
 
 

 

  
Abstract— Imputation of missing data is important in many 

areas, such as reducing non-response bias in surveys and 
maintaining medical documentation. Estimating the uncertainty 
inherent in the imputed values is one way of evaluating the results 
of the imputation process. This paper presents a new method for 
the estimation of imputation uncertainty, which can be 
implemented as part of any imputation method, and which can be 
used to estimate the accuracy of the imputed values generated by 
both parametric and non-parametric imputation techniques. The 
proposed approach can be used to assess the feasibility of the 
imputation process for large complex datasets, and to compare 
the effectiveness of candidate imputation methods when they are 
applied to the same dataset. Current uncertainty estimation 
methods are described and their limitations are discussed. The 
ideas underpinning the proposed approach are explained in detail, 
and a case study is presented which shows how the new method 
has been applied in practice. 
 

Index Terms— Imputation evaluation, Missing data, 
Missingness patterns, Uncertainty estimation.  
 

I. INTRODUCTION 
  Imputation methods attempt to solve the problem of 

missing data by replacing missing values with plausible 
estimates. Rubin [1] points outs that the primary (usually 
achievable) objective of imputation is to ensure that data 
analysis tools “can be applied to any dataset with missing 
values using the same command structure and output standards 
as if there were no missing data”, and that a further, desirable 
(but not always achievable) objective is to allow statistically 
valid inferences to be drawn when analysing imputed datasets. 
However, [2] also points out that “a popular misunderstanding 
is that the goal of imputation is to predict individual missing 
values”,  and it is important to emphasise that imputed values 
should never be treated as if they are real values, since it is 
impossible to prove that they are accurate.  

This complex definition of imputation objectives presents 
the owners of missing value datasets with complex evaluation 
problems, such as;  How can the feasibility of the imputation 
project be assessed?  How can the results of the imputation 
process be evaluated? How can the effectiveness of candidate 
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imputation methods be compared? We argue that these 
problems have not been sufficiently addressed, and we present 
a new method for the estimation and reduction of imputation 
uncertainty, which helps to solve them. The proposed approach 
can be implemented as part of any imputation method, and can 
be used to estimate the accuracy of the imputed values 
generated by both parametric and non-parametric imputation 
techniques. 

Section II summarises current uncertainty estimation 
methods, and discusses their limitations. Section III explains 
the ideas underpinning the proposed method in detail. Section 
IV presents a case study which shows how the new method has 
been applied in practice. Section V summarises the paper and 
discusses the issues it raises. 

 

II. CURRENT METHODS FOR ESTIMATING IMPUTATION 
UNCERTAINTY 

Estimating the uncertainty inherent in the imputed values is 
one way of evaluating the results of the imputation process. 
Several methods for the estimation of imputation uncertainty 
have been proposed, and a good general overview of these can 
be found in [3]. The following sections summarise the most 
important methods, and discuss the limitations of these 
approaches. 

A. Bootstrap and Jackknife Variance Estimation 
Consider a variable ( )nyyY K,1=  where some of the 

values are missing. The bootstrap and jackknife variance 
estimation methods [4]–[7] can be used to estimate the 
uncertainty created by imputing the missing values in Y.  Where 
uncertainty is estimated by computing the variance of a set of 
parameter point estimates (such as the mean or standard 
deviation etc.), which describe a set of samples that are taken 
from  Y,  as follows; 

for   b  =  1  to  B 
1. Create a new bootstrap sample bY by randomly selecting a 

set of values (with replacement) from  Y  
2. Impute the missing values in bY using a suitable imputation 

method 
3. Compute a parameter point estimate bθˆ which describes the 

values in bY  
next   b 
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The procedure produces a set of estimates { Bθθ ˆ1̂K } 
which describe the bootstrap samples { BYY K1 }. The 
bootstrap estimate of the variance  bootV̂ can then be used to 
estimate imputation uncertainty, as follows; 
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The method simply imputes the missing bY values B  times, 
then computes the variance of the resulting set of 

bθˆ estimates. The jackknife variance estimation method is 
similar. The difference lies in the method used to create the set 
of samples, which in turn requires a more complex method of 
computing the variance, as follows; 

