
 
 

 

  
Abstract—The methodologies to calculate failure probability 

and to estimate the reliability of fatigue loaded structures are 
developed. The applicability of the methodologies is evaluated 
with the help of the fatigue crack growth models suggested by 
Paris and Walker. The probability theories such as the FORM 
(first order reliability method), the SORM (second order 
reliability method) and the MCS (Monte Carlo simulation) are 
utilized. It is found that the failure probability decreases with the 
increase of the design fatigue life and applied minimum stress, and 
the decrease of initial edge crack size, applied maximum stress 
and slope of Paris equation. Furthermore, according to the 
sensitivity analysis of random variables, it is found that the slope 
of Pairs equation affects the failure probability dominantly 
among other random variables in the Paris and the Walker 
models. 
 

Index Terms—Fatigue, Reliability, Failure Probability, 
Sensitivity, FORM, SORM, Monte Carlo simulation  
 

I. INTRODUCTION 
In the fatigue design, the use of S-N curves is well established, 

since the repeated loads may lead to failure of material even 
when the load level is lower than the ultimate limit states. The 
structures must be repaired, if the crack is discovered. These 
curves predict fatigue failure under constant amplitude cyclic 
loading, but cannot incorporate information related to crack 
detection and/or measurement [1,2].  
However, the use of fracture mechanics techniques can be 

successfully applied to this problem. The fracture mechanics 
needs the information about the defects, or cracks to be used in 
the analysis. Since the size and location of defects are quite 
random, the deterministic analysis may provide incomplete 
results about the structure safety. Also the randomness of loads, 
geometry and material properties influence significantly the 
reliability of a structure. Therefore, the fracture mechanics with 
a probabilistic method provide a useful tool to solve these 
problems [3-7].  
In this paper, fatigue models suggested by Paris and Walker 

are used to formulate the LSF (limit state function) for 
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assessing the failure of fatigue loaded structures. And the 
failure probability is estimated by using the FORM (first order 
reliability method) and the SORM (second order reliability 
method). The reliability is assessed by using this failure 
probability, and the application of these methods to the 
reliability estimation is given for a case study. Furthermore, the 
sensitivity of each random variable, which is quantifying the 
effect on the failure probability, is estimated. And the results 
obtained by using the FORM and the SORM are compared with 
those estimated by using the MCS (Monte Carlo simulation) 
and systematically investigated to assess the accuracy of the 
reliability.  

 

II. FATIGUE MODELS 
The fatigue crack growth rate, dNda / , versus the applied 

stress intensity factor range, KΔ , can be obtained from fatigue 
crack propagation experiments. The corresponding applied 
stress intensity factor range, KΔ , is calculated when the crack 
length, a , and the applied stress range, SΔ , are measured in 
the experiments as below [1,3,4]. 
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Where α  is the geometry factor. Since the stress intensity 
factor is undefined in the compression, minK  is taken as zero if 

minS  is compressive. The correlation for constant amplitude 
loading is usually a log-log plot of the fatigue crack growth rate, 

dNda / , in cyclem / , versus the opening mode stress intensity 

factor range, IKΔ (or KΔ ), in mMPa .  
The typical log-log plot of fatigue crack growth rate versus 

stress intensity factor range as shown schematically in Fig. 1 
has a sigmoid shape that can be divided into three major regions. 
Region I is the near threshold region and indicates a threshold 
value, thKΔ , and there is no observable crack growth below 
this value. This threshold occurs at crack growth rates on the 
order of cyclem /101 10−×  or less. Region II shows essentially a 
linear relationship between log dNda /  and log KΔ , which 
corresponds to the formula suggested by Paris [1,3,4].  
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Where n , C  are material constants. n  is the slope of the line 
and C  is the coefficient found by extending the straight line to 
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mMPaK 1=Δ . Region II fatigue crack growth corresponds 
to stable macroscopic crack growth that is typically controlled 
by the environment. Microstructure and mean stress have less 
influence on fatigue crack growth behavior in region II than in 
region I. In region III, the fatigue crack growth rates are very 
high as it approaches instability, and little fatigue crack growth 
life is involved. This region is controlled primarily by fracture 
toughness CK  or ICK , which depends on the microstructure, 
mean stress, and environment.  
 

