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Reliability of Fatigue Damaged Structure Using
FORM, SORM and Fatigue Model

Ouk Sub Lee and Dong Hyeok Kim

Abstract—The methodologies to calculate failure probability
and to estimate the reliability of fatigue loaded structures are
developed. The applicability of the methodologies is evaluated
with the help of the fatigue crack growth models suggested by
Paris and Walker. The probability theories such as the FORM
(first order reliability method), the SORM (second order
reliability method) and the MCS (Monte Carlo simulation) are
utilized. It is found that the failure probability decreases with the
increase of the design fatigue life and applied minimum stress, and
the decrease of initial edge crack size, applied maximum stress
and slope of Paris equation. Furthermore, according to the
sensitivity analysis of random variables, it is found that the slope
of Pairs equation affects the failure probability dominantly
among other random variables in the Paris and the Walker
models.

Index Terms—Fatigue, Reliability, Failure
Sensitivity, FORM, SORM, Monte Carlo simulation

Probability,

I. INTRODUCTION

In the fatigue design, the use of S-N curves is well established,
since the repeated loads may lead to failure of material even
when the load level is lower than the ultimate limit states. The
structures must be repaired, if the crack is discovered. These
curves predict fatigue failure under constant amplitude cyclic
loading, but cannot incorporate information related to crack
detection and/or measurement [1,2].

However, the use of fracture mechanics techniques can be
successfully applied to this problem. The fracture mechanics
needs the information about the defects, or cracks to be used in
the analysis. Since the size and location of defects are quite
random, the deterministic analysis may provide incomplete
results about the structure safety. Also the randomness of loads,
geometry and material properties influence significantly the
reliability of a structure. Therefore, the fracture mechanics with
a probabilistic method provide a useful tool to solve these
problems [3-7].

In this paper, fatigue models suggested by Paris and Walker
are used to formulate the LSF (limit state function) for
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assessing the failure of fatigue loaded structures. And the
failure probability is estimated by using the FORM (first order
reliability method) and the SORM (second order reliability
method). The reliability is assessed by using this failure
probability, and the application of these methods to the
reliability estimation is given for a case study. Furthermore, the
sensitivity of each random variable, which is quantifying the
effect on the failure probability, is estimated. And the results
obtained by using the FORM and the SORM are compared with
those estimated by using the MCS (Monte Carlo simulation)
and systematically investigated to assess the accuracy of the
reliability.

Il. FATIGUE MODELS

The fatigue crack growth rate, da/dN , versus the applied
stress intensity factor range, AK , can be obtained from fatigue
crack propagation experiments. The corresponding applied
stress intensity factor range, AK , is calculated when the crack
length, a, and the applied stress range, AS , are measured in
the experiments as below [1,3,4].

AK, =AK =K o = Kpin =S V7aa — S i Ve
= (Syax — Smin Wmaa = ASymaa
Where « is the geometry factor. Since the stress intensity
factor is undefined in the compression, K, is taken as zero if

(1)

Smin 1S compressive. The correlation for constant amplitude

loading is usually a log-log plot of the fatigue crack growth rate,
da/dN, in m/cycle, versus the opening mode stress intensity

factor range, AK, (or AK ), in MPaym .

The typical log-log plot of fatigue crack growth rate versus
stress intensity factor range as shown schematically in Fig. 1
has a sigmoid shape that can be divided into three major regions.
Region 1 is the near threshold region and indicates a threshold
value, AKy,, and there is no observable crack growth below

this value. This threshold occurs at crack growth rates on the
order of 1x10™m/cycle or less. Region 11 shows essentially a

linear relationship between log da/dN and log AK , which
corresponds to the formula suggested by Paris [1,3,4].

da
— =C(AK)" 2
N (AK) )
Where n, C are material constants. n is the slope of the line
and C is the coefficient found by extending the straight line to
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AK =1MPay/m . Region Il fatigue crack growth corresponds
to stable macroscopic crack growth that is typically controlled
by the environment. Microstructure and mean stress have less
influence on fatigue crack growth behavior in region Il than in
region I. In region Ill, the fatigue crack growth rates are very
high as it approaches instability, and little fatigue crack growth
life is involved. This region is controlled primarily by fracture
toughness K. or K-, which depends on the microstructure,

mean stress, and environment.

