery [15] have been evaluated the performance of 

EWMA chart for serially-correlated process based on Monte 

Carlo simulation technique. Vanbrackle and Reynold [16] 

were estimated the ARL by using an Integral Equation 

technique and Markov Chain Approach to evaluate EWMA 

and CUSUM charts in case of the first order autoregressive; 

AR(1) process with additional random error. Consequently, 

Busaba et al. [17] was proposed the close form of ARL for 

CUSUM chart in situation of the observations are a stationary 

first order autoregressive; AR(1) model. Later, Petcharat et 

at. [18] derived explicit formulas of ARL for EWMA and 

CUSUM charts when observations are the q order moving 

average; MA(q) with exponential white noise by using the 

Integral Equation which based on the Fredholm Integral 

Equation of the second type technique. Recently, Phanyaem 

et al. [19] presented explicit formulas of the ARL of CUSUM 

chart for autoregressive and moving average; ARMA(1,1) 

model. Later, Phanyaem [20] proposed explicit formulas for 

ARL of CUSUM chart when observations are SARMA(1,1)L 

model. Recently, Piyapatr and Lili [20] presented explicit 

formulas of the ARL of CUSUM chart for an autoregressive 

integrated moving average; ARIMA(p,d,q) model with an 

exponential white noise and compare it with the numerical 

integration. 

The objectives of research are to derive a closed form 

expression and to approximate the numerical integration for 

evaluating the Average Run Length of CUSUM chart for 

the seasonal autoregressive with an exogenous variable; 

SARX(P,r)L model with exponential distribution white noise. 

The rest of the paper is organized as follows: the CUSUM 

chart for SARX(P,r)L model is presented in Section 2. The 

numerical method of ARL for CUSUM chart proposed in 

Section 3. In Section 4, we compared the results from close 

form expression with the results from numerical solution of 

an integral equation. Finally, Section 5 provides a conclusion.   

II. CUSUM CHART FOR SARX(P,R)L MODEL 

This section we present the characteristics of CUSUM 

charts, which were first introduced by Page [3] in 1954, are 

widely used and powerful tools for monitoring and detecting 

the mean in the process. Suppose that we have 1 2, ,...Y Y  be a 

sequential observation based on a seasonal autoregressive 

with an exogenous variable; SARX(P,r)L model. The CUSUM 

statistics at the time t  denoted by tC  is defined as follows 

 

  1 =  max( + ,  0)t t tC C Y a  ;  = 1,2,....t  (1) 

 

where Yt  is a sequence of SARX(P,r)L model, C0 = u  is an 

initial value, a  is a reference value of CUSUM chart. 

The general form of SARX(P,r)L model described by the 

following recursion 
 

 
1

1

r

t i it t L P t PL t
i

Y X Y ... Y     


         (2) 

 

where  
itX  is an exogenous variable, 

 
i  is a coefficient of 

itX ,  

 
i  is an autoregressive coefficient, i = 1, 2,…, P  

 
t  is an exponential white noise. 

Let Yt-L, Yt-2L, …, Yt-PL be an initial value of SARX(P,r)L  

model.  

The stopping time of CUSUM control chart is given by 
           

  inf{ 0;  },h tt C h       (3) 

 

where h  is  the stopping time 

    h   is  the constant parameter as upper control limit. 

Suppose H(u) denote the ARL for the SARX(P,r)L model 

with an initial value C0 = u. To define H(u) as follows 

 

 ARL  ( ) ( ) .    hH u E  (4) 

 

where E (.) is the expectation under density function f(x,) 

III. EXPLICIT FORMULA OF ARL FOR SARX(P,R)L MODEL  

In this section, we present the methodology for evaluating 

the ARL for CUSUM chart for the SARX(P,r)L model with 

an exponential distribution white noise. We find analytical 

explicit formula of ARL for CUSUM chart by using Integral 

Equation and compare the results obtained from Numerical 

Integral Equation (NIE) method. The steps of the study are 

given as 

 Step 1. To define the function  ( ) ( )ARL hH u     E  

as follows 

  1 1 1( ) 1 {0 } ( ) + { = 0} (0).C CH u I C h H C C H   E P
 

 Step 2. To extend the function into the Fredholm Integral 

Equations of the second kind.  

0

( ) 1 (0) ( ) ( ) ( ) .
h

t tH u H F a u Y L y f y a u Y dy         

 Step 3. To check the uniqueness of solution by using the 

Banach’s Fixed Point Theorem. 

Banach’s Fixed Point Theorem 

 Let  ,dM.  be a complete metric space and let the mapping 

:T M M be a contraction, then T  is unique on Fixed Point. 

