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Abstract—This paper presents the work carried out

by CALPE team on the development of a mathe-

matical model used in the study and simulation of

the pantograph-catenarydynamic interaction in high

speed railways considering two independent spans of-

catenary where the transition spans are overlapped.

According to the developedmathematical model, a

non lineal system of differential equations with vari-

ableconstraint depending on the pantograph position

has been obtained. In order to verify the correctness

of the model, a numerical integration algorithm based

on an explicit method of the central differentials has

been implemented. The procedure that has been de-

signed allows us to study the more appropiate contact

wire configuration, in order to make smoth transition

of the pantograph between sets ofspans. This proce-

dure can be generalized considering the case of several

pantographs, obtaining very realistic simulations.
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1 Introduction

In order to achieve appropiate performance in circulation
of railway units, the pantograph-catenary contact force
has to be kept as uniform as possible, avoiding losses
of contact. Developing a mathematical model, that al-
lows us to simulate the mechanical behavior system, can
be helpful to specify optimal assembly conditions in the
catenary or aereal contact line.

During the last few years, lot of studies about the
pantograph-catenary dynamic interaction have appeared
in science literature: Arnold and Simeon (2000), Col-
lina and Burni (2002), Drugge et al. (1999), Jenssen
and Trae (1997), Lesser et al. (1996) and Schaub and
Simeon (2001). Nowadays, the common characteristics
to all works presented is based on models where the pan-
tograph interacts with only one contact wire, and these
works suppose equal spans. But this assumption is not
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completely true, because the catenary structure is in-
stalled in series of 15 or 20 spans each one with 60m.
which have not to be necessarily equals, and with the
transition spans overlapped. In these transition spans,
the pantograph can interact with the contact wires of
two different spans at the same time and presents differ-
ent configuration in the wires in order to obtain a smoth
transition of the pantograph between sets of spans.

To develop a model where the pantograph can interact
with two spans at the same time and with several contact
wires can be helpful, overall when the system behaviour
has to be evaluated, allowing the study of more adequate
contact wires configuration in the transition spans, and
more realistic numerical simulation with several panto-
graph, considering the complete traveled of each panto-
graph in the line.

This work has been structured in the following sections.
In Section 2, the general model of the dynamic equations
is introduced. In Section 3 and 4, the previous model has
been particularized in order to explain the system model
and the configuration for the transition spans. In Section
5, the numerical integration of differential equations is
explained. Finally, conclusions about computational as-
pects and the possible uses of this method are outline in
Section 6.

2 Dynamic equations of the system

The pantograph-catenary set can be considered com-
pound of two subsystems that interact each other, under
constraint conditions, because the pantograph-catenary
contact force has to be kept as uniform as possible, avoid-
ing contact losses. The system dynamic equation partic-
ularized for an instant of time tn is given by 1, as follows:
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λ̈n
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q̇n

λ̇n
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+

+

(
Kn φt

n
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λn

)
=

(
Rn

0
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(1)

Where M is the mass matrix of the system, Cn is the
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damping matrix, Kn is the stiffness matrix, φn is the
constraint conditions matrix, Rn is the independent term
vector, qn is the generalized coordinates vector and λn is
the multipliers vector of Lagrange which is equivalent to
the constraint forces. In these equations, only the mass
matrix is constant along the time, whereas the rest of
terms can vary at each instant tn.

If there is g generalized coordinates and r constraint, the
system in 1 presents g + r equations with g + r unknown
factors. The number of generalized coordinates depends
on the meters of the catenary wires, as the discretization
of the wires and the number and type of pantographs.
The number of constraint conditions depends on the num-
ber and type of pantographs and the contact wires over
which each pantograph interacts.

On the other hand, each terms and matrix of the equation
1 can be factorized in two terms, one of them concerns to
the catenary and is represented with the subindex 1, and
the other one concerns to the pantograph or pantographs,
and is/are represented with the subindex 2, obtaining the
expressions in 3.

M =

(
M1 0
0 M2

)
, Kn =

(
K1n 0

0 K2n

)
, (2)

Cn =

(
C1n 0
0 C2n

)
, Rn =

(
R1n
R2n

)
, q =

(
q1n
q2n

)

3 Catenary model

The aerial contact line or catenary is built considering
a range of spans, normally between 15 and 20, each of
them about 60 m. When the catenary is modeled, the
different types of elements can be consider: carrier wire,
contact wire and droppers. The transition spans of each
serie are overlapped, and present an special configuration
in the contact wire, in order to make the transition of the
pantograph smother (see Figure 1).