Impute the missing values in  Y  using a suitable imputation method 

Compute a parameter point estimate θˆ which describes the values in  
Y 

for   j  =  1  to  n 

1. Delete value   j   from Y  to create a new jackknife sample )(\ jY  

2. Impute the missing values in  )(\ jY   using the same imputation 

method as above 

3. Compute the same parameter estimate as above )(\ˆ jθ  which 

describes  the values in )(\ jY  
next   j 

Where  n  is the number of values in ( )nyyY K,1=  

The procedure produces a set of estimates { )(\)1(\ ˆˆ nθθ K } 
which describe the jackknife samples { )(\)1(\ nYY K } The 
jackknife estimate of the variance  jackV̂  can then be used to 
estimate imputation uncertainty, as follows; 
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The jackknife method can be much more computationally 
intensive than the bootstrap when n is large, since the 
imputation process must be repeated  n times. However, in 
these cases jackknife performance can be improved by deleting 
a  set of values  (not just one) at each iteration of the loop. 

B. Multiple Imputation 
Consider a variable ( )nyyY K,1=  where some of the 

values are missing. Multiple imputation (MI),  [1] and [8]–[10] 
can be used to estimate the uncertainty created by imputing the 
missing values in  Y,  as follows. 

 

for   d  =  1  to  D 
1. Impute the missing values in  Y  using a stochastic method to 

create a unique imputed dataset dY   
2. Compute a parameter point estimate dθˆ which describes the 

values in dY  
3. Compute the variance dV associated with dθˆ  

next   d 

The procedure produces a set of estimates { Dθθ ˆ1̂K } and a 
set of associated variances { DVV K1 } which describe the 
imputed datasets  { DYY K1 }. The combined MI complete-data 
parameter point estimate for { DYY K1 } is then given by 
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The total variability DT , associated with Dθ , can then be 
used to estimate imputation uncertainty, as follows; 
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It is important to emphasise that MI is primarily an 
imputation method, rather than a technique designed for the 
estimation of imputation uncertainty. However, “When the D 
sets of imputations are repeated random draws from the 
predictive distribution of the missing values under a particular 
model for nonresponse, the D complete-data inferences can be 
combined to form one inference that properly reflects 
uncertainty due to nonresponse under that model”, as 
succinctly explained in [3]. 

C. Limitations of Current Methods 
The uncertainty estimation methods described above have 

their limitations, and they make certain assumptions about the 
nature of the missing value dataset. These issues have been the 
subject of some debate among statisticians [1] and [5]–[6]. The 
main points for discussion are summarised below. 

• All of the methods described above assume that the 
imputation process has removed the bias within the 
dataset that was caused by the missing values  [3]. 

• The resampling methods described in section IIA are 
based on large-sample theory - i.e. they will return more 
reliable variance estimates for larger samples  [3]. 

• The MI method assumes that the model describing the 
missing value dataset has been correctly specified.  i.e. the 
reliability of the variance estimates returned by the MI 
method is sensitive to model misspecification. However, 
resampling methods return consistent variance estimates 
with minimal modelling assumptions, so they are more 
robust to model misspecification [5]–[6] and [11]. 
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• Resampling methods usually require several hundred 
executions of the imputation process, performed against 
an equal number of samples drawn from the missing value 
dataset. This can be impractical in some situations. 
However, MI is less computationally intensive, since it 
allows good inferences to be drawn for a wide range of 
estimands, using perhaps 10 (or less) imputed datasets  
[12]. 

• The methods described above make no provision for the 
reduction of imputation uncertainty. However, there 
seems to be no reason why they could not be adapted for 
this purpose. 

The following section presents a new method for the 
estimation and reduction of imputation uncertainty, which 
suffers from none of the above limitations. However, the 
proposed approach has its own limitations, and makes its own 
assumptions, which are also described below. 

 

III. A DYNAMIC METHOD FOR ESTIMATING AND REDUCING 
IMPUTATION UNCERTAINTY 

Consider a data matrix Y  which has one or more missing 
values in one or more of it’s columns, such as the matrix shown 
below. 
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The missing values are represented by  ?  symbols. 
The known values are represented by  –  symbols. 
The rows are indexed as  i = 1  to  n 
The columns are indexed as  j = 1  to  p 
Rows 1 and 4 have missingness pattern  10101 
Rows 2 and 6 have missingness pattern  10011 

Fig. 1 – Missingness patterns in a data matrix 

A small proportion (perhaps up to 10%) of the known values 
are deleted at random from within the variable (column in Y) to 
be imputed. These values are recorded just before they are 
deleted, and a measure of how accurately they have been “put 
back” is taken when the imputation process is complete. This 
basic technique (with appropriate modifications) has been 
frequently employed to evaluate the success of various new, 
and existing, imputation methods [13]–[16], but it has not been 
utilised as a technique for the estimation and reduction of 
imputation uncertainty. However, the following equations can 
be used to estimate imputation uncertainty when this evaluation 
technique is employed. 

