
 
 

 

  
Abstract —Kernel-based Regularized Least-squares Regression 

(RLSR）is a technique originally from Statistical Learning (SL) 
theory. RLSR can deal with non-linear problem through mapping 
the samples into a higher dimension space using a kernel function. 
This paper adopts the RLSR to time series forecasting and the 
resulted model is termed RLS-TS model getting the idea from 
applying neural network and support vector regression to time 
series forecasting. This paper applies the RLS-TS model to 
GBP/USD Exchange Rate forecasting. RLS-TS performs better 
than random walk, linear regression, autoregression integrated 
moving average, and artificial neural network model in predicting 
GBP/USD currency exchange rates. A grid search is used to 
choose the optimal parameters. 
 

Index Terms—exchange rate, regularized least-squares, time 
series, forecasting.  
 

I. INTRODUCTION 
  Over the past two decades, exchange rates have exhibited 
substantial short-term volatility. The amount traded exceeds a 
trillion US dollars in transactions executed each day in the 
foreign exchange market. At present, both translation and 
conversion of foreign currency involve the use of exchange 
rates. In this increasingly challenging and competitive market, 
investors and traders need tools to analyze their data from the 
vast amounts of data available to them to help them make good 
decisions. This paper specifically describes a new and effective 
approach to forecast the currency exchange rate between U.S. 
and GB. 

 Many models have been built to predict the exchange rate. 
Refenes [1] developed a constructive learning algorithm to 
predict the exchange rate between U.S. dollar and the Deutsche 
mark. Kuan and Liu [2] examined performance of feed-forward 
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and recurrent neural. Diebold and Nason [3] investigated ten 
weekly spot rates and did not find any significant difference in 
both in-sample fit and out-of-sample forecasting across these 
exchange rate series.  

Verkooijen [4] forecasts monthly U.S. dollar/Deutsche mark 
exchange rate using neural networks. He finds that the neural 
network performance is very similar to the linear structural 
models in out-of-sample forecasting. Hann and Steurer [5] 
compare neural network models with linear monetary model in 
forecasting U.S. dollar/Deutsch mark exchange rate.  

Sfetsos and Siriopoulos[6] compare four methods including 
random walk (RW), linear regression (LR), auto regression 
integrated moving average (ARIMA), and artificial neural 
network (ANN) in forecasting exchange rate between US 
dollar and GB pound. Our work is based on Sfetsos and 
Siriopoulos’s research, and we adopt regularized least-squares 
method to time series field and build our forecasting model 
named RLS-TS model. The idea is from applying neural 
network and support vector regression to time series 
forecasting.  The RLS-TS model performs better than other 
models in references in forecasting USD/GBP exchange rate. 

This paper is organized as follows. In Section 2, we describe 
regularized least-squares time series (RLS-TS) theory. The 
results are illustrated in Section 3. Some discussions are 
presented in Section 4. 

 

II. THEORY 
Regularized least-square regression (RLSR) is based on 

statistical learning (SL) theory. SL theory was introduced in the 
late 1960’s. Vapnik and Chervonenkis had done much initial 
and fundamental work. Until the 1990’s, it was a purely 
theoretical analysis of the problem of function estimation from 
a given collection of data. In the middle of the 1990’s, the 
statistical theory was used as a tool for creating practical 
algorithms for estimating multidimensional functions. 

A. Learning Model 
The statistical learning model can be described using three 

components:  
(1) Random vector x  is drawn independently from a fixed 

but unknown distribution ( )P x . 
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(2) A supervisor that returns an output vector y  for every 
input vector x , according to a conditional distribution function 

( | )P y x , is also fixed but unknown. 
(3) A learning machine capable of implementing a set of 

learning functions ( , ), .f x α α ∈ Λ  where Λ  is the parameter 
space. 

The problem of learning is that of choosing from the given 
set of functions ( , ),f x α α ∈ Λ ,.the one which predicts the 
supervisor’s response in the best possible way. The selection is 
based on a training set of l  random independent identically 
distributed observations according to ( , ) ( ) ( | )P x y P x P y x=  

( , ). 1, 2, ,i ix y i l= L                               (1) 
In order to choose the best available approximation to the 

supervisor’s response, one measures the loss or discrepancy 
( , ( , ))L y f x α  between the response y of the supervisor to a 

given input x and the response ( , )f x α  provided by the 
learning machine. Consider the expected value of the loss, 
given by the risk functional 

( ) ( , ( , )) ( , ).R L y f x dP x yα α= ∫                     (2) 