As the carrier wire as the contact wire are tightened by
pulleys and independent counterbalances, located at the
end of each series of spans. The catenary is a continuous
system that can be modelized applying the techniques of
anallysis of the Finite Element Method (FEM), according
to Cook et al. (1998) or Bathe (1996).

With respect to the carrier and contact wires, the fol-
lowing Euler-Bernoulli differential equation considering a
flexible pretensed wire in motion is:

(p/g) ∗ ÿ = −E ∗ I ∗ yIV + T ∗ y
′′

− p (3)

Where p is the weight of the wire per unit of length, g
the gravity aceleration, y the offset of the wire, T the me-
chanical tension, I the diametric moment of inertia and

Figure 1: Catenary with the transition spans overlapped

E the elastic module of the material. The wires are mod-
elized as pretensed beam elements, with two generalized
coordinates by node: the offset and the turn angle.

Droppers behave as elastic bars of final length of assem-
bly, which deform themselves from an initial length. In
this case, each node presents only one generalized coor-
dinate corresponding to the offset.

Notice that the droppers only work to traction so that
its effect in the dynamic equations (and their inclusion
in the stiffness matrix and independent term), it will be
considered only when the effective length, measure as dis-
tance between the extreme nodes, will be greater or equal
as the initial length l0.

Also, the effect of the registration arm has been consid-
ered. This element is an articulated bar of length l joint
at the end of the and whose functionality consists on fix-
ing the contact wire so that it describes a zig-zag, to wear
out uniformly the pantograph rubbing surface, behaving
as a semi-rigid support.

The arm effect on the stiffness matrix and over the inde-
pendet term can be approximate as a spring of stiffness
kb that exerts a dynamic force fb over the contact wire,
given by the equation:

fb = fm + (yAm − yA) kb (4)

where fb represents the dynamic force exerted by the arm,
fm the static force of assembled that is a fixed value,yAm

is the assembly static height of the grip node (this value
is also fixed), yA is the generalized coordinate that is as-
sociate to the grip node of the arm and kb is the stiffness,
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that is getting with the linearization of the statics equa-
tions and depends on the conditions of assembly.

For the mass matrix of the wires, we have supposed a dig-
onal matrix. With all these considerations, it is possible
to join the matrix of mass, stiffness and the independent
term in the catenary.

For the damping matrix of the catenary, we have sup-
posed a Rayleigh type damping, (Cook et al, 1989 or
Bathe, 1996), where the damping matrix, is a lineal com-
bination of the mass and stiffness matrix.

C1 = αM1 + βK1 (5)

In this case a constant stiffness matrix for the catenary
K1 is supposed, with all droppers connected, and there-
fore the damping matrix C1 is also constant. The numer-
ical constants α and β are determined from the dampings
supposed for two significant frequencies of oscillation of
the system

4 Configuration of the transition of the
span

The pantograph interacts with only one contact wire
along its trajectory, but when the pantograph arrives to
the last span, the transition span, the pantograph pro-
gressively loses the contact with the contact wire from
the output serie and starts to get the contact with the
contact wire from the input serie, and can interacts with
two wires of different spans at the same time. In order to
make the change of the pantograph from one serie to an-
other smoother, the contact wires have to be configurated
in a special manner (see Figures 1 and 2).

It is suppose that the trajectory of the pantograph goes
from left to right, the sapan 1 of the figure goes to the
output transition span and the span 2 to the input tran-
sition span, both of them have a symmetric configuration
(the half left part of this configuration is represented in
Figure 2). It can appreciate that the span 1 presents a
zone of droppers, in the left part. From the last dropper,
the contact wire lifts itself until the support in the right
side of the span.

The contact wires from both spans intersect in the Q
point that is situated in the middle of the span. In order
to get a suitable configuration, it would be suitable to
specify the droppers position and the height of the sup-
port point of the contact wire, given by the distance d,
if E is the elasticity of the catenary in the middle of the
span and F is an average estimation of the vertical force
of the pantograph that is going to circulate around the
line. This force will produce an elevation h at the wires
given by:

h = E ∗ F (6)

Figure 2: Details of the contact wires in a transition span.