 
Fig. 1 Schematic behavior of fatigue crack growth rate  

versus stress intensity factor range 
 
Conventional S-N or ε -N fatigue behavior is usually 

referenced to the fully reversed stress or strain conditions 
( 1−=R ). However, fatigue crack growth data are usually 
referenced to the pulsating tension condition with 0=R  or 
approximately zero.  
The general influence of mean stress on fatigue crack growth 

behavior can be estimated by using the stress ratio, 
maxminmaxmin // SSKKR == , which is used as the principal 

parameter and has the positive value, 0≥R . It should be 
recognized that the effect of the R  ratio on the fatigue crack 
growth behavior is strongly material dependent.  
A common empirical relationship used to describe mean stress 

effects with 0≥R  is the Walker equation as below [1,3-5]. 
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Where C  and n  are the coefficient and slope of Paris 
equation for 0=R , respectively, and λ  is a material constant. 
Paris equation and Walker equation are basically similar, with 
different coefficients of the equations, C  and ''C , as below.  

)1()1(
'' λ−−
= nR

CC                                                 (4) 

Because the effect of R  on fatigue crack growth is known as 
material dependent, it is necessary to determine the material 

constant, λ . Value of λ  for various metals ranges from 0.3 to 
nearly 1, with a typical value of around 0.5. 
The fatigue failure life, fN , can be obtained by integrating 

the fatigue crack growth rate formula at the domain from initial 
crack, ia , to final crack, fa . And the final crack can calculate 
using the fracture toughness as below.  
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III. PROBABILITY THEORY 

A. FORM (first order reliability method) 
The failure probability is calculated by using the FORM, 

which is one of the methods utilizing the reliability index. The 
FORM method is based on the first-order Taylor series 
approximation of a limit state function (LSF), which is defined 
as below [6-10]. 

LOREZ −=                                     (6) 
Where, RE   is the resistance normal variable, and LO  is the 
load normal variable. Assuming that RE  and LO  are 
statistically independent, normally distributed random 
variables, the variable Z  is also normally distributed. The 
failure occurs when LORE < , i.e., 0<Z . The failure 
probability is given as below. 
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Where Zμ  and Zσ  are the mean and standard deviation of the 
variable Z , respectively, and Φ  is the cumulative distribution 
function for a standard normal variable, and β  is the safety 
index or reliability index and the coefficient of variation 
(C.O.V) denoted as below. 
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(8) can be used when the system has a linear LSF. Actually, 
most real systems and cases do not have linear LSF but rather a 
nonlinear LSF. So, for a system that has a nonlinear LSF, (8) 
cannot be used to calculate the reliability index. Rackwitz and 
Fiessler proposed a method to estimate the reliability index that 
uses the procedure shown in Fig. 2 for a system having a 
nonlinear LSF. In this paper, we iterate the loop, as shown in 
Fig. 2, to determine a reliable reliability index until the 
reliability index converges to a desired value ( 001.0≤Δβ ) [9, 
10]. 
The LSF must be defined to formulate the FORM and evaluate 

the reliability. In this paper, the LSF can be defined by using 
the fatigue models as below [6,7]. 

fD NNZ −=                                               (9) 
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Where, DN is the design fatigue life and fN  is the fatigue 

life estimated from the fatigue crack growth models such as 
Paris and Walker models using (2) or (3). 
The sensitivity index, which is used to evaluate the effect of 

random variables on the failure probability, is denoted as below 
[9, 10]. 
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Where XZ ∂∂ /  is the partial derivative of a random 
variable X .  

 
Fig. 2 Computation process of the reliability index 

 

B. SORM (second order reliability method) 
The computations required for reliability analysis of systems 

with linear LSF are relatively simple. However, the LSF could 
be nonlinear either due to a nonlinear relationship the random 
variables in the LSF or due to some variables being 
non-normal.  
The FORM approach will give the same reliability index for 
both linear and nonlinear limit state cases, if the minimum 
distance point is same. But it is apparent that the failure 
probability of the nonlinear limit state would be less than that of 
the linear limit state, due to the difference in the failure domains. 
The curvature of the limit state around the minimum distance 
point determines the accuracy of the first order approximation 
in the FORM. The SORM improves the FORM result by 
including additional information about the curvature of the 
limit state.  
The SORM approach was first explored by Fiessler using 

various quadratic approximations. A simple closed form 
solution for probability computation using a second order 
approximation and adopting the theory of asymptotic 
approximation was given by Breitung [6,7,9].  
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Where iκ  denotes the principal curvatures of the LSF at the 
minimum distance point and β  is the reliability index 
calculated by using the FORM. The principal curvatures are 
computed by using steps shown in Fig. 3. 