The goal is to find the function 0( , )f x α  which minimizes 

the risk functional ( )R α  (over the class of 
functions ( , ), .f x α α ∈ Λ ) in the situation where the joint 
probability distribution ( , )P x y  is unknown and the only 
available information is contained in the training set (1).  This 
formulation of the learning problems is rather general. 
Considering different lost functions it could be different 
problems [7].  
(a) Pattern recognition: 

0 ( , )
( , ( , ))

1 ( , )
if y f x

L y f x
if y f x

α
α

α
=⎧

= ⎨ ≠⎩
 

(b) Regress estimation: 
2( , ( , )) ( ( , ))L y f x y f xα α= −  

(c) Density estimation 
( ( , )) log ( , )L p x p xα α= −  

With, α ∈ Λ , ( , )p x α  is density.        

B. Regularized Least-Squares Regression (RLSR) 

In regression, we are given a training set (1) and { iy }’s 
are real-valued. The goal is to learn a function f  to predict the 
y  values associated with new observed x  value.  For 

regularized least-square regression (RLSR), we pose our 
regression task as finding the function f  that solves a 
Tikhonov Regularization problem: 

 
Fig.1 The function ϕ  embeds the data into a feature space where the nonlinear 
pattern now appears linear. The kernel computes inner products in the feature 
space directly from the inputs. 
 

2

1

1arg min ( ( ), )
K

l
i i Kif H

f L f x y f
l

λ
=∈

= +∑            (3) 

where ix , (.)f  is the decision function, λ  is the 

regularization parameter, and 
2

K
f  is the norm of the 

function in the Reproducing Hilbert Space [8, 9]. The choice of 
the lost function is the square loss: 

2( , ( , )) ( ( , ))L y f x y f xα α= −                  (4) 
RLSR solves the problem that in some cases there isn’t a 

linear separating hyper-plane in an ingenious way: mapping the 
samples to a higher dimension space using a kernel function, 
and seeking a hyper-plane in that space (Fig.1). A nonlinear 
function (left) in the original space is mapped into the feature 
(right) where the function becomes linear. This is done by 
replacing ix  mapping into feature space ( )ixϕ  which 

linearizes the relation between ix  and iy [10, 11] 

1 1( , ..., ) ( ) ( ( ), ..., ( ))n Nx x x xx x ϕ ϕ= → Φ =           (5) 
There are some kernel functions that can be chosen to solve 

problems in different conditions [12], which linearizes the 
relation between ix and iy : 

(a) Dot kernel:      ( , )i j i jk x x x x= � . 

(b) Polynomial kernel:  ( , ) ( 1)d
i jk x x xi xj= +�  

(c) Gaussian kernel:  
2

2

1( , ) exp( )
2i j i jk x x x x
σ

= − −  

Representer Theorem: The solution to the Tikhonov 
regularization problem (3) can be written in the form: 

1
( ) ( , )l

i ii
f x c K x x

=
= ∑                     (6) 

This theorem says that to solve the Tikhonov regularization 
problem, we need only find the best function of form (6) . Put 
differently, all we have to do is find the ic . 

Notation: We will use the symbol ijK  for the kernel function 

K : 
( , )i j i jK K x x≡                  (7) 

Using this definition, consider the output of function (6) at the 
training point jx  

1
( ) ( , ) ( )l

j i j i ji
f x K x x c Kc

=
= =∑      (8) 

( )oϕ

( )oϕ
( )xϕ  
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With this notation, we apply the Representer Theorem to our 
Tikhonov minimization problem, reformulation it as: using the 
square loss, our problem becomes 

221arg min ( )
K

Kf H
f Kc y f

l
λ

∈
= − +     (9) 

For the norm of a Represented Function , recall that if we 
have the function (6), then we have 

2|| || T
kf c Kc=                 (10) 

Substituting (10) into (9), our Tikhonov minimization 
problem becomes a problem of finding c (Ref. [13]): 

21arg min ( )
l

T

c R
f Kc y c Kc

l
λ

∈
= − +      (11) 

C. Solving the Problem 
The solution to the problem developed above becomes the 

minimization of function 
21( ) ( ) Tg c Kc y c Kc

l
λ= − +          (12) 

This is a convex, differentiable function of c , so we can 
minimize it simply by setting to zero of the derivative of g(c) 
with respect to c . 