Fast Fracture
Paris Region Region
Threshold . .
Region Stable Growth
Rapid Unstable
Growth
é Slow Growth
|
h
C
Region 1 Region 11 Region 111
Log(AK)

Fig. 1 Schematic behavior of fatigue crack growth rate
versus stress intensity factor range

Conventional S-N or & -N fatigue behavior is usually
referenced to the fully reversed stress or strain conditions
(R=-1). However, fatigue crack growth data are usually
referenced to the pulsating tension condition with R=0 or
approximately zero.

The general influence of mean stress on fatigue crack growth
behavior can be estimated by using the stress ratio,
R =Kpin / Kinax = Smin / Smax » Which is used as the principal
parameter and has the positive value, R>0. It should be
recognized that the effect of the R ratio on the fatigue crack
growth behavior is strongly material dependent.

A common empirical relationship used to describe mean stress
effects with R >0 is the Walker equation as below [1,3-5].

da C(AK)" n
—=— __=C"(AK 3
dN  (1-R)"A (4K) ®)

Where C and n are the coefficient and slope of Paris
equation for R =0, respectively, and A is a material constant.
Paris equation and Walker equation are basically similar, with
different coefficients of the equations, C and C", as below.

C
= (1_ R)n(l—l) (4)

Because the effect of R on fatigue crack growth is known as

material dependent, it is necessary to determine the material
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constant, 4. Value of A4 for various metals ranges from 0.3 to
nearly 1, with a typical value of around 0.5.
The fatigue failure life, N, can be obtained by integrating

the fatigue crack growth rate formula at the domain from initial
crack, &, to final crack, a; . And the final crack can calculate

using the fracture toughness as below.
2
a, E(K_] ©)
7\ Spax@

I1l. PROBABILITY THEORY

A. FORM (first order reliability method)

The failure probability is calculated by using the FORM,
which is one of the methods utilizing the reliability index. The
FORM method is based on the first-order Taylor series
approximation of a limit state function (LSF), which is defined
as below [6-10].

Z=RE-LO (6)
Where, RE is the resistance normal variable, and LO is the
load normal variable. Assuming that RE and LO are
statistically independent, normally distributed random
variables, the variable Z is also normally distributed. The
failure occurs when RE<LO , ie, Z<0 . The failure
probability is given as below.

0 1

2
_ _ L2z
PF = P[Z <0] LO Gzﬂexp{ 2[ - J }dz .
= J__ﬂiexp{— %}du =0(-p)

2
Where y, and o are the mean and standard deviation of the

variable Z , respectively, and @ isthe cumulative distribution
function for a standard normal variable, and £ is the safety

index or reliability index and the coefficient of variation
(C.0.V) denoted as below.

=fz_ AR cov=2X 8
ST s S ?

(8) can be used when the system has a linear LSF. Actually,
most real systems and cases do not have linear LSF but rather a
nonlinear LSF. So, for a system that has a nonlinear LSF, (8)
cannot be used to calculate the reliability index. Rackwitz and
Fiessler proposed a method to estimate the reliability index that
uses the procedure shown in Fig. 2 for a system having a
nonlinear LSF. In this paper, we iterate the loop, as shown in
Fig. 2, to determine a reliable reliability index until the
reliability index converges to a desired value (A£ <0.001) [9,
10].

The LSF must be defined to formulate the FORM and evaluate
the reliability. In this paper, the LSF can be defined by using
the fatigue models as below [6,7].

Z=Np-Nq )
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Where, Npis the design fatigue life and N is the fatigue

life estimated from the fatigue crack growth models such as
Paris and Walker models using (2) or (3).