 

C. MCS (Monte Carlo Simulation) 
Unlike many engineering analytical results, the ones obtained 

by probabilistic methods are difficult to verify experimentally. 
However, the adequacy of the results out of the FORM and the 
SORM may be required to be verified somehow. We use the 
MCS technique to do this job performed by the steps shown in 
Fig. 4 [6,7,9,10]. 

 
Fig. 3 Process of computing the principal curvatures 

 

 
Fig. 4 Computation process of the failure probability  

by the Monte Carlo simulation 
 

IV. A CASE STUDY 
In this paper, we formulate the LSF using the fatigue models, 

and the failure probability is estimated by using the FORM and 
the SORM for fatigue experiment data with a single edge crack 
shown in Fig. 5. The specimen is a very wide SAE 1020 
cold-rolled thin plate subjected to constant amplitude uniaxial 
cyclic loads. The random variables and their values to apply at 
fatigue models are listed in Table 1 [1-5]. 
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Fig. 5 The geometry of single edge crack specimen 

Table 1. Random variables and its statistical values used in a case study. 

Valuable Mean C.O.V 

maxS  
200 MPa  (Paris) 0.002 

300 MPa  (Walker) 0.002 

minS  -50 MPa  (Paris) 0.002 
100 MPa  (Walker) 0.002 

yS  630 MPa  - 

uS  670 MPa  - 
E  207 GPa  - 

cK  104 mMPa  - 

ia  0.001 m  0.01 
α  1.12 - 
C  6.9×10-12 0.02 
n  3.0 0.02 

DN  
129,000 cycle  (Paris) 0.003 
65000 cycle  (Walker) 0.003 

λ  0.5 - 
 

V. RESULTS AND DISCUSSION 
In this paper, the LSF is formulated by using the fatigue crack 

growth models suggested by Paris and Walker. And the failure 
probability is estimated by using the values of random variables 
listed in Table 1 and probability theories such as the FORM, the 
SORM and the MCS.  
The relationship between failure probability and variation of 

random variables is shown in Fig. 6 corresponding to the 
fatigue models and the probability theories. It is found from Fig. 
6 that the failure probability decreases with the increase of the 
design fatigue life and applied minimum stress, and the 
decrease of initial edge crack size, applied maximum stress and 
slope of Paris equation. The specific statistical values are used 
in a deterministic case study to compare the results out of the 
Pairs model to the Walker model. It is found in Fig. 6 that the 
failure probabilities based on the Paris and Walker models are 
turned out to be very similar for variation of the initial edge 
crack size and the slope of Paris equation. However, the Paris 
and Walker models show the different failure probabilities with 
variation of the design fatigue life, because they have different 
fatigue lives corresponding to the maximum and minimum 

stresses.  
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(a) Initial edge crack size 
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(b) Design fatigue life 
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(c) Applied maximum stress  
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(d) Applied minimum stress 
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(e) Slope of Paris equation 

 
Fig. 6 Relationship between failure probability and various random variables 

according to the FORM, the SORM and the MCS 
 
It is found from Fig. 6 that the FORM, the SORM and the 

MCs show similar failure probability for Paris and Walker 
models. Table 2 quantitatively shows the mean percentile 
differences among the results of the FORM, the SORM and the 
MCS for Paris and Walker models, respectively. It is 
recognized for the Paris and the Walker models from Table 2 
that the FORM and the SORM show the similar failure 
probability for varying random variables. On the other hand, it 
is found that the difference of failure probability between the 
FORM and the MCS are similar with those between the SORM 
and the MCS. 
It is also recognized from Table 2 that the Walker model 

shows slightly larger differences of failure probability among 
the FORM, the SORM and the MCS than the Paris model for 
the variation of the initial edge crack size, the applied minimum 
stress and the slope of Paris equation. On the other hand, the 
Paris model shows slightly larger differences of failure 
probability among the FORM, the SORM and the MCS than 
the Walker model for the variation of the applied maximum 
stress and the design fatigue life.  
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(a) change of initial edge crack 
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(b) change of applied maximum and minimum stresses 
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(c) change of slope of Paris equation 
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(d) change of initial edge crack 
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(e) change of applied maximum and minimum stresses 
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(f) change of slope of Paris equation 
 
