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Abstract

In this paper we propose a simple and easy-to-use
method for computing accurate estimate (in closed
form) of the double barrier hitting time distribution
of a mean-reverting lognormal process, and discuss its
application to pricing exotic options whose payoffs are
contingent upon barrier hitting times. This new ap-
proach is also able to provide tight upper and lower
bounds (in closed form) of the exact result. Within
the multi-stage approximation scheme, the estimate
and bounds can be easily improved in a systematic
manner. Furthermore, this approach can be straight-
forwardly extended to those cases with specified mov-
ing boundaries as well.

Keywords: First hitting time; mean-reverting lognor-
mal process; barrier options; method of images.

1. Introduction

In the past decade barrier options have become
very popular instruments for a wide variety of hedging
and investment in foreign exchange, equity and com-
modity markets, largely in the over-the-counter mar-
kets. An advantage of trading barrier options is that
they provide more flexibility in tailoring the portfolio
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returns while lowering the cost of option premiums.
In the commodity and foreign exchange markets em-
pirical studies show that the mean-reverting lognor-
mal process (MRL-process) provides a more accurate
description of the commodity prices and exchange
rates than the lognormal process. However, unlike
the standard barrier options for a lognormal process,
the valuation of barrier options for a MRL-process
poses a real challenge for there is no exact analytical
solution available (Lo and Hui 2006).
Recently, based upon the method of images, Hui

and Lo (2006) were able to develop an efficient an-
alytical approach to provide accurate estimates of
single-barrier options for a MRL-process. In this pa-
per we generalize their method to compute the dou-
ble barrier hitting time distribution function for a
MRL-process. Based upon the exact double barrier
hitting time distribution function (in closed form) of
the MRL-process with two parametric moving bar-
riers, we are able to obtain very accurate estimate
(in closed form) of the desired distribution function
associated with two fixed barriers, including the up-
per and lower bounds (in closed form) of the exact
result. With the multi-stage approximation scheme,
the estimate and bounds can also be systematically
improved in a straightforward manner. These results
are applicable to the analysis of the MRL-process for
various mean-reverting financial variables (Hui and
Lo 2006; Sorensen 1997); for instance, we can apply
the results to value some exotic options whose payoffs
are contingent upon barrier hitting times.

2. First Hitting Time Distribution

We consider a MRL-process described by the sto-
chastic differential equation

dS = {µ (t) + κ (t) (lnSm (t)− lnS)}Sdt+
σ (t)SdWt (1)
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where S is the underlying, κ (t) is the mean-reverting
force, Sm (t) is the equilibrium position, µ (t) is the
drift term, σ (t) is the volatility and Wt is a stan-
dard Weiner process. Under the standard transfoma-
tion x = ln(S/SL) and xm = ln(Sm/SL), we could
re-write the FPE as

dx =

½
µ (t) + κ (t) [xm (t)− x]− 1

2
σ (t)

2

¾
dt+

σ (t) dWt , (2)

and the associated Fokker-Planck equation (FPE)
governing the transition probability density function
(p.d.f.) is given by

∂P (x, t)

∂t

=
1

2
σ (t)2

∂2P (x, t)

∂x2
−½

µ (t) + κ (t) [xm (t)− x]− 1
2
σ (t)2

¾
×

∂P (x, t)

∂x
+ κ (t)P (x, t) . (3)

It is straightforward to show that its solution corre-
sponding to the so-called natural boundary condition
is given by

P (x, t) =

Z ∞
−∞

K (x, t;x0, 0)P (x0, 0) dx0 (4)

where

K (x, t;x0, 0)

=
1p
4πη (t)

exp

(
−
£
xeλ(t) + γ (t)− x0

¤2
4η (t)

+ λ(t)

)

η (t) =

Z t

0

1

2
σ2(s)e2λ(s)ds

γ (t) =

Z t

0

µ
1

2
σ (s)2 − µ(s)− κ (s)xm (s)

¶
eλ(s)ds

λ(t) =

Z t

0

κ (s) ds . (5)

Given the initial condition P (x, 0) = δ (x− x0),
P (x, t) = K (x, t;x0, 0) gives the unrestricted p.d.f.
from x0 to x.
In the presence of two absorbing barriers at S = SL

and S = SU , SL ≤ SU , one has to impose the
boundary conditions: P (0, t) = P (L0, t) = 0, with
0 ≤ x0 ≤ ln(SU/SL) ≡ L0. By the method of im-
ages we are able to derive analytically the restricted

p.d.f. (in closed form) with two moving absorbing
boundaries as follows:

PDB (x, t;x0, 0) =

Z L0

0

G (x, t;x0, 0)P (x0, 0) dx0

= G (x, t;x0, 0) (6)

where

G (x, t;x0, 0)