In other words, the Banach’s Fixed Point theorem states that 

for a contractive mapping T on a complete metric space, there 

exists a unique solution to the fixed point equation ( ) .T u u  

Proceedings of the International MultiConference of Engineers and Computer Scientists 2021 
IMECS 2021, October 20-22, 2021, Hong Kong

ISBN: 978-988-14049-1-6 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2021



 

Proof.  The mapping ( ) ,T u u
 
we need to prove the   

 followings: 

  1) The uniqueness of the fixed point when it exists. 

  2) The existence of the fixed point by show first that 

sequence of successive approximations 1  ( )n nu T u  is Cauchy 

convergent, hence convergent since it is in a complete metric 

space. More important is show that the limit point for this 

convergent sequence lim n
n

u u


  is indeed the fixed point for 

the equation ( ) .T u u  

 Step 4. To derive the closed form expression of ARL for the 

CUSUM control chart when the observation is SARX(P,r)L 

model with exponential white noise.  

1
1

...

0

( ) 1 ( )

r

i it t L P t PL
i

h
u a X Y Y

yH u e H y e dy
    


 



  
      

    


      

    
1

1

...

1 (0)

r

i it t L P t PL
i

a u X Y Y

e H
     



  
       

  
 

 
 
   
 
 

 (5) 

Let d  is a constant as 
0

 = ( ) .
h

yd H y e dy
  Thus, the 

function ( )H u  can be written as  

 

1
1

...

( ) 1

r

i it t L P t PL
i

u a X Y Y

H u e d
    


 



  
      

  
 


     

    
1

1

...

1 (0)

r

i it t L P t PL
i

a u X Y Y

e H
     



  
       

  
 

 
 
   
 
 

 (6) 

 

For  = 0u , thus we have (0)H
 
as following form: 

 

 
1

1

...

0 1

r

i it t L P t PL
i

a X Y Y

H e d
    


 



  
      

  
 


   

               
1

1

...

1 0

r

i it t L P t PL
i

a X Y Y

e H
     



  
      

  
 

 
 
   
 
 

 

Hence, substituting (0)H into equation (6) as following 

form: 

1
1

( ... )

( ) 1 .

r

i it t L P t PL
i

a X Y Y
uH u d e e

    


 


    
          (7) 

 

To find the constant d  as following form: 

 

0

 = ( ) .
h

yd H y e dy
   

   
1

1

( ... )

(1 ) 1

r

i it t L P t PL
i

h a X Y Y
h he

e e he
     

 



 


    


 
 

      
 

 

 

Consequently, the explicit formulas obtained by substituting 

the constant d  into equation (7) as following form: 

1
1

( ... )

( ) =  (1 ) .

r

i it t L P t PL
i

a X Y Y
h uH u e e h e

    
 

 


    
    

 As mentioned above, the value of parameter  is equal to 

0 when the process is in-control. Hence, the explicit formula 

for ARL0 is 

 

1
0 1 0

( ... )

0 0  (1 ) . 

r

i it t L P t PL
i

a X Y Y
h u

ARL e e h e
    

 
 



    
      

 

 On the other hand, the process is out-of-control, the value 

of parameter   is equal to 1;  where 1 0= (1 ).    The 

explicit formula for ARL1 is  

 

1
11 1

( ... )

1 1   (1 ) .

r

i it t L P t PL
i

a X Y Y
h u

ARL e e h e
    

 
 



    
     

 

where 0 1i   is autoregressive coefficient; i = 1, 2,…, P  

and   is a parameter of the exponential distribution, 
itX  is 

an exogenous variable, 
i  is a coefficient of 

itX and h is the 

constant parameter as upper control limit.   

 Step 5. To evaluate the ARL0 from the closed form 

expression in step 4, which given ARL0 is equal to 370. 

 Step 6. To evaluate the ARL1 where shift sizes (  ) are 

equal to 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.20, 0.30, 0.40 

and 0.50 respectively.  

   Step 7. To calculate the ARL0 and ARL1 from the closed 

form expression are developed using Mathematical program. 

IV. NUMERICAL INTEGRATION OF ARL FOR CUSUM 

CHART BASE ON SARX(P,R)L MODEL 

In this section, the numerical integral equation method 

called the NIE method is introduced [22]. Let ( ),:y Exp  

and ( )f y  be the probability density function of exponential 

distribution and ( )F y  be the cumulative density function of 

the exponential distribution.   

( ) =  1  yF y e   and  
( )

( ) =   = .  ydF y
f y e

du
  

The midpoint rule for estimating an integral equation uses 

a finite sum with subintervals of equal width and the midpoints 

of each subinterval in place of aj. Let W(y) and F(y) are 

given functions. The corresponding approximate integral 

equation is given as: 

 

 
10

( ) ( ) ( ),
h m

j j
j

W y F y dy w F a


 

 

(8) 

 

where aj is a set of point, 1 20 ...a a   ma h   and wj is 

a set of constant weight, wj / 0.h m    

Let cP be the probability measure and cE be the expectation 

corresponding to initial value C0 = u. Then the solution of 

integral equation can be written as: 
 

( )H u = 1 +  1 1 1{0 } ( ) + { = 0} (0).c cI C h H C C H E P
 

(9) 
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The integral equation of CUSUM chart as follows: 

1
1

...