There is a part of the contact wire that hangs free be-
tween the last dropper and the support, and presents a
parabolic configuration where M1 and M2 are the mini-
mum of the contact wires of the spans 1 and 2, respec-
tively. The elevation h can be used to define a segment
of the parabola between the points M1 and C1 from the
span 1 or M2 and C2 from the span 2, in absence of dy-
namic effects, it guarantees the contact common of the
pantograph with the two contact wires, for this, the in-
tersect point Q, of the wires situated in the center of the
span, has to be in the middle of the points M1 and C1 or
M2 and C2.

Let T the mechanical tension of the contact wire, and p
the weight of the wire by unit of length, the distance of
C1 respect to the minimum M1 is given by the equation:

b =

√
2 ∗ T ∗ h

p
(7)

If a es the half of the length of the span, the height of the
support A of the contact wire in the span 2 is:

d =
p ∗ {a + b/2}

2

2 ∗ T
(8)

This same height is adopted for the contact wire in the
span 1 assuring, in absence of dynamic effects, the contact
of the pantograph with the wires of the spans 1 and 2
between the points C2−M2 and C1−M1, however this
condition can be changed, varying the distance from the
minimums M1 and M2 to the center of the span Q, and
we can get different configurations, but in a standard
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Figure 3: Pantograph on two contact wires.

assembly, it is supposed that the center of the span is
corresponded with the center of the static safe contact
zone C2−M2 and C1−M1.

4.1 Pantograph model

The pantograph is an articulated system that is mod-
elized as a set of masses, springs and shock absorbers,
although the values of these parametres can be obtained
with tests in the laboratory. Generally, these values are
usually specified by the manufacturer. Each mass has
associated a generalized coordinate which corresponds to
its vertical displacement.

In the Figure 3 a model of the pantograph with three
masses is shown which is able to interact with the con-
tact wires from the input and output transition spans.
To make the differencial equation integration easier, two
aditional elements without any mass have been added
over the head mass, called terminal colectors, which get
the force and contact from the wires and are linked to
the head mass by a stiff spring, physically the stiffness
of this spring represents the real stiffness of the contact
wire-platen. λ1 and λ2 represent the constraint forces, or
the pantograph-catenary contact force. There is the pos-
sibility to have several constraint conditions depending
on how the pantograph interacts with the contact wire
of one or other serie of spans, or with both of two con-
tact wires of the two series at the same time. Finally, f1

represents the vertical force of the pantograph.

The mass matrix from the pantograph model of the Fig-
ure 5, is a diagonal matrix with two null elements that
corresponding to the mass of the terminal colectors m3

and m4, and the mass and stiffness matrix are as follow:

Figure 4: Distribution function of the load over the rub
surface of the pantograph

M2 =

⎛
⎜⎜⎝

m1 0 0 0
0 m2 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

K2n =

⎛
⎜⎜⎝

k1 + k2 −k2 0 0
−k2 k2 + k3 + k4 −k3 −k4

0 −k3 k3 0
0 −k4 0 k4

⎞
⎟⎟⎠ (9)

4.2 Model of contact of the pantograph and
the wire

According to previous experiences, to consider a puntual
contact between the pantograph and the catenary could
represent a problem because it involves to suppose a con-
centrated force during the motion, and there exist inte-
gration problems each time that the pantograph goes by
a node obtained by the discretization of the contact wire.

To avoid this problem it would be suitable to suppose a
distributed contact, according to a deteminate distribu-
tion function equivalent to express that the contact force
is distributed over the rub zone of the pantograph situ-
ated in the terminal colector. By convenience, an Oxy
(see Figure 4) axis system that moves itself with the pan-
tograph is supposed. The x variable represents the posi-
tion of the different points in the contact wire along the
horizontal axi.