( ) 2 ( ) 2 0g c K Kc y Kc
c l

λ∂
= − + =

∂
        (13) 

Function (13) can be simplified as 
1( )c K lI yλ −= +                (14) 

The matrix K lIλ+ is positive definite and will be 
well-conditioned, if λ is not too small.  The conjugate gradient 
algorithm is a popular algorithm for solving positive definite 
linear systems [14, 15]. 

 

D. Regularized Least-Squares Time Series Model Building 
In this section, we adopt RLSR to time series forecasting and 

give the mathematics formulation of the RLS-TS model. Time 
series prediction can be seen as autoregression in time, for this 
reason, a regression method can be used for this task [16]-[19].  

Given a time series{ }nxxx ...,,, 21 , in order to make a 
prediction on it using regularized least-squares regression, it 
must be transferred into an autocorrected dataset. 

 That is, if 1{ }tx +  is the value to predict, the previous values 

{ }1 1, , ...,t t t px x x− − +  should be the input variables. Then we can 

map the autocorrected input variables { }1 1, , ...,t t t px x x− − +  to 

the goal variable 1 1{ }t ty x+ += , p are called embedded 
dimension.  

After transferring the data, we can get the samples which are 
suitable for RLSR learning, with the following matrix form: 

1 1

1 1

1 2 1 2

n k n k n p k n p k

n n n p n p

n n n p n p

x x x x

x x x x
X Y

x x x x+ − + + + + + +

+ + + +

+ + + + + +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

L

L

M M O M M

L

     (15) 

 Table.1  Definitions of performance criteria for time series forecasting 
Metrics Calculation 

RMSE 
1/ 2

2
1

1 ˆ( )n
i ii

y y
n =

⎡ ⎤−⎢ ⎥⎣ ⎦
∑  

MAPE 
1

ˆ1100*
n

i i

i i

y y
n y=

−∑  

 
Thus, we can predict 1 1{ }t ty x+ +=  using regularized 

least-squares regression [20]. Suppose the future value 1tx +  

will be predicted through function h  with the history data 

{ }1 1, , ...,t t t px x x− − + . The function will be  

1 1 1ˆ ( , , , )t t t t px h x x x+ − − += L                 (16) 

Then, Our goal becomes to find the suitable function h . 
The RLSR theory we described in Section 2  has provided 

the answer. 
Suppose 1 1{ , ,..., }t t t t pV x x x− − +=  then we have 

1 1 1

11

ˆ ( , , , )

( )

( , )

t t t t p

t

l
i t i pi

x h x x x

h V

c K V V

+ − − +

+ −=

=

=

= ∑

L

              (17) 

As it is shown in 2.B and 2.C, the problem is treated by 
solving a positive linear equation with the conjugate gradient 
algorithm [14]. 

E. RLS-TS  for Nonstationary Time Series Forecasting 
For time series forecasting, one key problem is that time 

series are nonstationary. Given a stationary time series { }tx , 
we can model it by using  

1 1 1ˆ ( , , , )t t t t px f x x x+ − − += L  

p is the embedding dimension. However, for the non-stationary 
time series there is no unique f for the whole sequence[21]. 

The nonstationarity will lead to gradual changes in the actual 
relationship between independent and dependent variables. 
And, the nonstationarity can occur in many different ways.  

Parzen [22] introduce the idea of modeling the nonstationary 
time series by estimating the models on the series in levels, i.e. 
by avoiding the differencing as in Box and Jenkis [23]. Since 
then, the issue of nonstationarity has been widely discussed in 
the literature [24-26]. And many papers have been tracked this 
issue by using NN and SVM [27-28, 31]. 

Many successful approaches are developed with considering 
the structural changes of the data. There are mainly  two 
categories: regime-switching approaches and time-varying 
parameter approaches.  

The regime-switching approaches consider the structural 
changes by using a given model for a limited time and then 
constructing a new model using the recent data points 
whenever the underlying data distribution is detected to be 
changed. 

The time-varying parameter approaches make use of all 
available data points and handle the nonstationarity by using 
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dynamic parameters.  The advantage of the time-varying 
parameter approaches is that the long-term relationship 
inherent in the old data points can be retained [29]. The 
disadvantage  is the parameters have to be chosen over time, the 
algorithm will be much slower. 

In this paper, as far as RLS-TS concerned, we try to balance 
the time and the performance to the model. At the first step, the 
optimal p , kernel parameter, and regularization parameter are 
chosen. For the every next step, only c  is updated without 
changing the other parameters (table 3). And the function (17) 
will be adjusted to the form (18). 

