
 
 

 

  
Abstract—Applying nonequilibrium statistical mechanics we 

focus on nonequilibrium corrections Δs to entropy and energy of 
the fluid in terms of the nonequilibrium density distribution 
function, f. We also evaluate coefficients of wave model of heat 
such as: relaxation time, propagation speed and thermal inertia. 
With these data a quadratic Lagrangian and a variational 
principle of Hamilton’s type follows for a fluid with heat flux in 
the field representation of fluid motion. We discuss canonical 
conservation laws and show the satisfaction of the second law 
under the constraint of these conservation laws. 
 

Index Terms— conservation laws, Grad solution, variational 
principles, wave equations.  
 

I. INTRODUCTION 
  We use the framework of extended thermodynamics of fluids 
to discuss variational principles for irreversible energy transfer 
and help that can be obtained from statistical theories when 
describing nonequilibrium thermodynamic systems and 
evaluating kinetic or flux-dependent terms in energies and 
macroscopic Lagrangians. Especially, we treat statistical 
aspects of thermodynamic and transport properties of 
nonequilibrium fluids with heat flow by applying an analysis 
that uses Grad’s results [1] to determine nonequilibrium 
corrections Δs or Δe to the energy e or entropy s in terms of the 
nonequilibrium density distribution function f. To find 
corrections to the energy e or kinetic potential L we use 
corrections Δs and a relationship that links energy and entropy 
representations of thermodynamics. We also evaluate 
coefficients of wave model of heat, such as: relaxation time, 
propagation speed and thermal inertia factors, g and θ. With 
these data we formulate a variational principle of Hamilton’s or 
least action type for fluids with heat flux in the field or Eulerian 
representation of fluid motion. Analyzing the variational 
extremum we display an approach that adjoints a given set of 
constraints to a kinetic potential L and transfers the original 
variational formulation to the space of associated Lagrange 
multipliers. By considering limiting reversible process we 
evaluate canonical components of energy-momentum tensor 
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along with associated conservation laws. We show that despite 
of the generally non-canonical form of conservation laws 
produced by Noether’s theorem the approach that adjoints 
constraints to given kinetic potential works efficiently. In fact, 
the approach leads to exact imbedding of constraints in the 
potential space of Lagrange multipliers, implying that the 
appropriateness of the constraining set should be verified by 
physical rather than mathematical criteria. Our analysis shows 
that the approach is particularly useful in the field (Eulerian) 
description of transport phenomena, where equations of 
thermal field follow from variational principles containing state 
adjoints rather than original physical variables. Exemplifying 
process is hyperbolic heat transfer, but the approach can also be 
applied to coupled parabolic transfer of heat, mass and electric 
charge. With various gradient or non-gradient representations 
of physical fields in terms of state adjoints (quantities similar to 
those used by Clebsch in his representation of hydrodynamic 
velocity) useful action-type criteria emerge. Symmetry 
principles are effective, and components of the formal 
energy-momentum tensor can be found. The limiting reversible 
process, with ignored random effects, provides a suitable 
reference frame. Focusing on heat flow, our work represents, in 
fact, an approach that shows the methodological advantage of 
approaches borrowed from the optimal control theory in 
variational descriptions of irreversible transport phenomena. 

II. HELP FROM STATISTICAL THEORIES AND 
OPTIMIZATION-TYPE APPROACH 

Statistical theories are useful [1] to evaluate nonequilibrium 
corrections to energy and other thermodynamic potentials in 
situations when a continuum is inhomogeneous and this 
inhomogeneity is associated with presence of irreversible 
fluxes. To illustrate benefits resulting from suitable findings in 
the field of nonequilibrium statistical thermodynamics, heat 
transfer in locally non-equilibrium fluids is analyzed  [2].  