0

( ) 1 ( )

r

i it t L P t PL
i

h
u a X Y Y

yH u e H y e dy
    


 



  
      

    


      

    
1

1

...

1 (0).

r

i it t L P t PL
i

a u X Y Y

e H
     



  
       

  
 

 
 
   
 
 

 (10) 

 

Firstly, the integral equation (5) can be written as: 
 

1
1

( ) 1 (0) F( ... )
r

i it t L P t PL
i

H u H a u X Y Y    


       %
 

 
1

0 1

( ) ( ... ) .

h
r

i it t L P t PL
i

H y f y a u X Y Y dy    


          

 

where ( ) =  1  uF u e  and 
( )

( ) =   = .  udF u
f u e

du
  

 
Let ( )H u% denote the approximated solution of ( )H u  by 

using the midpoint rule, then the integral equation can be 

approximated by 
 

1
1

( ) 1 (0) F( ... )
r

i i i it t L P t PL
i

H a H a a X Y Y    


       % %  

1
1 1

( ) ( ... )
m r

j j j i i it t L P t PL
j i

w H a f a a a X Y Y    
 

        %  

 

A system of m linear equations 1 2( ), ( ),.., ( ),mH a H a H a% % %  

can be written as 
 

1 1 1 1
1

( ) 1 ( )[F( ... )
r

i it t L P t PL
i

H a H a a a X Y Y    


       % %

 
1 1

1

( ... )]
r

i it t L P t PL
i

w f a X Y Y    


       

1 1
2 1

( ) ( ... )
m r

j j j i it t L P t PL
j i

w H a f a a a X Y Y    
 

        %

 

2 1 2 1
1

( ) 1 ( )[F( ... )
r

i it t L P t PL
i

H a H a a a X Y Y    


       % %

 
1 1 2 1

1

( ... )]
r

i it t L P t PL
i

w f a a a X Y Y    


         

2 1
2 1

( ) ( ... )
m r

j j j i it t L P t PL
j i

w H a f a a a X Y Y    
 

        %

  

1 1
1

( ) 1 ( )[F( ... )
r

m m i it t L P t PL
i

H a H a a a X Y Y    


       % %

 
1 1 1

1

+ ( ... )]
r

m i it t L P t PL
i

w f a a a X Y Y    


           

 
1

2 1

( ) ( ... )
m r

j j j m i it t L P t PL
j i

w H a f a a a X Y Y    
 

        %  

It can be rewritten in matrix form as follows: 

 

    1 1 1m m m m m    H 1 R H
 

 

where  
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m
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

 
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 
 
 
 
 

H

%

%
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 ,  1

1

1
 = 

1

m

 
 
 
 
  
 

1
M

 

 and Im = diag(1,1,…,1) is the unit matrix of order m. If there 

exists (Im - Rmxm)-1, then the solution of matrix equation as 

follows 
 

   
1

1 1( )m m m m m


   H I R 1 . 
 

Therefore, the numerical integration of ARL for CUSUM 

control chart based on SARX(P,r)L model as follows: 

 

1 1
1

( ) 1 ( )[F( ... )
r

i it t L P t PL
i

H u H a a u X Y Y    


       % %  

1 1 1
1

( ... )]
r

i it t L P t PL
i

w f a a u X Y Y    


          (10) 

1
2 1

( ) ( ... )
m r

j j j i it t L P t PL
j i

w H a f a a u X Y Y    
 

        %   

 

where j
h

w
m

   and  
1

 = ;  = 1,2,..., .
2

j
h

a j j m
m

 
 

 
 

V. NUMERICAL ANALYSIS 

In this section, we present the results obtained from the 

explicit formulas of ARL for CUSUM control chart when 

observations are the seasonal autoregressive with exogenous 

variables; SARX(P,r)L model. The explicit formula is compared 

with numerical integral equation (NIE) method using the 

midpoint rule with 500 nodes and to verify which method is 

better with the absolute percentage error and the computation 

(CPU) times are used.  

Table 1-3 presents the ARL of explicit formula and NIE 

methods for SARX(1,1)12, SARX(2,1)12 and SARX(3,1)12 

models, respectively. Given the in-control parameter 0 = 1 

and out-of-control parameter 1 = 0 (1+) where  = 0.00, 

0.01, 0.03, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 1.00 and 1.50 

respectively. The CUSUM chart was set the reference 

values (a) is 2.50 and an initial value (u) is 1. The value of 

upper control limit (h) for the CUSUM chart was chosen by 

giving desired ARL0 is 370.  