=
∞X

n=−∞

n
K (x, t;x0 − 2nL0, 0) en(β−α)x0−

K (x, t;−x0 − 2nL0, 0) e−{(n+1)β−nα}x0
o
×

e−nβL0−n
2(β−α) . (7)

The trajectories of the two moving boundaries are
specified by

x∗L (t) ≡ ln

µ
S∗L (t)
SL

¶
= [−γ (t)− βη (t)]e−λ(t)

x∗U (t) ≡ ln

µ
S∗U (t)
SL

¶
= [−γ (t)− αη (t) + L0] e

−λ(t)

at any time t ≥ 0, where β and α are two real ad-
justable parameters controlling the movement of the
two barriers. The corresponding first hitting time
distribution function or first passage time distribu-
tion function (FPTDF) could be formulated as:

Pexit (x0, t) = 1−
Z x∗U (t)

x∗L(t)
G (x, t;x0, 0) dx

=
∞X

n=−∞
e−nβL0−n

2(β−α)L0 ×(
N

"
−αη (t)− x0 + (2n+ 1)L0p

2η (t)

#
×

en(β−α)x0 −

N

"
−αη (t) + x0 + (2n+ 1)L0p

2η (t)

#
×

e−{(n+1)β−nα}x0
o
−

N

"
−βη (t)− x0 + 2nL0p

2η (t)

#
×

en(β−α)x0 +

N

"
−βη (t) + x0 + 2nL0p

2η (t)

#
×

e−{(n+1)β−nα}x0
o

. (8)
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HereN (·) is the cumulative normal distribution func-
tion.
To simulate fixed upper and lower barriers, one

could choose the optimal values of the adjustable pa-
rameters α and β in such a way that both of the
integralsZ t

0

[x∗U (s)− L0]
2 ds and

Z t

0

[x∗L (s)]
2 ds

are minimum. In other words, we try to minimize
the deviations from the fixed barriers by varying the
parameters α and β. Simple algebraic manipulations
then yield the optimal values of β and α as follows:

αopt = −
R t
0

©
γ (s) + (eλ(s) − 1)L0

ª
η (s) e−2λ(s) dsR t

0
η2 (s) e−2λ(s) ds

βopt = −
R t
0
γ (s) η (s) e−2λ(s) dsR t
0
η2 (s) e−2λ(s) ds

. (9)

It should be noted that the above scheme could also
be easily applied to those cases with time-dependent
barriers, e.g. two exponentially moving boundaries,
by choosing appropiate values of α and β. Further-
more, within the framework of this new approach,
we can determine the upper and lower bounds for
the exact barrier option prices too. It is not diffi-
cult to show1 that if the moving barriers stay out-
side the region bounded by the fixed barriers, i.e.
S∗U (t) > SUand S∗L (t) < SL, for the duration of in-
terest, then the restricted p.d.f. (and the correspond-
ing option price) will provide an upper bound for
the exact value. On the other hand, if the moving
barriers are embedded inside the bounded region, i.e.
S∗U (t) < SUand S∗L (t) > SL, then the p.d.f. (and
the corresponding option price) will serve as a lower
bound.
For illustration, we apply the approximation to

evaluate the FPTDF associated with two fixed barri-
ers located at SU = 110 and SL = 90 after a duration
T = 0.25. The current value of the underlying is
S = 100, and other input parameters are: κ = 0.5,
µ = 0, σ = 0.1 and Sm = 100. First of all, we deter-
mine the optimal values of the adjustable parameters
α and β:

αopt = −10.03765
βopt = 9.089295 . (10)

1The proof is based upon the maximum principle for par-
abolic differential equations (see the appendix of Lo et al.
(2003) for the relevant proof).

An estimate of the exact FPTDF can be evalutaed
using Eq.(11) :

Pexit(S = 100, T = 0.25) = 0.073662 (11)

As a check, the Crank-Nicolson method is used to nu-
merically solve the FPE, and the (numerically) exact
value of the FPTDF is given by

P exactexit (S = 100, T = 0.25) = 0.073955 (12)

The approximate estimate is indeed very close to the
exact result with an error of 0.40% only. Moreover,
the corresponding upper and lower bounds are also
evaluated as follows:

Upper Bound = 0.074298

Lower Bound = 0.071471 (13)

