
 
 

 

 

 

  
Abstract—A time conservative two–dimensional flow solver has 

been developed and validated for solving the filtered 

Navier-Stokes equations. The method is based on a multi-block 

structured quadrilateral mesh. The conservation element and 

solution element (CE/SE) method, which is a second-order scheme 

in space and time, is employed. A simple two-level multi-grid 

method is implemented for convergence acceleration. Several cases 

with a wide range of flow conditions have been computed to verify 

the accuracy of method and demonstrate its effectiveness. An 

unsteady Euler solution is obtained for a forward facing step to 

demonstrate the robustness of the numerical scheme. The 

Navier-Stokes solver is validated with a laminar flow over a flat 

plate test case. A large eddy simulation (LES) is performed for a 

spatially evolving mixing layer and compared with the results of a 

high-order scheme. The subgrid scales of turbulence are modeled 

with the Smagorinsky subgrid scale (SGS) model. The results 

using the present 2nd order scheme are in good agreement with 

other published results, showing high accuracy and high 

resolution, comparable those of high-order numerical schemes. 

 
Index Terms—CE/SE method, computational aero-acoustics, 

large eddy simulation, multi-grid. 

 

I. INTRODUCTION 

One of the challenges in computational fluid dynamics (CFD) 
development is in the computational aero-acoustics (CAA) field.  
The modeling requirement of aeroacoustics problems is 
substantially different from traditional fluid dynamics 
problems.  The acoustical signals are typically much smaller 
than those of mean flow disturbances and hence require much 
higher resolution, and lower dissipations from computational 
methods. There are two approaches used to obtain accurate 
results for CAA problems. The first one employs standard CFD 
methods with much finer meshes and the second one employs 
high-order numerical schemes.  

Standard second-order CFD schemes are generally too 
dissipative to adequately compute and simulate aeroacoustics 
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problems [1]. The numerical schemes should resolve acoustic 
waves with low dispersion and low dissipation. 

High-order numerical schemes have been widely used for 
CAA applications. However, they attend to have difficulties in 
simulating regions with the steep flow gradients (e.g. around 
shock waves). The major drawbacks of the high-order schemes 
are the lack of a shock-capturing property and difficulty to deal 
with the complex geometry. Spurious oscillations are frequently 
observed in the steep regions of the shock [2]. These oscillations 
can be dampened by employing low-order smoothing in the 
vicinity of steep pressure gradients. However, the smoothing 
will prevent the numerical schemes suitability for general 
applications and result in loss of accuracy [3]. The other 
difficult aspect of the high-order scheme is in application of the 
boundary conditions. The order of the schemes tends to be 
reduced on the boundaries which results in more complicated 
boundary condition treatments and again reduction of accuracy.  

Therefore, there is a need for further development to address 
these issues associated with the standard second-order CFD 
schemes and the high-order schemes. The approach taken here 
is to further develop higher resolution, low dissipation 
second-order scheme, aimed at solving complex unsteady 
aerodynamic and aero-acoustics problems with higher accuracy.   
The time conservative finite volume scheme, which is a good 
compromise between them, has been employed. This method is 
known as conservation element and solution element (CE/SE) 
method and originally proposed by Chang [4] at NASA Glenn 
Research Center. In this method, spatial and temporal 
discretizations are unified, flow variables and their spatial 
derivatives are treated as unknowns and non-reflecting 
boundary conditions are imposed with a little programming 
effort. The CE/SE scheme was modified for a two-dimensional 
case using regular structured quadrilateral meshes by Zhang and 
Yu [5]. A generalized quadrilateral mesh extension can be 
found in Zhang et al. [6]. This extension is employed in this 
study with some modifications.  