Table 1, we set the parameter values for SARX(1,1)12 model 

with 1 = 0.10, 1 = 0.1 then the parameter values of CUSUM 

chart are a = 2.50 and h = 3.976. Similarity, Table 2, we set 

the parameter values of SARX(2,1)12 model with 1 = 0.10, 

2 = 0.10 and 1 = 0.1, then the parameter values of CUSUM 

chart are a = 2.50 and h = 4.151. Finally,  Table 3, we set the 

parameter values of SARX(3,1)12 model with 1 = 0.10, 2 = 

0.10, 3 = 0.10 and 1 = 0.1 then the parameter of CUSUM 

chart are a = 2.50 and h = 4.349. 
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TABLE I 

THE ARL VALUES FOR SARX(1,1)12 MODEL USING EXPLICIT FORMULAS 

AGAINST NIE METHOD GIVEN a  = 2.5 AND h  = 3.976  

Shift 

size 

 

Explicit Formulas 

Method 

NIE 

 Method 

Absolute 

Percentage 

Difference 

0.00 370.309  369.445 (11.68) 0.354 

0.01 346.445 346.240 (11.95) 0.059 

0.03 304.411 303.386 (12.33) 0.337 

0.05 268.803 267.926 (12.51) 0.326 

0.10 200.930 200.323 (12.89) 0.302 

0.20 120.929 120.614 (12.48) 0.260 

0.30   78.930 78.751 (12.39) 0.227 

0.40   54.951  54.843 (12.22) 0.197 

0.50   40.301 40.231 (13.09) 0.174 

1.00   14.196 14.182 (11.80) 0.099 

1.50     7.922   7.917 (12.66) 0.063 

a. The values in parentheses are CPU times in numerical 

integration methods (Minutes)  

 
TABLE II 

THE ARL VALUES FOR SARX(2,1)12 MODEL USING EXPLICIT FORMULAS 

AGAINST NIE METHOD GIVEN a  = 2.5 AND h  = 4.151  

Shift 

size 

 

Explicit Formulas 

Method 

NIE 

 Method 

Absolute 

Percentage 

Difference 

0.00 370.267  368.929 (12.51) 0.361 

0.01 345.929 345.175 (12.80) 0.355 

0.03 303.154 302.115 (11.48) 0.343 

0.05 267.021 266.137 (13.81) 0.331 

0.10 198.465 197.861 (13.03) 0.304 

0.20 118.361 118.055 (12.89) 0.259 

0.30   76.753 76.583 (12.93) 0.221 

0.40   53.203 53.102 (13.11) 0.190 

0.50   38.916 38.852 (13.33) 0.164 

1.00   13.720 13.708 (13.60) 0.087 

1.50     7.718   7.714 (14.08) 0.049 

 
TABLE III 

THE ARL VALUES FOR SARX(3,1)12 MODEL USING EXPLICIT FORMULAS 

AGAINST NIE METHOD GIVEN a  = 2.5 AND h  = 4.349  

Shift 

size 

 

Explicit Formulas 

Method 

NIE 

 Method 

Absolute 

Percentage 

Difference 

0.00 370.136  368.778 (11.71) 0.367 

0.01 345.182  343.940 (11.49) 0.360 

0.03 301.451 300.408 (14.53) 0.346 

0.05 264.650 263.769 (14.19) 0.333 

0.10 195.243 194.652 (13.33) 0.303 

0.20 115.070 114.780 (13.65) 0.252 

0.30   74.003 73.847 (13.61) 0.211 

0.40   51.023 50.933 (13.32) 0.176 

0.50   37.207 37.151 (13.67) 0.151 

1.00   13.159 13.150 (14.36) 0.068 

1.50     7.488   7.485 (14.81) 0.040 

 

The results from Table 1 to Table 3, show that the absolute 

percentage difference are less than 1.0% by the numerical 

integration for the case of division points m = 500, and the 

CPU times of approximately 11-15 minutes. While, the CPU 

times from the proposed explicit formulas are less than 1 

second.  

VI. CONCLUSION 

The paper has successfully proposed the explicit formula of 

ARL for a seasonal autoregressive with exogenous variables; 

SARX(P,r)L model on CUSUM chart and approximated the 

ARL using the numerical integral equation (NIE) method. 

The ARL that was computed from the explicit formula was 

in excellent agreement with the ARL obtained from the NIE 

method with the absolute percentage difference are less than 

1.0%. In addition, the CPU time of the NIE method has 

between 11-15 minutes, whereas that of the explicit formula 

was less than 1 second. This means that the proposed 

explicit formula would be very useful to find the ARL of 

CUSUM chart and it can be applied in real applications for 

different process data, for example in network traffic and 

chemical process. Further studies can be carried out on 

some of control chart not derived in this paper or extended 

to other serially correlated observations. 
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