Quite essential in these analyses is the connection between 
various representations of thermodynamics of nonequilibrium 
fluids and a relationship (resembling the Gouy-Stodola law) 
that links energy and entropy pictures. Thanks to this 
relationship nonequilibrium corrections to the energy can be 
found from those known for the entropy of the Grad’s theory. 
These energy corrections will next be used to construct suitable 
kinetic potentials L and formulate variational principles 

In this paper we work in the energy and Lagrangian 
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representations of thermodynamics and focus on formulation of 
a linear variational description for heat transfer in 
incompressible continua. While the linearity of the theory is 
certainly an approximation, it is simple and lucid enough to 
illustrate a (relatively unknown) variational approach based on 
adjoining known process equations as “constrains” to a “kinetic 
potential L” (the integrand L of an action functional).  

The present approach is optimization-type; it differs from 
more conventional variational ones in that the action functional 
is systematically constructed rather than assumed from the 
beginning. Once a variational theory is developed for an 
assumed L it may easily be modified for improved kinetic 
potentials which take more subtle effects into consideration. 
Equations of constraints (reversible or irreversible) follow in 
the form of their “representations” in the space of Lagrange 
multipliers; they are extremum conditions for the action 
containing a composite (constraint involving) Lagrangian Λ or 
its gauge counterparts. As long as representations describing 
physical variables of state in terms of Lagrange multipliers are 
known in their explicit form, the whole variational formalism 
can be transferred to the adjoint space of these multipliers, i.e. a 
variational principle can be formulated in this (adjoint) space. 
The Lagrangian can also be used to obtain the matter tensor for 
the continuum with heat flow, and associated conservation 
laws.  

Finally we show that the acceptance of canonical 
conservation laws, constructed for a limiting reversible process, 
along with variational extremum conditions assures the 
satisfaction of the second law of thermodynamics, the property 
that renders the variational theory considered a candidate to be 
the physical one. Moreover, formal conservation laws, 
evaluated from Noether’s theorem, are the process integrals 
that may provide additional insight on the transformation of 
energy in the irreversible system. 

III. ENERGY AND ENTROPY REPRESENTATIONS IN 
THERMODYNAMICS OF HEAT FLOW 

Now our task is to recall some basic knowledge on the 
thermodynamics of heat flow without local equilibrium. A 
process description will be developed that will next be used to 
construct suitable lagrangians, variational principles and 
conservation laws. We work in the framework of extended 
thermodynamics of fluids [3]. We restrict ourselves to 
incompressible, one-component continuum with heat flow.   

Consider a continuum with the heat flow at a nonequilibrium 
state, say A, off but near the Gibbs surface, when the local 
equilibrium assumption is inapplicable, Fig. 1. The energy at 
the state A is the nonequilibrium internal energy. This internal 
energy depends not only on the usual state variables (wherever 
they have meaning), but also on nonequilibrium variables such 
as heat flux or diffusive entropy flux. Here we select the heat 
flux, q, as the nonequilibrium variable of choice. It is treated as 
an unconstrained internal variable which relaxes to equilibrium. 
Nonequilibrium energy density of a continuum, ρe, or its 
specific energy e, is a function of density ρ, specific entropy s 

and diffusive entropy flux js or heat flux q. For a continuum as 
a stable macroscopic system, its equilibrium internal energy 
density ρe

eq is the minimum of ρe with respect to unconstrained 
js or q, at constant ρ and s. As ρ = v-1, the reciprocal of specific 
volume, the minimum of ρe (or e itself) with respect to js or q 
occurs at constant entropy s and volume v which are proper 
variables at which the energy attains minimum at equilibrium. 
This is in agreement with basic thermodynamics [4]. Since js or 
q are a diffusive fluxes, the minimum occurs for js = 0 or q=0. 

For a given nonequilibrium state at a point A in Fig.1, two 
equilibrium reference states, at points B and C, say, correspond, 
respectively, to the energy and entropy representation. A 
researcher knowing entropy s (e. g., from distribution function f 
corresponding to A) formulates his description of state A in 
terms of equilibrium parameters at B, for a set of variables, here 
the entropy flux js. Yet, one who knows energy e can base his 
view on the heat flux q and equilibrium at C. When point A 
moves the equilibrium states (B and C) vary. The conventional 
picture of motion in terms of Hamilton's principle corresponds 
to following the behavior of B and the kinetic energy of entropy 
flux, whereas the kinetic theory view corresponds to tracking of 
C and the deviation of entropy from equilibrium. The transition 
from one view to the other is possible [2]. 