In the time conservative finite volume method, 
time-marching can be done explicitly. The time step is limited 
by the smallest mesh size due to the stability restriction. In the 
present work, a simple multi-grid method is developed and 
implemented in the time conservative scheme to accelerate the 
convergence. 
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II. GOVERNING EQUATIONS 

Flow variables simulated by LES are decomposed as follows 
 

sgsΦ′+Φ=Φ  (1) 

 
where Φ  is large scale or resolved scale and 

sgsΦ ′  is small 

scale or subgrid scale. For compressible flows Favre-filtering is 
a common approach. Any other filtering approach will 
introduce more complicated subgrid scale terms in the 
governing equations.  A Favre-filtered variable is defined as: 
 

ρ
ρΦ

=Φ
~  (2) 

 
The continuity, momentum and energy equations of 

Favre-filtered, unsteady and compressible Navier-Stokes 
equations are expressed as:  
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where ijσ , ijτ , iq and iQ  are resolved viscous stress tensor, 

subgrid stress tensor, resolved heat flux and subgrid heat flux, 
respectively.  

The resolved scales can be solved directly by Favre-filtered 
Navier-Stokes equations whereas the subgrid scales have to be 
modeled. In this study due to its simplicity the classical 
Smagorinsky subgrid scale (SGS) model is employed. The 
resolved viscous stress tensor is defined as: 
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where  

ijδ  is the Kronecker delta and 
ijS

~  is the Favre-filtered 

strain rate tensor given by: 
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The resolved heat flux is defined as: 
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where CP, µ~  and Pr are specific heat at constant pressure,    

molecular viscosity and Prandtl number, respectively. The 
subgrid stress tensor is modeled as: 
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The subgrid heat flux is modeled using a temperature gradient 
approach 
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where 
ijijM SSS

~~
2

~
=  and CR = 0.0324 and CI = 0.00575 are 

the Smagorinsky model constants and ∆ is the filter width 
defined as ∆ = ( ∆x, ∆y)1/2. 
 The Sutherland law is also used for molecular viscosity, µ~  

and the governing equations are closed by the perfect gas 
relation. 
 Navier-Stokes computation without turbulent flow has been 
carried out by replacing all filtered variables with their 
unfiltered forms and setting the subgrid stress tensor and the 
subgrid heat flux terms to be zero. Furthermore, for Euler 
computation the viscous stress tensor has been set to zero. 
 

III. NUMERICAL METHOD 

The spatial and temporal discretizations are unified in the 
time conservative finite volume method. Temporal and spatial 
discretizations are performed using the same method. 
Discretization of the CE/SE method can be found in details in 
the literature [4]. In the present study, the numerical scheme 
given by Zhang et al. [6] was employed with some 
modifications. Instead of using overlapping nonstaggered mesh, 
non-overlapping staggered mesh was employed. The scheme 
alternates between the vertices full circle dots and the centers 
square dots in Fig. 1. Simple and more precise boundary 
conditions can be imposed. Furthermore, local flux 
conservation around the boundary and global flux conservation 
is guaranteed by this modification.  

The flow variables are assumed smooth inside the control 
volume. Fluxes and the flow variables are approximated by the 
Taylor series expansion (i.e. second-order linear distribution). 
For each grid mesh point, the flow variables and  

 
 
Fig. 1 Staggered mesh  
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derivative of the flow variables are stored and updated. At time 
t
n, flow variables at the full circle dots and square dots are 
assumed to be known in Fig. 1. Local flux conservation is used 
to update the flow variables at square dots at tn+1/2 and then to 
update the flow variables at full circle dots at tn+1. Boundary 
conditions are only imposed at full circle dots. The other 
modification is related to derivative of the flow variables. 
Instead of performing a spatial translation of the quadrilateral 
given by Zhang et al. [6], a central difference method was used 
between mesh points to calculate the derivative of the flow 
variables. Better numerical dissipation control is achieved by 
this modification, which is very important for problems with a 
highly non-uniform mesh. 
 

IV. TWO-LEVEL MULTIGRID METHOD 

A simple multigrid method at two-level proposed by He [7] is 
employed to accelerate the present explicit time marching 
scheme. For one level, temporal change of the flow variables is 
defined as: 
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where the subscript f denotes fine mesh, ∆tf is the allowable time 
step and Rf is the net flux for the finite volume on the fine mesh. 
 For the two-level time integration method the solution is 
marched first on the fine mesh and then on the coarse mesh. The 
overall time step is much larger than the one level temporal 
change and the accuracy of the solution is controlled by the fine 
mesh. Therefore, the temporal change of the flow variables on 
the fine mesh is 
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where the subscript c denotes coarse mesh, ∆tc is the allowable 
time step and Rc is the net flux for the finite volume on the 
coarse mesh. Implementation of this simple multigrid method is 
much easier than the conventional one. More details of the 
two-level multigrid method can be found in the literature [7]. 
 