ijRD  =  
trueValY

imputedValYtrueValY

ij

ijij

.
.. −  (1) 

Where trueValYij . is the known (true) value that was 
deleted. And imputedValYij .  is the value generated by the 
imputation process. 
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Where  j  is the column in the  Y  matrix from which the 
values were randomly deleted and “put back”. And 

},....{ 1 mrrM =  is the set of rows in  Y  with a deleted 
value. And  i  indexes the set of rows in  M  (which will differ 
for every execution of the method). And },....{ 1 zrrZ =  
is the set of rows in  Y  that have an  RD  outlier value. 

The RD gives the relative differences between the known 
(true) and imputed values in column  j of Y.  The  MRD  gives 
the mean RD value - where larger MRD values indicate greater 
imputation uncertainty within the set of imputed values. The  
SRD  gives the standard deviation of the RD  -  where larger 
SRD  values indicate greater variability of the uncertainty. 

 Values of  RZ  within any required range, such as 3±  
SRD’s above and below the MRD, define RD outliers. 
Essentially, the RZ is a measure of the number of  SRD’s  by 
which any particular value of  RD  deviates from the MRD -  
where the set of RD values are assumed to be approximately 
normally distributed for this purpose. The  MRZ  gives the mean  
RZ  value  -  where  PZ = z / m   gives the proportion of  RD  
outliers found within the set  M. 

Randomly deleting values from the variable to be imputed 
will produce a different set of uncertainty statistics each time 
the method is executed, which is an essential part of the 
proposed approach. The idea is to execute the method 
repeatedly, so that the variability of the statistics produced can 
be considered. For example, if large, but very similar, values of 
the MRD and SRD appear under repeated executions of the 
method, then the imputation process has high uncertainty, but 
this uncertainty does not depend on the particular set of values 
that are missing. This repetitive, stochastic approach is a key 
part of most modern imputation methods. For example, it is 
adopted (via repeated random sampling) as part of the bootstrap 
uncertainty estimation method described in IIA 

It is important to note that deleting values at random from the 
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variable to be imputed increases the proportion of missing data 
in that variable. This affects the results of the imputation 
process, since more values need to be imputed. Further, since 
the method deletes values completely at random, it is assumed 
that the truly missing values (unknown values, rather than 
known values which have been deleted) are also missing 
completely at random (MCAR), in the rigorous sense defined in 
[17]. However, the MCAR assumption can never be proved or 
disproved, regardless of the uncertainty estimation method 
used, because it is impossible to find any sort of pattern within a 
set of unknown values, as pointed out in [18]. 

A. Estimating Uncertainty by Segmenting the Dataset 
Generally, larger MRD values indicate greater uncertainty 

within the set of imputed values. However, larger SRD values 
show that this uncertainty is highly variable, and therefore it 
may be localised within one or more clearly defined data 
segments within the variable to be imputed - such as a 
particular set of missingness patterns (see Fig. 1), or a set of 
categories with clearly defined boundaries. In these cases it can 
be useful to discover the distribution of the RD values across 
these data segments, or to discover whether some segments 
contain higher proportions of RD outlier values than others 
(using equations (4) and (5)). To achieve this it is essential to 
delete the same proportion of values from each segment before 
measuring the uncertainties, so that each segment can be 
assessed equally. 

Segmentation by category can be used to estimate the 
uncertainty created by imputation methods which do not utilise 
the missingness patterns within the data matrix - e.g. those 
methods which do not rely on regression based techniques to 
generate imputed values. When the dataset is segmented by 
category the process of deleting the same proportion of values 
from each category can be easily achieved by detecting the first 
and last rows of each category within the data matrix, as shown 

in the left hand part of Fig. 2, below. However, it should be 
ensured that the proportion of known values in each category is 
sufficient to support the imputation process (where this is 
required - depending on the imputation method used, and on the 
proportion of truly missing values in each category). In cases 
where this is not possible the offending categories should be 
excluded from the uncertainty estimation process. 

The method can also be used to compare and analyse the 
uncertainties within the missingness patterns found in the data 
matrix, as shown in the right hand part of Fig. 2. This can be 
implemented as part of any regression based imputation 
method which derives a different set of regression coefficients 
for each missingness pattern. 