If l is the length of the rub surface, y3 the generalized
coordinate that corresponds to the vertical position of the
terminal colector, according to the model of the Figure3,
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yn(x) the contact wire position around the rub surface
of the pantograph, and y = f(x), represents the contact
distribution function, the following expression is given:

∫
∞

−∞

f(x) ∗ (yh(x) − y3) ∗ dx = 0 (10)

In addition the following expression is fulfilled:

∫
∞

−∞

f(x) ∗ dx = 1 (11)

These equations allow us to get the terminal colector po-
sition of the pantograph, when the contact wire configu-
ration at instant tn is known, as a weighted measure of
the nodes of the contact wire position that are situated
over the rub zone, obtaining the following expression:

(y3)n =

∫
∞

−∞

f(x) ∗ yh(x) ∗ dx (12)

A similar equation is obtained for the position of the other
terminal colector (y4)n. In general it is recommended
that the weighted function y = f(x) has a smooth form,
in order to make the colector transition across the nodes
easier. Several functions for f(x) have been tested, and
good results have been obtained by using a Hermite poly-
nomial function given by

f(x) = −
32

l4
∗ x3 −

24

l3
+

2

l
, −

l

2
≤ x ≤ 0

f(x) = −
32

l4
∗ x3 −

24

l3
+

2

l
, 0 ≤ x ≤

l

2

f(x) = 0, x ≤ −
l

2
(13)

f(x) = 0, x ≥
l

2

The function yn(x) is the position of the different contact
wire points in the pantograph environment. It can be
expressed with the generalized coordinates associated to
the nodes from the wire discretization, according to the
FEM, so the terminal colector position of the pantograph
is a weighted measure from the generalized coordinates
of the contact wires nodes that are situated over the rub
surface, so the Equation (10) in the tn instant can be
expressed as follow:

φn ∗ qn = 0 (14)

The previous expression have to be repeated for all con-
straint conditions of the system, so that the vector n is
converted in the constraint conditions matrix.

The constraint conditions number depends on the contact
wires number over the pantograph can interacts, of the
type of pantograph and the number of the pantographs
in the railway. Generally, there are catenaries with direct
current with two contact wires, so, when the pantograph
goes along the transition span, the mass of the head can
interacts with four wires. In other hand, there are panto-
graph models with two mass in the head, and in this
case there are eight constraint conditions pantograph-
cantenary by pantograph, and at the same time, the rail-
way units can have until four pantographs. To make a
pantograph-catenary contact model, the constraint con-
ditions vector is made in such a way that if there is r
constraint conditions, and g generalized coordinates, the
matrix dimension n is going to be rxg.

4.3 Constraint conditions model

In order to simplify the constraint condition model pre-
sented here, we are going to suppose only a pantograph
with one mass of head that runs along the catenary which
has only one contact wire. A general form of the con-
straint conditions matrix can be expressed in this case at
intant tn as follow:

φn =

(
φ1n

φ2n

)
(15)

where the vector φ1n represents the constraint conditions
vector of the collector 1 over the contact wire in the serie
1, and the vector φ2n the the constraint conditions vector
of the collector 2 over the contact wire in the serie 2.
To the formulation of the equation (15) we are going to
consider the follow cases:

1. The pantograph runs along the normal spans in the
serie 1, it can interact only with one contact wire.

2. The pantograph runs along the normal spans in the
serie 2, it can interact only with one contact wire.

3. The pantograph runs along the transition spans in
both series, and in this case the pantograph can in-
teract with two contact wire.

In the first case, the vector φ1n is calculated according to
the equation (10), while the terminal colector position 1,
(y3)n is calculated according to the equation (12). On the
other hand, the collector 2 never can take contact with
the wire in the serie 2, saying that it is disabled, and in
this case, the constraint conditions vector φ2n, is going
to be created imposing the constraint that the collector
position 2, (y4)n and the head of the mass, (y2)n, will be
coincident, that is:

(y2)n − (y4)n = 0 (16)
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The second case is similar to the previous case, but the
collector 2 can contact the wire in serie 2 and the collector
1 will be deactivated. In the third case, the pantograph
runs along the transition span and the collectors 1 and 2
can contact the wires in series 1 and 2, and both collectors
are activated, the constraint conditions vectors,φ1n and
φ2n, are calculated in the same way, using the Equation
(10), and the position of the terminal collectors 1 and 2,
(y3)n and (y4)n, are calculated using Equation (12).

Finally, it is important to say that eventhough at the
beginning the collector is interacting with the contact
wire, the contact force can be canceled or have its sign
changed. When this happens, the pantograph-cantenary
contact does not exist and the constraint conditions have
not sense. This circunstance has to be considered when
we are going to solve Equation (1). When the collector
lose the contact with its respective wire, it is equivalent
to make null the stiffness collector.