V. RESULTS AND DISCUSSION 

A. Flow over a Forward Facing Step 

A supersonic flow over a forward facing step problem is 
solved to demonstrate the robustness of the present numerical 
scheme. This benchmark problem is the same as the one studied 
by Woodward and Colella [8]. It was also used by 
Giannakouros and Karniadakis [9]. The present computations 
are carried out by using a multi-block Euler solver. The 
computational domain is 3.0 m × 1.0 m. Uniform structured 
mesh is used with ∆x = 0.0125 m and ∆y = 0.01 m grid spacing  
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(a) t = 2.8 × 10-2 s 
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(b) t = 4.0 × 10-2 s 

Fig. 2 Density contours with 30 levels  
 
in the x and y directions, respectively. The free stream Mach 
number is 3.0, the stagnation pressure is 105 Pa and the 
stagnation temperature is 300 K. These flow conditions are 
imposed on the left-hand boundary as the supersonic inlet 
boundary condition.  The upper and the lower boundaries are an 
inviscid wall, where a slip boundary condition is imposed. 
Lastly, the supersonic outflow boundary condition is applied on 
the right-hand boundary. 

Calculated density profiles with 30 contours at t = 2.8 × 10-2 s 
and t = 4.0 × 10-2 s are shown in Fig. 2(a) and Fig. 2(b), 
respectively. The Mach stem in the lower wall, expansion fan at 
the corner of the step and the interaction between the reflected 
shocks with rarefaction waves are accurately calculated with 
high resolution. According to Woodward and Colella [8], 
without applying special numerical treatment at the corner of 
the step, calculations would be affected by large numerical 
errors. However, the present calculations are carried out without 
employing any special treatment at the corner of the step and no 
numerical oscillations are detected around a shock wave. 

B. Laminar Flow over a Flat Plate 

Laminar flow over a flat plate is often used as a standard 
validation case for a Navier-Stokes solver. Single grid and 
two-grid time integration multigrid methods are employed for 
this case. The flow conditions are a free stream Mach number of 
0.3, Reynolds number of 2000 based on the length of the flat 
plate, stagnation pressure of 105 Pa and stagnation temperature 
of 300 K. The nonuniform structured mesh density is 101 × 61 
in the x and y directions, respectively. The minimum grid 
spacing in the y-direction is about 0.00156 times the plate length 
and the exponential grid stretching is applied in the transverse 
direction. The maximum grid spacing around the top boundary 
is 50 times the minimum grid spacing, whereas the grid spacing 
in the x-direction is kept uniform. Subsonic inlet and outflow 
boundary conditions are applied on the left-hand and right-hand 
boundaries, respectively. The lower boundary is a viscous wall, 
where a no-slip boundary condition is imposed and the upper 
boundary is represented by a non-reflecting boundary condition.  
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Calculated streamwise velocity profiles for two-grid time 
integration results are compared with the Blasius solution in 
Fig. 3. It is observed in the figure that the streamwise velocity 
profiles are in good agreement with the Blasius solution. 

  

where  
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Development of the laminar boundary layer on the flat plate 

can be seen in Fig. 4 and the variation of calculated local skin 
friction coefficient, Cfx on the flat plate is compared with the 
Blasius solution in Fig. 5 for the single and two-level multigrid 
methods. Similarly, these results are in good agreement with the 
Blasius solution. The local skin friction coefficient is defined as: 
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The comparison of residual history for laminar flow over a flat 

plate is presented in Fig. 6. The comparison shows the 
improvement by employing a multigrid application with respect 
to a single grid calculation. The steady state is reached when the 
residual dropped approximately 4.5-5 orders of magnitude and 
due to the use of the larger time step the steady state can be 
quickly reached in multigrid solutions without losing any 
significant accuracy.  
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Fig. 3 Axial velocity distribution at 40%, 50%, 60% and 70% of 
the flat plate for the two-grid time integration method 
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Fig. 4 Laminar boundary layer development and velocity 
vectors on the flat plate 
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Fig. 5 Skin friction coefficient along the flat plate 
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Fig. 6 Comparison of residual history of momentum in x 
direction for laminar flow over a flat plate 
 