For example, the expectation-maximisation (EM) imputation 
algorithm, as described in [19] and [20], estimates missing 
values by deriving a unique regression equation for each row 
within each missingness pattern. Where each term in this 
equation is formed using the product of one of the derived 
regression coefficients for the missingness pattern in question, 
and one of the known values in the row being imputed. 
However, if the known values within a particular pattern do not 
form any sort of order within themselves (if they cannot be used 
to predict one another), then the uncertainty within the imputed 
values in this pattern will be large. 

To properly compare and analyse the uncertainty within the 
imputed values in each missingness pattern it is essential to 
delete the same proportion of known values from all of the 
patterns to be evaluated. The algorithm used to perform these 
deletions must ensure that deleting values from the variable to 
be imputed does not create any new (and hence artificial) 
missingness patterns within the data matrix. A description of 
this algorithm, which is the most procedurally complex part of 
the proposed approach, is given below. 

 

 

 
Fig. 2 – Comparing and analysing the uncertainty in different data segments 

Pattern 1 
200  rows 

Pattern 2 
(not evaluated) 

Pattern 3 
500  rows 

Pattern 4 
1000  rows 

Pattern 5 
(not evaluated) 

Data matrix segmented 
into missingness patterns

Category 1 
1000  rows 

Category 2 
300  rows 

Category 5 
400  rows 

Category 3 
500  rows 

Data matrix segmented 
into categories 

Category 4 
(not evaluated) 

Uncertainty statistics are 
computed separately for 
all categories that have 
missing values, so that 
they can be compared, 
and analysed separately 

Only those patterns that 
have missing values in the 
data matrix column being 
imputed are evaluated (by 
comparing and analysing 
the uncertainty statistics 
for each such pattern) 
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function    matrix   balanced_ random_deletion_across_all_missingness_patterns_in_the_data_matrix  
         ( matrix  data,   vector  patterns,   int  c,   int  d ) 
 dataMatrixRow   data_row 
 vector   match_rows 
 missPatternRow   patt 
 integer   rows_to_add,   random_row 
 boolean   match 
 
 for   i  =  1   to   num_rows_in ( patterns ) 
  patt   =   patterns ( i ) 
  if   ( patt ( c )  ==  missing   &&   some_values_are_present_in ( patt )  ==  true ) 
   match_rows  =  new  vector ( ) 
   for  k  =  1   to  num_rows_in ( data ) 
    data_row  =  data ( k ) 
    if   ( data_row ( c )  ==  present ) 
     match  =   true 
     for   j  =  1   to   num_columns_in ( data ) 
       if   ( patt ( j )  ==   present    &&    data_row ( j )  ==  missing ) 
       match  =  false 
      end  if 
     next   j 
     if   ( match  ==  true ) 
      match_rows . Add_To_End ( k ) 
     end  if 
    end  if 
   next  k 
 
   rows_to_add  =   ( d / 100 )  *  num_rows_in ( patt ) 
   if   ( num_rows_in ( match_rows )   >   rows_to_add  *  2 ) 
    for  k  =  1   to   rows_to_add 
     random_row  =  Random ( 1,   num_rows_in ( match_rows ) ) 
     data_row  =  data ( match_rows ( random_row ) ) 
     match_rows . Remove_Row ( random_row ) 
     for   j  =  1   to  num_columns_in ( data ) 
      if   ( patt ( j )  ==  missing ) 
       data_row ( j )  =  missing 
      end  if 
     next   j 
    next  k 
   end  if 
  end  if 
 next   i 
 return  data 
end  function 

Algorithm 1 – A procedure to perform balanced random deletions across a set of missingness patterns 
 
The procedure increases the number of rows in each of the 

missingness patterns to be evaluated by the same proportion, i.e. 
the number of rows in each pattern that has missing values in 
column c is increased by d%. This is achieved by transferring  
data  matrix rows from one pattern to another. For example, 
when deleting from  data  column one the procedure might 
transfer a  data  row by changing it’s pattern from  “1111”  to  
“0111”. However, the data rows transferred must have known 
values in the same columns as the  data  rows in the pattern to 
be evaluated (the pattern with rows added to it). For example, if 
the pattern to be evaluated was  “0011”,  then  data  rows with 
the pattern  “1100” could not be transferred to that pattern, but  
data  rows with the pattern  “1111”, could be transferred to it. 