1 1 1

11

ˆ ( , , , )

( )

( , )

t t t t t p

t t

l
it t i pi

x h x x x

h V

c K V V

+ − − +

+ −=

=

=

= ∑

L

                           (18) 

F. Performance Criteria 
There are many statistical metrics to evaluate the prediction 
performance, namely, the normalized mean square error 
(NMSE), root mean square error (RMSE), mean absolute error 
(MAE), directional symmetry (DS), weighted directional 
symmetry (WDS)[30]. In order to compare with Sfetsos and 
Siriopoulos’ models[6], we use RMSE and MAPE to evaluate 
the model’s accuracy. In Table.1, y and ŷ  represent the 
actual and predicted output values respectively, and n  is the 
total number of data patterns. 
 

III. EXPERIMENTAL RESULT 
In this section, we describe our experimental results for 

RLS-TS as well as Sfetsos and Siriopoulos’ models including 
Random Walk (RW), Linear Regression (LR), Atuoregression 
Integrated Moving Average (ARIMA), and Artificial Neural 
Network (ANN), and provide the comparisons to these models. 

A. Data Set 
We download data of daily closing values between US dollar 

and GB pound from Federal Reserve Statistical Release: 
http://www.federreserve.gov/releases/h10/Hist/. In order to 
make our result comparable, we used the same data as that in 
[6]. The data covers from January 2nd, 1990 to January  15th, 
2001(see Fig. 2).  Weekly and biweekly data are calculated 
from daily data.  

The data from each series was split into three subsets namely 
the training set, the validation set, and the test set. These were 
formed using approximately the 70%, 19%, and 11%, 
respectively, of the entire set, irrespective of the number of data 
in each series (Table.2). 

We split the data set into three subsets. Training set is for 
training the model, Validation set is for choosing the optimal 
parameters, and Test set is preserved as unknown data to test 
the forecasting accuracy of the RLS-TS model.  In order to 
make our results comparable we use the same setting as that in 
[6], approximately 70%, 19%, and 11% respectively. 
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Fig. 2:  Daily currency exchange rate between GBP/USD. 
 
Table 2:  GBP/USD data for RLS-TS model 

Data Training set  Validation set Test set 

Daily 1960 560 288 

Weekly 392 102 54 

Biweekly 188 56 24 

 
Table 3:  Process for parameter selection 
(a) Give the initial values of p , kernel parameter, and 

regularization parameter respectively. 
(b) With (14) and the training set, get the c . 
(c) With c  and the initial kernel parameter, apply (8) to the 

validation set, so to get the predicted value of validation 
set. 

(d) With the predicted value of validation set, calculate the 
MAPE of the validation set. 

(e) Use the grid search to repeat from (a) to (d), and get a 
series of MAPE corresponding to different p , kernel 
parameters, and regularization parameters. 

(f) The parameters that produce the minimum MAPE will be 
the optimal parameters. 

(g) For every next step, update the c without changing p, 
kernel parameter, and the regularization parameter. 

 

B. RLS-TS 
We have biweekly, weekly, and daily dataset. Also in order 

to compare our result to others, we use the RMSE and MAPE to 
evaluate our model. We use biweekly dataset and the criteria of 
MAPE to illustrate the process of model building for 
convenience.  

After transferring the original dataset into the matrix form 
(15), we create the sample dataset (X, Y), and the dimension of 
X is set to p. 

We developed our code in MATLAB based on the program 
ManifoldLearn, available at: http://manifold.cs.uchiicago.edu. 
With conjugate algorithm [14], we built the RLS-TS model to  
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Fig.3:  dot kernel                                      Fig.4: poly polynomial kernel (d=1) 
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Fig.5:  polynomial kernel (d=2)                Fig.6:  polynomial kernel (d=3)    
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Fig.7:  polynomial kernel (d=4)                         Fig.8:  Gaussian kernel 

 
predict the currency exchange rate between US dollar and GB 
pound. 

C. Parameter Selection 
In RLS-TS models, the kernel functions are restricted into 

three categories: the dot kernel, the polynomial kernel and the 
Gaussian kernel. We use a grid search method to find the 
optimal parameters. The optimal values of kernel parameter 
and regularization parameter are chosen based on smaller 
MAPE on the validation set. For a given kernel function Table 
3 gives the details on how to choose the optimal parameters. 
We restrict p  in the interval [2, 20], the regularized and 

gaussion kernel parameters both in the  interval [1×10-5, 1×
105]. For the kernel parameter, dot kernel does not have 
parameter. We restrict kernel parameter d  in the interval of [1, 
6] for polynomial kernel. Figures 3-8 show the relations 
between the parameters and the MAPEs. The optimal 
parameters are the one that gives the minimum MAPE.  