 

 
 
Fig. 1. Diverse reference equilibria (B, D, C, etc.) for a given state A.  

 
It is important to realize that for a single nonequilibrium state 

the use of the entropy representation and energy representation 
establish two different equilibrium states located on the Gibbs 
surface.  This of course, is because of the difference in what is 
held constant. The distance between two discussed equilibrium 
states (B and C) increases with the distance of the state A from 
the Gibbs surface.  This distance can also be measured in terms 
of the modulus of the flux js or in terms of the differences Δe = 
AB or Δs = AC. When the curvature of the Gibb's surface can 
be neglected, corresponding to the near-equilibrium situation, 
the two disequilibrium excesses are linked by an equality 
resembling the Gouy-Stodola law 

  
    ρeeqρseq ssTee ,, )()( −−=−       (1) 

This states that the energy released during the isoentropic 
relaxation equals the product of the absolute temperature and 
the entropy deficiency in the system caused by the presence of 
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the heat flux q or the entropy flux, js.   

IV. NONEQUILIBRIUM CORRECTIONS TO ENERGY OR ENTROPY 
IN TERMS OF DISTRIBUTION FUNCTION F 

It is essential that the entropy representation is assumed in 
the Grad’s formalism of the kinetic theory [1].  Hence the 
specific energy of an ideal gas or fluid with heat at the point A 
is equal to the specific energy at equilibrium C in Fig. 1.  The 
reference temperatures and pressures that appear in the 
expressions of kinetic theory are T(C) and P(C).  From the 
formalism one finds disequilibrium corrections Δs or Δe in 
terms of the non-equilibrium density distribution function f. 
Here we recapitulate the results of several different works 
[3]-[6] all using Grad’s [1] solution of the Boltzmann equation 
in macroscopic predictions for dilute gas of rigid spheres. 

The molecular velocity distribution function, f, out of 
equilibrium but close to it is given as  

)1)(()( 1ϕ+= CC eqff         (2) 
where feq is the local equilibrium (Maxwell-Boltzmann) 
distribution pertaining to the entropy representation 
equilibrium (point C, Fig. 1).  f and feq are scalars, but functions 
of the peculiar velocity C = c - u, and ϕ1 is a function of the 
deviation from equilibrium. This deviation is expressed in 
terms of the gradT in the Chapman-Enskog method and in 
terms of the heat flux q in the Grad's method. Using Eq. (2) in 
the entropy definition, one integrates the expression flnf over 
all of the space of the molecular velocity c, 

       ∫−= cfdfkρ Bs ln          (3) 

Proceeding with development of ρs up to second order in φ1, 
one obtains ,)2()1(

ss
eq
ss ρρρρ ++=  with local equilibrium entropy 

       ∫−= cdffkρ eqeq
B

eq
s ln       (4) 

and nonequilibrium correction 
0ln1

)1( =−= ∫ cdffkρ eqeq
Bs ϕ .     (5) 

Again, this proves that one deals with the entropy 
representation where the entropy is maximum at equilibrium.  
A counterpart of the above equation in the energy 
representation 

      ,02
1

)1( =−= ∫ cc dmfρ eq
e ϕ        (6) 

would correspond to the minimum energy.  The second order 
correction to the entropy density (in entropy representation) is 

∫−=Δ= cdfksρρ eq
Bs

2
1

)2(

2
1 ϕ       (7) 

Hence, in view of the relation between Δe and Δs implied by 
Fig. 1 or Eq. (1) 

∫−−=Δ cdfTρke eq
B

2
1

1

2
1 ϕ        (8) 