The final pair of nested  for  loops perform the random row 
transfers. However, this can only be achieved for a particular 

pattern if the number of  data  rows available for transfer (as 
stored in the  match_rows vector) is more than double the 
number of rows to be added to the pattern to be evaluated. This 
ensures the stochastic nature of the row transfer process under 
repeated executions, which is an essential part of the method. If 
the number of data rows available for transfer is too small, then 
the uncertainty in the pattern to be evaluated cannot be 
estimated separately. However, this should only occur very 
rarely  - i.e. when the proportion of missing values in column  c  
is large (perhaps above 80%), or when the number of 
missingness patterns is a small proportion of the number of 
possible patterns. In these cases the method of comparing the 
uncertainty across a set of categories should be preferred. 
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B. Reducing Imputation Uncertainty 
The method described in the preceding section allows the 

uncertainty in each data segment (see Fig. 2) to be estimated 
separately - i.e. the method allows the statistics returned by 
equations (1) to (5) to be computed separately for each segment. 
Further, since the same proportion of values were deleted from 
each segment, an additional uncertainty statistic can be 
computed for each segment, as follows; 

Let  j  =  the column in the Y  matrix from which the 
values were randomly deleted and  “put back”. 

Let D = the data segment being evaluated for 
uncertainty  (see Fig. 2). 

Let },....{ 1 srrS = be the set of rows in D with a 
deleted value, where  i  indexes these rows. 

Let },....{ 1 mrrM =  be the set of  all rows in Y  with 
a deleted value, where  i  indexes these rows 

The expected uncertainty for the data segment D  is then 
given by  

∑
∈

=
Mi

ijRD
m
sEU  

Where each ijRD value is computed using equation  (1) 

The expected uncertainty is simply a device which enables 
the calculation of a useful uncertainty statistic. In fact, one 
would expect the uncertainty within the imputed values in each 
segment to be very different, rather than conforming to some 
expected value. For example, one would expect the regression 
equations derived for each missingness pattern to have 
different predictive powers. Therefore, one would expect the 
imputed values generated using these equations to have varying 
degrees of uncertainty. However, the idea is to use the notion of 
the expected uncertainty to compute the statistic described 
below. This is achieved by comparing the expected and actual 
uncertainties for the data segment D, where the actual 
uncertainty is given by 

∑
∈

=
Si

ijRDAU  

Where each  ijRD  value is computed using equation  (1) 

It follows that the equation EUAUSU = can be used to 
discover whether the data segment  D  has contributed more or 
less than it’s expected proportion of the overall uncertainty 
within the imputed values in column  j  of the Y  data matrix.  
For example, 

If   SU = 0.5  then  D  has contributed half of it’s 
expected proportion of the overall uncertainty. 
If  SU = 10 then D has contributed ten times it’s 
expected proportion of the overall uncertainty. 
Consequently, all of the data segments which contribute 

more than their expected share of the overall uncertainty can be 
discovered. The MRD and SU for each segment can then be 
used to estimate the uncertainty in those segments. And in cases 
where the uncertainty for a particular segment is 
disproportionately large, the overall uncertainty can be reduced 
by discarding all of the imputed values in that segment. This 
approach can be beneficial in cases where the proportion of 
imputed values in the offending segments is relatively small  - 
i.e. in these cases the overall uncertainty will be reduced by 
discarding a small proportion of the imputed values. However, 
in cases where the proportion of imputed values in the 
offending segments is relatively large, a much larger proportion 
of the imputed values would be discarded - and in the most 
extreme cases the best decision could be not to proceed with the 
imputation process at all. 

The fundamental argument underpinning this method of 
uncertainty reduction is as follows. If the deleted values in a 
particular segment were “put back” very inaccurately, then it is 
probable that the truly missing values in this segment will 
contain imputation errors of a similar magnitude. However, it is 
impossible to prove, or disprove, this assertion, because the 
imputation of truly missing values can never be proven to be 
accurate using any approach - since the true values are 
unavailable for comparison. 

It is important to emphasise that the decision to discard the 
imputed values in a particular data segment must be taken by 
the user of the imputation software. This decision is complex 
and difficult to automate, because all of the uncertainty 
statistics for all of the segments need to be considered and 
compared. For example, an examination of the uncertainty 
statistics could reveal that the uncertainty in a particular 
segment has been caused by one or two extreme outlier RD 
values (see equations (4) and (5)). In such cases the user of the 
software might decide to examine the data rows in the 
offending segment in detail, to discover why this has occurred. 
This could reveal some hidden characteristics of the missing 
value dataset, which could not be discovered using any other 
approach. 