With the procedure, we model the daily, weekly, and 
biweekly data using both RMSE and MAPE as evaluation 
criteria. 

D. Results Comparison 
The results of predicting USD/GBP currency exchange rate 

using RLS-TS model are given in Tables 4-6. From them we 
can see that using our RLS-TS to forecasting the USD/GBP 
exchange rate is better than all the models used by Sfetsos and 
Siropoulos[6] based on the criteria of RMSE and MAPE. 
When using the polynomial kernel in the RLS-TS model for 
forecasting, we found that there are more than one extreme  

Table.4 Daily USD/GBP currency exchange rate 

Model Builder Model RMSE(*100
) MAPE 

Proposed RLS-TS-pol
y 0.7632 0.3772 

Sfetsos 
and 

Siropoulos[6] 

RW 0.7839 0.4090 
LR 0.7876 0.4122 

ARIMA 0.7833 0.4087 
ANN 0.7843 0.4080 

 
Table.5 weekly USD/GBP currency exchange rate 
Model Buidler Model RMSE(*100) MAPE

Proposed RLS-TS-linear 1.3862 0.5827
RLS-TS-poly 1.3755 0.7451

Sfetsos 
and 

Siropoulos[6] 

RW 1.5495 0.7732
LR 1.5353 0.8148

ARIMA 1.4917 0.7739
ANN 1.5019 0.7899

   
Table.6 weekly USD/GBP currency exchange rate 

Model Buidler Model RMSE(*100
) MAPE

Proposed 
RLS-TS-linear 2.1804 0.6713
RLS-TS-poly 2.2055 1.1964
RLS-TS-rbf 2.2023 1.2707

Sfetsos 
and 

Siropoulos[6] 

RW 2.3095 1.1914
LR 2.4172 1.3357

ARIMA 2.2885 1.2264
ANN 2.3765 1.2447

 
value. Proper interval should be chosen to search for the 
optimal parameter in case getting the local minimum value. Tay 
and Cao [31] suggest that two small values of regularized 
parameter caused under-fitting the training data while too large 
a value of the parameter cause over-fitting the training data 
using the SVM for time series forecasting. Further research 
should be done on parameter choosing of the RLS-TS 
forecasting model. 

Our RLS-TS model takes the full advantage of Statistical 
Learning (SL) theory using Reproducing Kernel Hilbert Space 
(RKHS) and adopts the RLSR theory directly in the time series 
forecasting. The performance of prediction is better than all the 
models in the referenced literature[6]. 
 

IV. CONCLUSION AND DISCUSSION 
The RLS-TS model provides better performance than 

Random Walk (RW), Linear Regression (LR), Atuoregression 
Integrated Moving Average (ARIMA), or Artificial Neural 
Network (ANN) built by Sfetsos and Siriopoulos [6] when 
forecasting currency exchange rate between US dollar and GB 
pound. 

Kernel-based regularized least-square regression (RLSR) 
is a new technique originally from the statistical learning (SL) 
theory. RLSR can deal with non-linear problems through 
mapping the samples into a higher dimension space using a 
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kernel function [7]. We have developed a RLS-TS model, and 
use this model to predict the currency exchange rate between 
US dollar and GB pound. We also provide the details of using 
grid search method to choose the optimal kernel parameter and 
regularization parameter based on the MAPE or RMSE of the 
validation set. 

Although this paper shows the effectiveness of the 
RLS-TS in forecasting exchange rate, there are only three 
kernel functions have been investigated. One of future work is 
to explore more useful kernel functions for further improving 
the performance of the RLS-TS models. 

The Regularization Least-Squares method is originated from 
statistical learning theory and used for classification and 
function estimation issues. The hypothesis is that the training 
set is drawn from the random independent  identically 
distributed observations. But for the times series forecasting, 
the observations are definitely dependent. So, the future work 
should give the new answer, in dependent conditions, of the 
four questions proposed by Vapnik [7] in statistical theory. 

a) What are the conditions for consistency of the ERM 
(empirical risk minimization) principle? 

b) How fast does the sequence of smallest empirical risk 
values converge to the smallest actual risk? 

c) How can one control the rate of convergence (the rate of 
generalization) of the learning machine? 

d) How can one construct algorithms that can control the 
rate of generalization? 
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