Fig. 7 Sensitivity of parameters according to the variation of random variables 

about Paris and Walker models 
 
Although the differences among results for the variation of 

design fatigue life and the stress ratio are large, the differences 
are not distinguished clearly in Fig. 6, because the absolute 
values of the failure probability estimated by the FORM, the 
SORM and the MCS are very small. 
The some typical diagrams for the effects of each random 

variable on the failure probability are shown in Fig. 7 as the 
sensitivity index. It is recognized that the slope of Pairs 
equation, n , affects dominantly on the failure probability with 
the variation of the initial edge crack size, the applied 
maximum and minimum stresses in the Paris and Walker 
models. However, it is found that the effects of the slope of 
Paris equation, n , on the failure probability become larger with 
increases of the initial edge crack size, on the other hand, the 
effects of other random variables such as the coefficient of 
Paris equation, C , the applied maximum stress, maxS , the 
initial edge crack size, ia , the applied minimum stress, minS , 
the design fatigue life, DN  and the fracture toughness, CK , on 
the failure probability become smaller with increases of the 
initial edge crack size. Therefore, it is essential that the material 
constant such as the slope of Pairs equation, n , and the 
coefficient of Paris equation, C , must be estimated very 
carefully using the appropriate method from fatigue 
experiment.  
 

Table 2. Comparison of the mean percentile differences among results obtained 
by using the FORM, the SORM and the MCS 

 

FORM 
vs. 

MCS 
[%] 

SORM 
vs. 

MCS 
[%] 

FORM 
vs. 

SORM 
[%] 

Paris 
Model 

Initial Edge 
Crack 2.3182 2.3183 5.1E-04

Maximum 
Stress 4.4140 4.4141 2.6E-04

Minimum 
Stress 3.6939 3.6939 2.2E-05

Design 
Fatigue Life 6.6352 6.6353 1.3E-04

Slope of 
Paris Eq. 0.5834 0.5834 1.5E-04

Walker 
Model 

Initial Edge 
Crack 4.8437 4.8437 3.7E-05

Maximum 
Stress 1.0207 1.0207 1.4E-05

Minimum 
Stress 4.8429 4.8429 6.9E-06

Design 
Fatigue Life 1.1532 1.1532 6E-06 

Slope of 1.4407 1.4407 9E-06 

Paris Eq. 
 
And it is found from Fig. 7 that the effects of random variable 

on the failure probability don’t vary before and after iteration 
with the change of initial edge crack size, the applied maximum 
and minimum stresses in the Paris and Walker models. 
However, the design fatigue life affects dominantly on the 
failure probability before iteration with the variation of the 
slope of Paris equation, and the slope of Paris equation affects 
dominantly on the failure probability after iteration in the Paris 
and Walker models. 
 

VI. CONCLUSION 
In this paper, the fatigue crack growth models suggested by 

Pairs and Walker are used to formulate the limit state function 
(LSF) and the FORM (first order reliability method) and the 
SORM (second order reliability method) are used to estimate 
the failure probability. And the MCS (Monte Carlo simulation) 
is used to evaluate the applicability of the FORM and the 
SORM by comparing the failure probability. Moreover, the 
effects of various random variables on the failure probability 
are systematically studied using the sensitivity index and the 
following results are obtained: 

 
1. It is found that the failure probability decreases with the 

increase of the design fatigue life and applied minimum stress, 
and the decrease of initial edge crack size, applied maximum 
stress and slope of Paris equation. 

 
2. It is recognized that the FORM and the SORM show the 

similar failure probability in the Paris and the Walker models.. 
 
3. It is recognized that the slope of Pairs equation, n , affects 

dominantly on the failure probability with the variation of 
random variables in the Paris and Walker models. 
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