C. 2-D Mixing Layer 

A two-dimensional spatially evolving mixing layer problem 
is solved. This test case was also studied by Uzun [10] and 
Bogey [11]. In-flow hyperbolic tangent velocity profile is 
expressed as: 
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where U1 = 50 m/s and U2 = 100 m/s are the lower and upper 
velocities, respectively. δω(0) = 1.6 × 10-3 m is the initial 
vorticity thickness. The transverse velocity with random 
perturbation is given by: 
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where α = 0.0045, ∆y0 is the minimum grid spacing in the y 
direction and ∈  is a random number between -1 and 1.  The 
non-reflecting boundary conditions are imposed at the upper 
and the lower boundaries. The convective Mach number which 
measures the intrinsic compressibility of a mixing layer [12] is 
defined as: 
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where 

∞c  is the free stream speed of sound. The Reynolds 

number based on the initial vorticity thickness and velocity 
difference is given by: 
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The mesh density is 625 × 301 in the x and y directions, 

respectively. The computational domain lies between 
m 4.00 ≤≤ x and m 16.0m 16.0 ≤≤− y . The mesh is 

uniform in the streamwise direction whereas in the transverse 
direction exponential grid stretching is applied. The minimum 
grid spacing is about 0.16δω(0) at y = 0 and the maximum grid 
spacing around the lower and upper boundaries is 3.0δω(0). 
 In Fig. 7, instantaneous vorticity contours are shown and 
vortex pairing at different locations can be observed. The 
vorticity thickness evaluation is shown in Fig. 8. After the initial 
transients, the vorticity thickness grows linearly. The spreading 
rate parameter is given by [13]:  
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The range of reported experimental results for the parameter 

S is from S ≈ 0.06 to S ≈ 0.11 [13]. The parameter S predicted by 
Smagorinsky model is within the range of experimental values. 
The normalized Reynolds stresses are defined as: 
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where 〈〉 denotes time-averaging. In Figs. 9, 10 and 11 the 

turbulence intensities are compared with Uzun’s normalized 
Reynolds stress results [10] at different locations. For 
comparison the transversal direction is non-dimensionalized by 
the vorticity thickness δω(x). The turbulence intensities are in 
good agreement with the 6th order tri-diagonal compact scheme 
of Uzun [10] whereas the present scheme is just 2nd order in 
space and time.  

 
 
Fig. 7 Instantaneous vorticity contours 
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Fig. 8 Vorticity thickness growth in the mixing layer 
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Fig. 9 Normalized Reynolds normal stress σxx profiles 
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Fig. 10 Normalized Reynolds shear stress σxy profiles 
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Fig. 11 Normalized Reynolds normal stress σyy profiles 
 

VI. CONCLUSION 

This paper describes the first-known validation of a multigrid 
acceleration method for a Navier-Stokes solver employing the 
time conservative finite volume method.  

Flow over a forward facing step test case is solved to 
demonstrate the robustness of the time conservative scheme. 
High accuracy and high resolution results have been achieved 
with low dissipation and low dispersion. No oscillations are 
observable in the steep region around a shock wave.  
Furthermore, simple but effective non-reflecting boundary 
conditions can be used with the present scheme.  

A laminar flow over a flat plate test case is solved to validate 
the Navier-Stokes solver. Calculated results are in good 
agreement with the Blasius solution. A simple two-level 
multi-grid method is coupled with the scheme to effectively 
accelerate the convergence of the steady flow solution.  

LES is performed for a spatially evolving mixing layer and 
compared with the results from a sixth-order tri-diagonal 
compact scheme. The subgrid scale turbulence fluctuations are 
modeled with the SGS model. The results are in good agreement 
with those from a high-order numerical scheme.  

The second-order time conservative finite volume method is 
less dissipative than the other second-order numerical schemes 
and gives comparable results with high-order numerical 
schemes. High accuracy and high resolution coupled with 
non-oscillatory property of the present 2nd order scheme make it 
a good candidate for computational aero-acoustics applications. 
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