Since the state A is close to the equilibrium surface, the 
multiplicative factors containing conventional thermodynamic 
variables can always be evaluated at arbitrary equilibrium 
points (B or C in Fig. 1).  However, in Eqs. (1), (9) and (10), 
they were evaluated (in the kinetic theory) for the case of the 
isoenergetic equilibrium (point C, Fig. 1). The function ϕ1, 

obtained in Grad's method when the system's disequilibrium is 
maintained by a heat flux q is 

   qCC .)
2
5

2
1)(/(

5
2 222

1 TkmTPkm BB −=φ     (9) 

where m is the mass of a molecule ([1], [3]). From Eqs. (7), (8) 
and (9) one obtains for the entropy deviation 

       22 )/(
5
1 qTρPkms B−=Δ        (10) 

and for the energy deviation, Eq. (1), with entropy flux js = qT-1 

  22222

2
1)/(

5
1

ssB gρρkme jj −==Δ      (11) 

Equations (10) and (11) hold to the accuracy of the thirteenth 
moment of the velocity [1]. When passing from Eq. (10) to (11) 
state equation P = ρkBTm-1 is used and a constant g is defined as 

.
5
2

5
2

2

2

BB k
m

Pk
mTg =≡

ρ         (12) 

Here we abandoned the entropy representation.  Pressure in 
Eqs. (9) and (12) is that of an ideal gas, given by the definition 
used in the kinetic theory (Grad 1958 [1]). Eq. (11) with 
constant g defined by Eq. (12) is the characteristic feature of the 
ideal monoatomic gas (dilute Boltzmann gas composed of hard 
spheres). For arbitrary fluids (polyatomic gases, dense 
monoatomic gases and liquids) one can retain the form of the 
last expression in Eq. (11) by using a general definition of g 
obtained by noting that  

      eqseq esρg )/(),( 222 j∂∂≡ ρ       (13) 

In the ideal gas case the derivative ∂2e/ 2
sj∂  = (2/5)(m2/kB

2ρ2) 
from Eq. (11) and the definition (12) is recovered form 
definition (13). Equation (13) is consistent with a hypothesis 
about the equality of the kinetic and static nonequilibrium 
energy corrections in a thermal shock-wave front [5]. The 
hypothesis can be used to compute (∂2e/∂js

2)eq for arbitrary 
fluids as T/(ρcpG) and hence g as Tρ/(cpG), where G is the shear 
modulus. Equilibrium values of thermodynamic parameters can 
be applied in such expressions. For an ideal gas the shear 
modulus is just the pressure P (the result of Maxwell) and cp = 
5kB/(2m). These results allow one to recover definition (12) 
from the expression g = Tρ/(cpG); they support the hypothesis 
mentioned above. Yet, for the purpose of general 
considerations the use of the implicit dependence of g on the 
basic variables (ρ, s) is often enough, i. e., the function g(ρ, s) 
will be used when passing to arbitrary fluids. Use of some 
entropy flux adjoints, as and is, is suitable. They are defined, 
respectively, by equations 

   sssρsss gρseρs jjjja 2
, /),,(),,( −=∂Δ∂= ρ    (14) 

and  
   )(),,( 1 uuvjji −=== −

sssss gsgsgρρs    (15)   
The entropy diffusion velocity vs = us - u = js/ρs = js/ρs appears 
in Eq. (15).  One may also introduce therein the product kBgs 
which has the dimension of mass.  For the ideal gas this product 
is ms = 2/5(m2skB

-1) which is a measure of heat inertia.  
In the model of a constant g, nonequilibrium temperature T(B) 
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is equal to the equilibrium temperature T(ρ, s) which is both the 
measure of mean kinetic energy of an equilibrium and the 
derivative of energy with respect to the entropy.  This equality 
emerges because, above, we have chosen the entropy flux js, 
not the heat flux q, as the nonequilibrium variable in energy 
function e. If  one differentiates the nonequilibrium entropy s 
with respect to the energy holding q constant, then a quantity 
T(C) of Jou at al ([3]) follows, which differs from the reciprocal 
of the corresponding equilibrium temperature Teq by a term 
quadratic in q.  In general, the "nonequilibrium temperatures" 
(understood as the fifth moment of the nonequilibrium density 
functions) are not the measures of mean kinetic energy.  