Clearly, the new approach is able to give very tight
upper and lower bounds for the exact FPTDF with
percentage error less than 3.5%.
In order to systematically tighten the upper and

lower bounds, we can adopt the multi-stage ap-
proximation scheme proposed by Lo et al. (2003).
The essence of the approximation scheme is to re-
place each of the above smooth moving barriers by a
continuous and piecewise smooth trajectory in order
that the deviation from the fixed barrier is minimized
in a systematic manner. As demonstrated by Lo et
al. (2003), we then need to perform some simple one-
dimensional numerical integrations (e.g. using the
Gauss quadrature method)2 at the connecting points
of each piecewise smooth barrier in order to evaluate
the upper and lower bounds of the option price. As
expected, the multi-stage approximation for both the
upper and lower bounds becomes better and better as
the number N of stages increases; in fact, the gap be-
tween the bounds is asymptotically reduced to zero.
In practice even a rather low-order approximation can
yield very tight upper and lower bounds to the exact
results, as demonstrated in Table 1 and Table 2.

3. Application in Pricing Exotic
Options

The aforementioned FPTDF has a wide application
in pricing exotic options whose payoffs are contingent
upon barrier hitting times. For demonstration, we ex-
plicitly derive the price formulae for the double digital
option and the double knockout call option as follows:

2The integration can be performed analytically and the re-
sult can be expressed in closed form in terms of the cumulative
multi-variate normal distribution functions. However, in prac-
tice the numerical integrations are indeed very efficient.
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1. Double-barrier Digital Option

A European double-digital option pays one dol-
lar if the underlying asset price stays within the
two prescribed barriers until the option maturity
T . Thus the price function is simply the survival
probability of the underlying inside the two bar-
riers, with an appropriate discount factor:

Pdouble digital (S, T )

= e−rT
·
1− Pexit

µ
ln(

S

SL
), T

¶¸
= e−rT

∞X
n=−∞

µ
SU
SL

¶−n2(β−α)−nβ
×

(
N (θ1)

µ
S

SL

¶n(β−α)

−

N (θ2)

µ
S

SL

¶−{(n+1)β−nα}
−

N (θ3)

µ
S

SL

¶n(β−α)

+

N (θ4)

µ
S

SL

¶−{(n+1)β−nα})
(14)

where

θ1 =
1p
2η (T )

½
−αη (T )− ln

µ
S

SL

¶
+

(2n+ 1) ln

µ
SU
SL

¶¾
θ2 =

1p
2η (T )

½
−αη (T ) + ln

µ
S

SL

¶
+

(2n+ 1) ln

µ
SU
SL

¶¾
θ3 =

1p
2η (T )

½
−βη (T )− ln

µ
S

SL

¶
+

2n ln

µ
SU
SL

¶¾
θ4 =

1p
2η (T )

½
−βη (T ) + ln

µ
S

SL

¶
+

2n ln

µ
SU
SL

¶¾
. (15)

2. Double-barrier Knockout Call Option

The option price is formulated as the discounted
expected payoff with respect to the restricted

p.d.f.:

Pdouble knockout call (S, T )

= e−rTE [max (SLex −K, 0)]

= e−rT
Z x∗U (T )

x∗L(T )
G (x, T ;x0, 0)×

max (SLex −K, 0) dx

= e−rT
(
SL

Z x∗U (T )

ln
³
K
SL

´ G (x, T ;x0, 0) exdx−

K

Z x∗U (T )

ln( KSL
)

G (x, T ;x0, 0) dx

)

= e−rT
∞X

n=−∞

µ
SU
SL

¶−n2(β−α)−nβ
×½

exp

µ·
ln

µ
S

SL

¶
− 2n ln

µ
SU
SL

¶¸
e−λT

¶
× SL exp

©
η (T ) e−2λT − γ (T ) e−λT

ª
×
"
N (θ1)

µ
S

SL

¶n(β−α)

−

N (θ3)

µ
S

SL

¶n(β−α)#
−

exp

µ·
ln

µ
SL
S

¶
− 2n ln

µ
SU
SL

¶¸
e−λT

¶
× SL exp

©
η (T ) e−2λT − γ (T ) e−λT

ª
×
"
N (θ2)

µ
S

SL

¶−{(n+1)β−nα}
−

N (θ4)

µ
S

SL

¶−{(n+1)β−nα}#
−

K

"
N (θ5)

µ
S

SL

¶n(β−α)

−

N (θ7)

µ
S

SL

¶n(β−α)#
+

K

"
N (θ6)

µ
S

SL

¶−{(n+1)β−nα}
−

N (θ8)

µ
S

SL

¶−{(n+1)β−nα}#)
where

θ1 =
1p
2η (T )

½
−αη (T )− ln

µ
S

SL

¶
+

(2n+ 1) ln

µ
SU
SL

¶
− 2η (T ) e−λT

¾
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θ2 =
1p
2η (T )