5 Numerical integration of the dynamic
equation

In the literature is possible to find different numerical in-
tegraion of the equaton (1). But, from the mechanical
point of view the methods appeared in (Cook et al., 1989
and Bathe, 1996) to solve the equation system (1) have
been considered. Good results have been obtained with
the explicit integration method of the central differences,
for that purpose, the speed vectors and acceleration of
the generalized coordinates have been approximated ac-
cording to the follow expressions:

q̇n =
1

t
(qn+1 − qn−1) (17)

q̈n =
1

t2
(qn+1 − 2qn + qn−1)

If we replace these equations in Equation (1) the following
expression is obtain

(
1

t2
∗ M +

1

2Δt
∗ Cn

)
∗ qn+1 = (18)

Rn − Kn ∗ qn − λt

n ∗ λn +
1

t2
∗ M ∗ (2qn − qn−1) +

+
1

2Δt
Cn ∗ qn−1

The previous expression allows us to get generalized co-
ordinates qn+1 in the instant tn+1 but it does not allow
us to know the generalized forces vector λn+1 in that in-
stant. Another important problem is that to determine
qn+1 it is necessary to solve a lineal system of equations,
because the damping matrix Cn is not diagonal.

One of the main advantages of the explicit methods is
that it is possible to obtain the integration variables di-
rectly with simple matrix operations, without needing to
solve a system with a high number of equations. In this
cases it could be possible, if we would have supposed a
diagonal damping matrix for the catenary, or if the damp-
ing had not been considered.

Although the considered options could be legitimate, we
think that working with a Rayleigh damping technique is
more realistic, according to Equation (5) and to modify
in half step the speed vector in Equation (1). It allows us
to get the integration variables in a direct form, obtaining
the following system of equations:

(
M 0
0 0

)
∗

(
q̈n

λ̈n

)
+

(
Cn 0
0 0

)(
q̇n−

1

2

λ̇n−
1

2

)
+

+

(
Kn λt

n

λn 0

)
∗

(
qn

λn

)
=

(
Rn

0

)
(19)

According to Cook et al. (1989), this modification intro-
duces a small error that can be ignored if a structural
systems with a low damping is considered, as our case.
The speed and acceleration vectors have been approached
according to the expressions:

q̇n−
1

2

=
1

2Δt
∗ (qn − qn−1)

q̈n =
1

2Δt
∗ (

˙
qn +

1

2
− ˙qn−

1

2

) (20)

q̈n =
1

Δt2
∗ (qn+1 − 2qn + qn−1)

If we replace these expressions in Equation (19) and solve
it for the generalized coordinates vector qn−1, considering
that the mass matrix is diagonal, the resulting equation
is as follows:

1

Δt2
∗ M ∗ qn+1 = (21)

Rn − Kn ∗ qn − φt

n ∗ λn +

+
1

Δt2
∗ M ∗ (qn + Δt ∗ q̇n−

1

2

) − Cn ∗ q̇n−
1

2

The previous equation allows us to calculate the gener-
alized coordinates vector qn+1. However, there are still
some aspect that are not solved: the generalized force vec-
tor λn+1 can not be calculated and in addition Equation
(21) can not determine the terminal collectors positions
(y3)n+1, (y4)n+1 because its mass is null, and this makes
the equation useless for its calculation. However, if the
terminal collector is activated, it is possible to calculate
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its position using Equation (12) in tn+1. If the collector
is deactivated, its position will be the same than the head
mass calculated according to Equation (16).

The pantograph-catenary constraint forces are the same
than the forces of the springs, because the masses of the
terminal collectors are null:

(λ1)n+1 = k3 ∗ [(y3)n+1 − (y2)n+1] , (22)

(λ2)n+1 = k4 ∗ [(y4)n+1 − (y2)n+1]

The cycle of integration is completed in tn+1. In order to
initialize the algorithm the generalized coordinates values
and constraint forces at the initial moment have been
calculated, solving the folloing linear system:

(
K0 φt

0

φ0 0

)
∗

(
q0

λ0

)
=

(
R0

0

)
(23)

In addition, with regard to the generalized coordinates
speeds, to the inital moment has been assumed that

q̇0 = 0 (24)

The exposed integration procedure, based on the explicit
method of the central differences, allows us to obtain the
variables carrying out simple operations, without needing
to solve systems of equations, treating nonlinearities as
a direct form because the different variable terms can be
updated: stiffness matrices, damping matrices, constraint
conditions and independent terms at the end of each cycle
of integration, and finally all of them are prepared for the
following cycle.