The knowledge of inertial coefficients, such as g, from 
statistical mechanics considerations helps calculate two basic 
quantities in the model of heat transfer with finite wave speed. 
They are: thermal relaxation time τ and and the propagation 
speed, c0. Of several formulae available that link quantities τ  
and g, probably the following expression 

      1)( −= Tgτ ρk          (16) 
is most useful ([6], p. 199). It links thermal relaxation time τ 
with thermal conductivity k, inertia g and state parameters of 
the system. As, by definition, the propagation speed of the 
thermal wave c0= (a/τ)1/2, where a= k /(ρcp)  is thermal 
diffusivity, the quantity c0 may be determined from the formula 

.
g

)(
2/1

2/1
0 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

pc
Tac

τ
         (17) 

Substituting to this expression the ideal gas data, i.e. g of Eq. 
(12) and cp = 5kB/(2m), yields propagation speed in the ideal 
gas  

2/12/1

0 g
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

m
Tk

c
Tc B

p
      (18) 

(thermal speed). Thus the results of nonequilibrium statistical 
mechanics help to estimate numerical values of damped-wave 
model of heat transfer. The coefficients τ and c0 are used below 
in a variational principle for wave heat transfer. One more 
coefficient that is quite useful in the wave theory of heat is that 
describing a thermal mass per unit of entropy 

      θ=T 2
0
−c ,           (19) 

[6]. For the ideal gas, Eq. (18) yields the coefficient θ as 
      1−= Bmkθ           (20) 

We can now set a variational description for linear wave heat 
flow satisfying Cattaneo model. 

V. TESTING APPROACHES ADJOINING A GIVEN SET OF 
CONSTRAINTS TO A KINETIC POTENTIAL 

For the heat conduction process described in the entropy 
representation by the Cattaneo equation of heat and the 
conservation law for internal energy, the set of constraints is 

 

   02
0

2
0

=∇++
∂

∂
ectc

ρ
τ

qq         (21) 

and 

 0. =∇+
∂

∂ q
t
eρ ,         (22) 

where the density of the thermal energy ρe satisfies dρe = ρcvdT, 
c0 is propagation speed for the thermal wave, τ is thermal 
relaxation time, and D=c0

2τ is the thermal diffusivity. Equation 
(22) assumes conservation of the thermal energy (rigid medium 
and neglect of the viscous dissipation). In irreversible processes 
the paths of entropy or energy differ from those of the matter. 
For simplicity we assume constant values of involved fields at 
the boundary. We ignore the vorticity properties of the heat 
flux.   

The energy-representation of the Cattaneo equation,  

  022 =∇++
∂

∂ T
ctc s

s

s

s

τ
jj         (23) 

uses diffusive entropy flux js instead of heat flux q. The 
coefficient cs is defined as 

2/11)( −≡ θρ vs cc ,         (24) 

where θ=T 2
0
−c , and thermal diffusivity τρ 2

0ccv≡k . Equation 
(23) is Kaliski’s equation [6]. For an incompressible medium 
one may apply this equation in the form 

02
0

2
0

=∇++
∂

∂
s

ss

ctc
ρ

τ
jj         (25) 

which uses the entropy density ρs as a field variable.  
Yet, in this paper we focus on action and extremum 

conditions in entropy representation (Eqs. (21) and (22) in 
variables q and ρe). For Eqs. (23) - (25) another action 
approach will be developed in a complementary paper. Action 
approaches should be distinguished from entropy-production 
approaches [6], [7]. Here an action is assumed that absorbs 
constraints (21) and (22) by Lagrange multipliers, the vector ψ 
and the scalar φ 

.)}. ().(
2
1

2
1

2
1{

2
0

2
0

22
2
0

2

,

1
2

1

dVdt
t

φ
ctcc

A e
ee

t

Vt

qqqψq
∇+

∂
∂

+∇++
∂

∂
+−−= ∫ − ρ

ρ
τ

ερε . (26) 

As kinetic potentials can be very diverse, the conservation 
laws for energy and momentum substantiate the form (26). In 
Eq. (26), ε is the energy density at an equilibrium reference 
state, the constant which ensures the action dimension for A, 
but otherwise is unimportant. Yet we assume that the actual 
energy density ρe is close to ε, so that the variable ρe can be 
identified with the constant ε in suitable approximations.   