½
−αη (T ) + ln

µ
S

SL

¶
+

(2n+ 1) ln

µ
SU
SL

¶
− 2η (T ) e−λT

¾
θ3 =

1p
2η (T )

½
ln

µ
K

SL

¶
eλT − ln

µ
S

SL

¶
+

γ (T ) + 2n ln

µ
SU
SL

¶
− 2η (T ) e−λT

¾
θ4 =

1p
2η (T )

½
ln

µ
K

SL

¶
eλT + ln

µ
S

SL

¶
+

γ (T ) + 2n ln

µ
SU
SL

¶
− 2η (T ) e−λT

¾
θ5 =

1p
2η (T )

½
−αη (T )− ln

µ
S

SL

¶
+

(2n+ 1) ln

µ
SU
SL

¶¾
θ6 =

1p
2η (T )

½
−αη (T ) + ln

µ
S

SL

¶
+

(2n+ 1) ln

µ
SU
SL

¶¾
θ7 =

1p
2η (T )

½
ln

µ
K

SL

¶
eλT − ln

µ
S

SL

¶
+

γ (T ) + 2n ln

µ
SU
SL

¶¾
θ8 =

1p
2η (T )

½
ln

µ
K

SL

¶
eλT + ln

µ
S

SL

¶
+

γ (T ) + 2n ln

µ
SU
SL

¶¾
. (16)

4. Conclusion

In this paper we have presented a simple and easy-
to-use method to compute the double barrier hitting
time distribution function for a mean-reverting log-
normal process and discussed its application to pric-
ing exotic options whose payoffs are contingent on
barrier hitting times. This new approach is able to
yield very accurate estimate of the desired distribu-
tion function, including the upper and lower bounds
of the exact result. With the multi-stage approxima-
tion scheme, the estimate and bounds can be system-
atically improved in a straightforward manner as well.
Moreover, it is natural that by tuning the parameters
α and β the approach can be applied to determine
the distribution functions of those cases with specifed
moving barriers.
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Table 1. Comparison of estimates and bounds of the first passage time distribution function (FPTDF) with the (numerically) exact 
results by CN method. Percentage error is defined as (estimate or bound – CN result)/ CN result × 100 %. Number of images 
summed: n= -2 to n =2. Input parameters are:  = 0.5,  = 0,  = 0.1, Su= 110, SL= 90, Sm = 100 and S =100. 

Single-Stage Approximation 

(%error) 

Multistage Approximation 

(%error) 
Duration

Crank-Nicolson 

 t = 0.0001 

 x = 0.0001 
Optimal Track Upper Bound Lower Bound Two Stage Four Stage 

0.073662 0.074298 0.071471 0.074054 0.073982 
T = 0.25 0.073955 

(-0.40%) (0.46%) (-3.36%) (0.13%) (0.04%) 

0.260472 0.265238 0.245338 0.262481 0.261805 
T = 0.5 0.261564 

(-0.42%) (1.40%) (-6.20%) (0.35%) (0.09%) 

0.421608 0.433553 0.384377 0.425285 0.423315 
T = 0.75 0.422641 

(-0.24%) (2.58%) (-9.05%) (0.63%) (0.16%) 

0.549643 0.570380 0.487778 0.554486 0.550653 
T = 1 0.549373 

(0.05%) (3.82%) (-11.21%) (0.93%) (0.23%) 

Table 2. Comparison of estimates and bounds of the first passage time distribution function (FPTDF) with the (numerically) exact 
results by CN method. Percentage error is defined as (estimate or bound – CN result)/ CN result × 100 %. Number of images 
summed: n= -2 to n =2. Input parameters are:  = 1,  =0.1,  = 0.2, r = 0, Su = 110, SL = 90, Sm = 100 and S = 105. 

Single-Stage Approximation 

(%error) 

Multistage Approximation 

(%error) 
Duration

Crank-Nicolson 

 t = 0.0001 

 x = 0.0001 
Optimal Track Upper Bound Lower Bound Two Stage Four Stage 

0.747798  0.750073  0.740829  0.748612  0.748243  
T = 0.25 0.748113  

(-0.04%) (0.26%) (-0.97%) (0.07%) (0.02%) 

9.919373  0.925412  0.900014  0.920311  0.919099  
T = 0.5 0.918689  

(0.07%) (0.73%) (-2.03%) (0.18%) (0.04%) 

0.975253  0.980940  0.952110  0.975566  0.974137  
T = 0.75 0.973659  

(0.16%) (0.75%) (-2.21%) (0.20%) (0.05%) 

0.992988  0.996216  0.972380  0.992920  0.991844  
T = 1 0.991466  

(0.15%) (0.48%) (-1.93%) (0.15%) (0.04%) 
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