5.1 Integration algorithm

According to the previous sections, the integration algo-
rithm is organized as follow:

1. Introduction of the assembly data: characteristics
of carrier and contact wires: weight, material, sec-
tion, mechanical tension, number of contact wires,
etc . Characteristics of droppers: lengths, weight,
preload, etc. Also it is necessary to consider data
about the pantograph or pantographs: number of
pantographs, forces, masses, stiffness, dampings, etc.

2. To form the stiffness matrix K0 and the independent
terms R0 at the initial moment, according to the
model supposed for wires and pantograph, according
to the Equations (3), (4) and (9). The Equations (6),
(7) and (8) will be used to establish the boundary
conditions fixing the contact wire.

3. To form the constraint conditions matrix at the ini-
tial moment φ0, according to the Equations (10),
(15) and (16). Initially, it is ssumed that the panto-
graph is located in a normal span of the first series
of span.

4. To form the mass matrix M . A diagonal mass matrix
will be assumed.

5. To form the initial damping matrix of the systema
C0, using the Equation (5) for damping matrix of
the catenary.

6. To determine generalized coordinates and initial con-
straint forces, solving the linear system (23) and
making null the speeds, according to (24).

7. Integration cycle of the differential equations in the
time, n = 0, 1, 2, . . .

(a) Calculation of the generalized coordinates of
the catenary and pantograph qn+1, at the mo-
ment tn+1, using the Equation (21).

(b) Calculation of the terminal collectors position
of the pantograph, (y3)n+1 and (y4)n+1, by
means of the Equations (12) or (16), depending
on which the pantograph runs along a normal
span or a transition span.

(c) Calculation of the constraint pantograph-
catenary forces, (λ1)n+1 and (λ2)n+1, by means
of the Equations (22).

(d) To form the constraint conditions matrix φn+1,
by means of the Equations (10), (15) and (16),
considering if the pantograph is located on a
normal span or a transition span.

(e) To update of the different matrices and in-
dependent terms for the moment tn+1 :
Kn+1, Cn+1, Rn+1, taking into account the dis-
connection of droppers and the lose contact be-
tween the pantograph and the catenary. In par-
ticular, the effect of the lose of contact will be
considered of the following way: depending if
the pantograph is on a normal span or a tran-
sition span, the discussed cases considered pre-
viously will be considered. If pantograph is in
a transition span and the sign of the contact
forces (λ1)n+1 and (λ2)n+1 calculated accord-
ing to Equation (22) is zero or of negative sign,
the contact exists and the stiffness at the ter-
minal collectors do not varies, but if the sign
is positive, the spring of the traction collector
is a traction spring and it does not have sense
and the contact disappears, this is equivalent
to make zero the stiffness associated to the ter-
minal collector. Thus, if K0 represents the real
stiffness of the contact

if (λ1)n+1 ≤ 0, k3 = k0, else k3 = 0

if (λ2)n+1 ≤ 0, k4 = k0, else k4 = 0 (25)
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The stiffness matrix of the system will be up-
dating for the following step.

(f) The speed in the coordinates generalized will
be calculated too:

q̇n+ 1

2

=
1

Δt
∗ (qn+1 − qn) (26)

(g) Modification of the subscript of the variables
and terms of the differential equation accord-
ing to the cycle of integration: subscript n + 1
corresponding to the terms calculated in the
present cycle, it is transformed into n, return-
ing to point 7.1 , repeating the process, until
the pantograph has completed its trajectory.

5.2 Computational aspects

The procedures exposed in the previous sections have
served as base for the development of a software applica-
tion implemented in Visual C language that allows to sim-
ulate the dynamic behavior of the pantograph-catenary
system considering two series of spans with transition
span and several pantographs. At the time of develop-
ing this solfware, we have considered other important
aspects relative to a high performance software, among
others, (Nath Datta, 1995): robustness, portability, and
efficiency in terms of reduction of memory requirements
(Bytes of memory) and in terms of computacional cost of
the algorithm (flops).

As much the stiffness matrix as the damping matrix
present a high sparsity degree, they are stored in one
of the storage formats that exist for sparse matrices and
that we can find in scientific literature (Saad, 1996). To
be precise, two formats have been chosen: The coordinate
format (COO) by its simplicity and suitability for this
algorithm, and the compressed row format (CSR) that
allows to carry out operations between matrices (matrix-
vector product, resolution of equation systems, etc) with
a simple form. In this way, a reduction of memory re-
quirements have been obtained to store the matrices that
appear in the resolution of the dynamic problem, obtain-
ing in addition a considerable reduction in the computa-
tion time.