We call the multiplier-free term of the integrand of Eq. (26) 

}{
2
1 22

2
0

2
1 ερε −−≡ −

ec
L q         (27) 

the kinetic potential of Hamilton type for heat transfer. It is 
based on the quadratic form of an indefinite sign, and it has 
usual units of the energy density. Not far from equilibrium, 
where ρe is close to ε, two static terms of L yield altogether the 
density of thermal energy, ρe.  Indeed, in view of admissibility 
of the approximation ρe =ε in Eqs. (27), the kinetic potential (27) 
represents - in the framework of the linear heat theory - the 
Hamiltonian structure of a difference between “kinetic energy 
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of heat”, and the nonequilibrium internal energy, ρe. To secure 
correct conservation laws, no better form of L associated with a 
non-linear model was found in the entropy representation. The 
theory obtained in the present case is a linear one.  

Vanishing variations of action A with respect to multipliers ψ 
and φ recover constraints, whereas those with respect to state 
variables q and ρe yield representations of state variables in 
terms of ψ and φ. For the accepted Hamilton-like structure of L,  

         φc
τt

∇+−
∂
∂

= 2
0

ψψq         (28) 

and 

.
te ∂

∂
−−∇=

φρ ψ          (29) 

These equations enable one to transfer variational formulation 
to the space of Lagrange multipliers.   

For the accepted structure of L, the action A, Eq. (26), in 
terms of the adjoints ψ and φ is 

 ) .
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Its Euler-Lagrange equations with respect to ψ and φ are  
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and 
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It is easy to see that (31) and (32) are the original equations 
of the thermal field, eqs. (21) and (22), in terms of the 
potentials ψ and φ. Their equivalent form below shows damped 
wave nature of the transfer process. In fact, Lagrange 
multipliers ψ and φ  of this (sourceless) problem satisfy certain 
inhomogeneous wave equations. In terms of the modified 
quantities Ψ and Φ  satisfying Ψ  = ψ 2

0τc and Φ  = - φτ 2
0c  

these equations are 
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and 
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∂

∂
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As both state variables (q, ρe) and adjoints (ψ, φ) appear in 
these equations, they represent mixed formulations of the 
theory. They show that for given q and ρe thermal transfer can 
be broken down to potentials. The situation is similar to that in 
electromagnetic theory or in gravitation theory, where the 
specification of sources defines the field potentials. An 
important case is the reversible “ballistic” process with τ ∞→  
when undamped thermal waves propagate with the speed c0 and 
satisfy d' Alembert's equation for potentials and energy density. 

VI. SOURCE TERMS IN INTERNAL ENERGY EQUATION 
The method of direct substitution of representations into L is 

valid only for linear constraints that do not contain sources. 
This may be exemplified when the internal energy balance 
contains a source term a’q2, where a’ is a positive constant. The 
augmented action integral (26) should now contain the negative 
term - a’q2 in its φ term. The energy density representation 
remains unchanged, whereas the heat flux representation 
follows in a generalized form 

)()21( 2
0

12
0 φc

τt
ca ∇+−

∂
∂′−= − ψψq φ        (35) 

