
 
 

 

  
Abstract—A new approach to robot path planning using 

hyperboloid potential functions is presented in this paper. Unlike 
parabolic potential functions, where the control force increases 
with distance from the goal and is unbound, and conic potential 
functions where a singularity occurs at the goal, hyperboloid 
potential functions avoid both these drawbacks. However, they do 
combine the advantages of both parabolic and conic potentials as 
the asymptotic property of the hyperbolic function ensures 
bounded control forces, while stability and smooth contact are 
guaranteed at the goal point.  
 

Index Terms— Obstacle avoidance, potential functions, robot 
motion planning.  

I. INTRODUCTION 
  Potential field methods provide an elegant, simple and 

computationally efficient approach for single and multiple 
robot motion planning. The method was introduced first as a 
motion planning algorithm for manipulator arms [1], and then 
generalized for robot motion planning in dynamic 
environments [2]. Space applications of the potential field 
method have been developed for various tasks such as 
formation-flying [3], proximity manoeuvring [4], and on-orbit 
assembly [5], [6]. 

The potential field method constructs an attractive potential 
field that is responsible for directing a manoeuvring object 
toward its goal configuration. Collisions with other objects or 
obstacles in the workspace are avoided through constructing 
high potential fields surrounding them. Various functional 
forms of repulsive potential fields have been investigated, 
including: FIRAS [1], superquadric functions [7], navigation 
functions [8], Gaussian distributions and power laws [9], and 
the Laplace equation [10]. 

This paper introduces a new representation for the attractive 
potential field using hyperbolic functions. They provide key 
advantages over paraboloid or conic functions. In addition, 
superquadric obstacle potentials will be used where the 
orientation of the superquadric is defined using quaternions. As 
will be seen, rotational and translation motion then becomes 
strongly coupled, allow efficient manoeuvring [11].  
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II. TRANSLATIONAL ATTRACTIVE POTENTIAL 
A manoeuvring object is stimulated to move toward its goal 

configuration through an attractive potential field. Any 
function could be utilized providing it satisfies Lyapunov's 
stability conditions and its global minimum is placed at the goal 
configuration. Previously, two main types of attractive 
potential have been used: parabolic and conical [12]. The new 
hyperbolic function provides bounded control action while also 
providing smooth motion in the neighbourhood of the goal 
configuration.  

A. Parabolic Attractive Potential 
The parabolic function is commonly used in motion planning 

problems, as shown in Fig. 1. A manoeuvring object is defined 
with the position, r, and velocity, r& , and is required to move to 
a goal point at position, rG, with goal velocity, Gr& . Defining the 
potential function as [13]: 
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where λp and λv are constant gain factors, the time derivative of 
the parabolic potential function is expressed as: 
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To ensure stability using Lyapunov's second theorem the time 
derivative should be non-positive everywhere in the workspace 
since the potential function is positive definite. A suitable 
control law is then expressed as: 
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for some control gain λ. As the distance between the 
manoeuvring object and its goal increases, the required 
control force to ensure stability increases and is unbound. 
Hence, for real systems actuator saturation may occur and the 
stability of the problem is not guaranteed. To circumvent this 
problem a conical potential function can be used. 
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Fig. 1 Parabolic-well attractive potential 

B. Conical Attractive Potential 
The conical attractive potential does not have the difficulties 

discussed above, as shown in Fig. 2. It can be expressed as [13]: 
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The time derivative of the potential is then expressed as: 
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Therefore, a suitable control law is then given by: 
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The control force remains bound regardless of the location of 
the manoeuvring object. However, the goal point is singular. 

 
Fig. 2 Conic-well attractive potential 

C. Hyperbolic Attractive Potential 
Continuous control of a mobile robot is carried out either by 

merging the parabolic and conical potentials each over a certain 
range, or now by using a hyperbolic function, as shown in Fig. 
3. Near its global minimum, the hyperbolic function has a 
smooth shape like the parabola, while away from the minimum 
it becomes asymptotic with constant gradient like the conical 
field. The hyperbolic potential is described as: 
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The time derivative is then expressed as: 
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Finally, a suitable bounded, smooth and singularity-free control 
law is expressed as: 
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The control law defined in Eq. (9) is significantly better than 
those defined in Eqs. (3) and (6)  as the control force remains 
bounded whatever the distance to goal is, and the singularity at 
the goal is removed. Hence, global convergence is achieved. 

The single hyperbolic function is also more computationally 
efficient to implement compared to the use of a combined 
conical and parabolic potential with a switching function in the 
neighbourhood of the goal. Again, the single function contains 
the key features of both the parabolic and conical fields. 

 
 

 
Fig. 3 Hyperbolic-well attractive potential 
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III. GLOBAL POTENTIAL FUNCTION 
Translational motion of the manoeuvring object to the goal is 

not the sole objective of the potential function. Orientation is 
also of importance for extended rigid bodies manoeuvring to 
some goal orientation. In addition, collision avoidance with 
other manoeuvring objects and obstacles is a key requirement 
of the global potential function which is expressed as: 
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where λq and λω are constant gains, ⎡ ⎤Tqqq 321=q is the 
quaternion vector representing orientation, omitting the forth 
term q4, ω is the angular velocity vector, and Vobs is the obstacle 
potential field. 

The time derivative of the global hyperbolic potential is then 
expressed as: 
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with ⎡ ⎤Tzyx ∂∂∂∂∂∂=∇ and ⎡ ⎤Tq qqq 321 ∂∂∂∂∂∂=∇ . 
Equation (11) can be simplified using the following relations: 
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Finally, the time derivative can be expressed as 
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Hence, the control laws are expressed as: 

 ( ) obs
v

G

Gv

p
G V

λ
∇−−−

−+
−=

λ
λ

λ

1

1 2
rr

rr
rr &&&&&&  (15-a) 

and 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇++−= obs

qq Vq Qωqω
ω

ω
ω λ

λ
λ
λ

2
1

4&  (15-b) 

The control laws defined by Eq. (15) are of a general form 
for any repulsive potential. Superquadric obstacle potentials are 
chosen for the remainder of the paper [11]. These functions 
provide a means of capturing the geometric shape of extended 
rigid bodies and allow coupled translational and rotational 
motion planning. 

 

IV. NUMERICAL RESULTS 
The hyperbolic potential field is used with continuous 

control to assemble seven beam elements to form a truss 
structure. Objects are initially placed parallel to the z-axis, Fig. 
4. The assembly of the objects is demonstrated in Fig. 5, where 
Fig. 6 shows the evolution of the object dynamics. Noting the 
log-scale, it can be seen that a smooth acceleration- coast- 
braking profile is generated by the control law. 

 
Fig. 4 Initial object configuration 

 
Fig. 5-a) Object configuration (t = 37 sec) 
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Fig. 5-b) Object configuration (t = 120 sec) 

 

 
Fig. 5-c) Object configuration (t = 180 sec) 

 

 
Fig. 5-d) Final object configuration (t = 300 sec) 
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Fig. 6-a) Object velocities in x-direction 
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Fig. 6-b) Object velocities in z-direction 
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Fig. 6-c) Object angular velocities about y-axis 
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V. CONCLUSION 
Adding a velocity term to a hyperbolic potential function 

provides successful continuous control with bounded control 
action. The resulting controlled velocities are nearly constant 
over the entire workspace, except in the neighbourhood of 
obstacles. Global stability and convergence of the system is 
proven and tested for a dense workspace. Proximity motion of 
the manoeuvring objects shows the coupling between 
translational and rotational motion in the presence of obstacles. 
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