On the other hand, the characteristics of robustness,
portability and efficiency (in flops), have been obtained
thanks to the use of standard linear algebra libraries:
BLAS (Lawson et al., 1979) and SPARSKIT (Saad,
1994).

Thus in the study of a problem with two series of span
of catenary with 1200 ms, using elements of 0.2 ms, a
sparse stiffness matrix for the catenary is obtained K2n,
of 48000x48000, nevertheless the nonnull elements are ap-
proximately 4x48000. The memory requirements will be
increassed when a 3-D model of the catenary will be con-
sidered in future works.

Figure 5: Contact force pantograph-catenary

The results of a simulation with a pantograph of three
masses circulating to 120km/h along two series of three
spans (being the central span a normal span and the both-
ends spans a transition spans), the height between wire is
1.2m, the material used is copper, the mechanical tension
in the carrier and in the contact wire is 10KN with a
diameter of 12mm. The length of the spans is 20m. Three
droppers in the normal central span have been arranged,
separated to a distance of 5m, and two droppers for the
transition spans, being in this case, the distance from the
first dropper to the support of 3.83m and the distance
between droppers of 2m, with objective of fix the position
of the minimum in the second dropper, getting a contact
zone centered in center from the span. The droppers
section is 25mm2.

A model of pantograph like the Figure 3 has been as-
sumed, with: m1 = 15kg, m2 = 7.2kg, k1 = 50N/m, k2 =
4200N/m, k3 = k4 = 50KN/m, c1 = 90Ns/m, c2 =
10Ns/m, c3 = 0, with a thrust force of f1 = 120N . In
Figure 5, the values of the pantograph-catenary force on
the three central spans are shown, corresponding to a dis-
placement of the pantograph between 20ms and 80ms.
The pantograph position between 40m and 60m corre-
sponds to the transition span. The contact force on the
first series is represented by the thick continuous line and
the force on the second series by the line of fine outlines.
It is possible to observe that the force on the first series
is diminishing progressively from 40m, being null com-
pletely for the position of 56m approximately, whereas
the force on the second series appears from 44m.

In the Figure 6 the position variation of the mass of head
is shown. It is possible to observe that when the panto-
graph runs on normal spans, the mass of head presents
a maximum displacements of 50mm and 47mm approxi-
mately for each span, whereas when the pantograph runs
along the transition span, the maximum displacement
does not get the 42mm. The reason of this is because
the pantograph must interact in a zone with two contact
wires, presenting the line a greater stiffness. Varying the
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Figure 6: Upward displacement of the mass of head

configuration of the contact wire, it is possible to obtain
a different form in the curves, in order to obtain a better
behavior of the system.

6 Conclusion

In the present work, a procedure for the study and simu-
lation of the dynamic pantograph-catenary system inter-
action in railway lines has been developed, considering
two series of spans with the both-ends span overlapped.
A differentials equation system with constraints has been
obtained, where the catenary has been modeled using the
FEM, whereas the pantograph has been considered like a
system of masses, springs and shock-absorbings.

A numerical integration algorithm has been developed
based on explicit method of the central differences, that
solves the problem of a simple and direct form, like a
differential ordinary equation system, where the panto-
graph can interact with only a contact wire, when it is
runs in a normal span, or with two contact wires when it
runs along the transition span. The procedure proposed
allows to study the most suitable configuration of the
contact wire, in order to facilitate the transition of the
pantograph from a series of spans to another one, with
a smooth form. This procedure also can be implemented
for the case of several pantographs running, allowing to
obtain a more realistic simulation because it considers the
complete trajectory of the pantographs.

The results of this work have served as base to imple-
mente a software program in Visual C language that
allows to carry out simulations for different types of
catenaries and pantographs, getting computational times
very low, thanks to a spectacular reduction of the mem-
ory requirements.

The method presented can be extended for catenary with
two contact wires, this type of catenary is used to impel
traction units with direct current, and is very frequent
in conventional lines of several European countries. Also
it is possible to extende this procedure to the study of

dynamic problems in three dimensions being able to ob-
tain very realistic simulations with computational times
really reasonable.
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