Substituting Eqs. (29) and (35) into action A of Eq. (26) (L of 
Eq. (27)) shows that the action based on the accepted kinetic 
potential L in terms of the potentials acquires the form 
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However the Euler-Lagrange equations for this action are 
not process constraints in terms of potentials. The way to 
improve the situation is to substitute the representations to a 
transformed augmented action in which the only terms rejected 
are those that constitute total time or space derivatives. When 
this is applied and total derivatives are rejected, a correct action 
follows  
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Action (37) yields the proper Cattaneo constraint (21) and 
the generalized balance of internal energy which extends 
equation (22) by the positive source term a’q2. Yet, due to the 
presence of the source, the formulation does not exist in the 
original four-dimensional original space (q, ρe), and, if 
somebody insists to exploit this space plus a necessary part of 
the potential space, the following A is found from Eqs. (21), 
(29), (35) and (37) 
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VII. CANONICAL MATTER TENSOR AND CONSERVATION LAWS  
Here we determine conservation laws for the energy and 

momentum for Noether’s theorem for our model at its 
reversible limit. The energy-momentum tensor is defined as 

 ( ) Λ−
⎥
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∂
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l
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ljk

v
vG δ

χχ
     (39) 

where δjk is the Kronecker delta and χ = (x, t) comprises the 
spatial coordinates and time. Our approach here follows those 
in [8] and [9], where components of Gjk are calculated for a 
reversible L whose gauged form is obtained from the reversible 
limit of Eq. (26) (ψ=0) by use of the divergence theorem and 
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the  differentiation by parts. In our problem 
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In terms of the physical variables 
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The matter tensor G = Gjk has the following structure  
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where T is the stress tensor, Γ is the momentum density, Q is 
the energy flux density, and E is the total energy density.  

When external fields are present, the balance equations are 
satisfied rather than conservation laws 
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for j, k = 1, 2..4. Equation (43) is the formulation of balance 
equations for momentum (j = 1, 2, 3) and energy (j = 4).   

The momentum density for the mass flow of the medium at 
rest is, of course, J=0, where J is the mass flux density. The 
momentum component of heat flow in the frame of J=0 can be 
determined from Lagrangian (40) and Eq. (39) for j=4 
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Using  “reversible” representations φc ∇= 2
0q  and  

ρe=-∂ϕ/∂t leads to the momentum density of heat in physical 
variables  
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Clearly, Γ vanishes in the Fourier’s case (c0 ∞→ ).  
The stress tensor Tab has the form 

    Λ−∇∇−= − abbaab φφcεT δ)()(2
0

1      (46) 
or in physical variables 
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After substituting stationary Lagrangian into Tab we obtain  
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This quantity represents stresses caused by the pure heat 
flow; it vanishes at equilibrium.  

Canonical energy density follows as the Legendre transform 
of the Lagrangian Λ with respect to rate change of φ in time 
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or in terms of the physical variables 
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The energy of resting mediun with heat flux is the sum of the 
kinetic energy of heat and equilibrium thermal energy.  

Finally, we find density of energy flux in both frames 
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ββββ ρε qqQG e ≅== −14  .      (52) 
The associated conservation laws for the energy and 

momentum have the form 
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VIII. ENTROPY PRODUCTION AND SECOND LAW OF 
THERMODYNAMICS 

In the variational theory of heat the satisfaction of the second 
law is not explicit, thus we shall derive it by considering 
entropy properties. The internal and total energy satisfy the 
equality 

        Ec se =+−− )(
2
1 22

0
1 ρρε q         (55)  

It shows that entropy density ρs is a function Sv of E and q, 
hence 

)
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0
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Thus at the constant mass density the differential of Sv 
satisfies an extended Gibbs equation  
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Taking into account that c0 = (a/τ)1/2 = (k/(ρcvτ))1/2, where k 
is the thermal conductivity, one finds k/cv

2
0 τρ=−c  = εT-1τk−1, 

and the above differential expressed in terms of k is  
qq.dTdETdSv

121 −−− −= kτ       (58) 
Calculating the four-divergence of the entropy flow 

( t∂∂∇ /, ) and using the global conservation law for the energy 
E  we obtain in terms of expressions containing  k or c0 
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But, since Eq. (21) is a simple transformation of the Cattaneo 
equation we arrive at the expression 
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where a = k-1 is the thermal resistance. This equation describes 
the second law of thermodynamics in the identically satisfied 
form; it holds in both classical irreversible thermodynamics 
(CIT) and extended irreversible thermodynamics (EIT; [3]).  
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