The sensitivity index, which is used to evaluate the effect of
random variables on the failure probability, is denoted as below
[9, 10].

%)
glo_ \OX)
Z(@Z 2
oX
Where 0Z /0X
variable X .

(10)

is the partial derivative of a random
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Fig. 2 Computation process of the reliability index
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B. SORM (second order reliability method)

The computations required for reliability analysis of systems
with linear LSF are relatively simple. However, the LSF could
be nonlinear either due to a nonlinear relationship the random
variables in the LSF or due to some variables being
non-normal.

The FORM approach will give the same reliability index for
both linear and nonlinear limit state cases, if the minimum
distance point is same. But it is apparent that the failure
probability of the nonlinear limit state would be less than that of

the linear limit state, due to the difference in the failure domains.

The curvature of the limit state around the minimum distance
point determines the accuracy of the first order approximation
in the FORM. The SORM improves the FORM result by
including additional information about the curvature of the
limit state.

The SORM approach was first explored by Fiessler using
various quadratic approximations. A simple closed form
solution for probability computation using a second order
approximation and adopting the theory of asymptotic
approximation was given by Breitung [6,7,9].

n-1
PFsorm = P(-B)] @ Bri)?

i=1
Where «; denotes the principal curvatures of the LSF at the
minimum distance point and S is the reliability index

calculated by using the FORM. The principal curvatures are
computed by using steps shown in Fig. 3.

(10)
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C. MCS (Monte Carlo Simulation)

Unlike many engineering analytical results, the ones obtained
by probabilistic methods are difficult to verify experimentally.
However, the adequacy of the results out of the FORM and the
SORM may be required to be verified somehow. We use the
MCS technique to do this job performed by the steps shown in
Fig. 4 [6,7,9,10].

] 5
7 Rotation of variables
using rotation matrix R [ STEPI |
| R, matrix construct
using direction cosines

X'=RX —

——
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2 .
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a; = e e
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where

i, j=12n-1
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| as the eigenvalues of matrix A J=k+l T

Fig. 3 Process of computing the principal curvatures
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Fig. 4 Computation process of the failure probability
by the Monte Carlo simulation

IV. ACASESTUDY

In this paper, we formulate the LSF using the fatigue models,
and the failure probability is estimated by using the FORM and
the SORM for fatigue experiment data with a single edge crack
shown in Fig. 5. The specimen is a very wide SAE 1020
cold-rolled thin plate subjected to constant amplitude uniaxial
cyclic loads. The random variables and their values to apply at
fatigue models are listed in Table 1 [1-5].
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Fig. 5 The geometry of single edge crack specimen
Table 1. Random variables and its statistical values used in a case study.

Valuable Mean C.0.v
200 MPa (Paris) 0.002
Smax 300 MPa (Walker) 0.002
s -50 MPa (Paris) 0.002
min 100 MPa (Walker) 0.002
Sy 630 MPa
Su 670 MPa
E 207 GPa
K, 104 MPavm
q 0.001m 0.01
a 1.12
C 6.91012 0.02
n 3.0 0.02
\ 129,000 cycle (Paris) 0.003
b 65000 cycle (Walker) 0.003
A 0.5

V. RESULTS AND DISCUSSION

In this paper, the LSF is formulated by using the fatigue crack
growth models suggested by Paris and Walker. And the failure
probability is estimated by using the values of random variables
listed in Table 1 and probability theories such as the FORM, the
SORM and the MCS.

The relationship between failure probability and variation of
random variables is shown in Fig. 6 corresponding to the

fatigue models and the probability theories. It is found from Fig.

6 that the failure probability decreases with the increase of the
design fatigue life and applied minimum stress, and the
decrease of initial edge crack size, applied maximum stress and
slope of Paris equation. The specific statistical values are used
in a deterministic case study to compare the results out of the
Pairs model to the Walker model. It is found in Fig. 6 that the
failure probabilities based on the Paris and Walker models are
turned out to be very similar for variation of the initial edge
crack size and the slope of Paris equation. However, the Paris
and Walker models show the different failure probabilities with
variation of the design fatigue life, because they have different
fatigue lives corresponding to the maximum and minimum

ISBN:978-988-98671-2-6
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(f) change of slope of Paris equation

Fig. 7 Sensitivity of parameters according to the variation of random variables

about Paris and Walker models

Although the differences among results for the variation of
design fatigue life and the stress ratio are large, the differences
are not distinguished clearly in Fig. 6, because the absolute
values of the failure probability estimated by the FORM, the

SORM and the MCS are very small.

The some typical diagrams for the effects of each random

| ParisEq. | | |

And it is found from Fig. 7 that the effects of random variable
on the failure probability don’t vary before and after iteration
with the change of initial edge crack size, the applied maximum
and minimum stresses in the Paris and Walker models.
However, the design fatigue life affects dominantly on the
failure probability before iteration with the variation of the
slope of Paris equation, and the slope of Paris equation affects
dominantly on the failure probability after iteration in the Paris

variable on the failure probability are shown in Fig. 7 as the
sensitivity index. It is recognized that the slope of Pairs
equation, n, affects dominantly on the failure probability with
the variation of the initial edge crack size, the applied
maximum and minimum stresses in the Paris and Walker
models. However, it is found that the effects of the slope of
Paris equation, n, on the failure probability become larger with
increases of the initial edge crack size, on the other hand, the
effects of other random variables such as the coefficient of
Paris equation, C, the applied maximum stress, S, the
initial edge crack size, a;, the applied minimum stress, S, ,
the design fatigue life, N and the fracture toughness, K., on
the failure probability become smaller with increases of the
initial edge crack size. Therefore, it is essential that the material
constant such as the slope of Pairs equation, n, and the
coefficient of Paris equation, C , must be estimated very
carefully using the appropriate method from fatigue
experiment.

Table 2. Comparison of the mean percentile differences among results obtained
by using the FORM, the SORM and the MCS

FORM | SORM | FORM
VS. VS. VS.
MCS MCS | SORM
[%] [%] [%]
Initial Edge |, 3105 | 53183 | 5.1E-04
Crack
Maximum | ) 140 | 4.4141 | 2.6E-04
Stress
Paris Minimum
Model Stross 3.6939 | 3.6939 | 2.2E-05
Design
Fatigue Life | 60352 | 66353 | 1304
Slope of 05834 | 05834 | 1.5E-04
Paris Eq.
nitial Bdge | 4 o437 | 4.8437 | 3.7E-05
Crack
Maximum | 1007 | 1.0207 | 1.4E-05
Stress
Walker Minimum
Model 48429 | 48429 | 6.9E-06
Stress
Design
Fatique Life | 11532 | 11532 | GE-06
Slope of 1.4407 | 1.4407 | 9E-06
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and Walker models.

VI. CONCLUSION
In this paper, the fatigue crack growth models suggested by

Pairs and Walker are used to formulate the limit state function
(LSF) and the FORM (first order reliability method) and the
SORM (second order reliability method) are used to estimate
the failure probability. And the MCS (Monte Carlo simulation)

is

used to evaluate the applicability of the FORM and the

SORM by comparing the failure probability. Moreover, the
effects of various random variables on the failure probability
are systematically studied using the sensitivity index and the
following results are obtained:

1. It is found that the failure probability decreases with the

increase of the design fatigue life and applied minimum stress,
and the decrease of initial edge crack size, applied maximum
stress and slope of Paris equation.

2. It is recognized that the FORM and the SORM show the

similar failure probability in the Paris and the Walker models..

3. Itis recognized that the slope of Pairs equation, n, affects

dominantly on the failure probability with the variation of
random variables in the Paris and Walker models.
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