 

IV. APPLYING THE METHOD IN PRACTICE:  A CASE STUDY 
This section describes how the method was used to estimate 

uncertainty when imputing missing data in a survey dataset 
which describes 61,389 small to medium-sized business 
enterprises (SME’s), within the United Kingdom (UK). The 
imputation process was expected to produce high levels of 
uncertainty within the imputed values because of the poor 
quality of the dataset, as described below. 
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Table I – Variables in the case study dataset 

Dataset  variable % missing 

UKSIC Category 0 % 

OS Easting 0 % 

OS Northing 0 % 

Number of Employees 0 % 

Payroll 63.08 % 

Sales 67.50 % 

Net Worth 40.69 % 

Profit Before Tax 58.16 % 

Directors Pay 59.40 % 

Depreciation 63.90 % 

• The financial variables all have large proportions of 
missing data. 

• 39% of the SME’s have no known financial figures 
whatsoever. 

• The known values within the financial variables contain 
small proportions of extreme outlier values. 

• There are 24 missingness patterns within the dataset, but 
these are unbalanced, with some patterns containing very 
few SME’s. 

• There are 479 different UKSIC categories within the 
dataset, but approximately 11% of these have more than 
80% missing values. 

• The quality of the UKSIC categorization is poor, with 
some categories containing SME’s that could not be 
properly classified. 

Where the SME’s in each UKSIC (United Kingdom 
Standard Industrial Classification) category carry out the same 
commercial activities, such as “Publishing of software” etc. 
And where the OS Easting and OS Northing variables specify 
the geographical location of each SME, using UK Ordnance 
Survey mapping co-ordinates.  

The imputation experiments described below were designed 
to discover whether imputation of the missing financial figures 
was feasible, and to discover whether a parametric imputation 
method (the EM algorithm) or a non-parametric imputation 
method (K nearest neighbors (KNN), [15], [16] and [21]) 
would produce the least uncertainty within the imputed values. 
For EM imputation a matrix was formed (see Fig. 1) with 
61,389 rows and 7 columns - i.e. the 6 SME financial variables 
and the number of employees. The EM algorithm was then used 
to impute all of the missing values in the matrix using a single 
execution of that algorithm. The following distance function 
was employed for nearest neighbor imputation 

  
( ) ( )∑ ∑

= =
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Where mS  is the SME with the missing financial value, and 
iS  are the set of k nearest neighbor SME’s (donors), which 

are taken from the same UKSIC category as mS , and which 
have the same (or the closest available) number of employees 
as mS And where ( )im SSd ,  gives the geographical 
(Euclidean) distance between mS  and iS , so that financial 
values in geographically closer SME donors are given more 
weight. 

The results of the Payroll imputation evaluation experiments 
are tabulated below - i.e. Tables II and III show the uncertainty 
statistics that were produced (using equations (1) to (5)) when 
imputing the missing Payroll figures for 61,389 SME’s, using 
the EM and KNN imputation methods described above. 

Table II – Evaluation of the EM imputation process. 

MRD SRD MRZ % Outliers

6.75 97.03 14.22 0.27

5.65 67.13 14.01 0.32

6.50 55.34 8.63 0.80

7.13 65.20 8.92 0.75

6.22 67.29 10.78 0.48

5.29 57.01 11.38 0.43

3.85 30.68 7.68 0.91

8.92 111.07 10.76 0.54

7.38 76.39 9.23 0.70

7.35 93.14 11.02 0.37

6.50 72.03 10.66 0.56

Table III – Evaluation of the KNN imputation process. 

MRD SRD MRZ % Outliers

7.23 64.72 10.64 0.58

9.65 116.04 9.96 0.47

11.19 245.05 11.15 0.25

5.14 43.99 8.93 0.68

22.01 484.75 14.01 0.22

5.35 54.95 9.29 0.54

6.66 78.53 11.29 0.40

6.76 65.32 10.66 0.58

8.78 174.69 12.83 0.22

12.95 249.70 18.25 0.18

9.58 157.78 11.70 0.41

 

A. Interpreting the Experimental Results 
5% of the known Payroll values were randomly deleted for 

all experiments, so that a measure of how accurately they were 
“put back” could be taken. The experiments were repeated 10 
times for each of the imputation methods, so that the variability 
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of the uncertainty statistics produced could be considered. The 
bottom rows of Tables II and III give the mean values of the 
statistics produced for all 20 experiments. A reasonable 
uncertainty benchmark for any imputation process would be an 
MRD value of less than one - i.e. the deleted values should be 
“put back” (on average) to within 100% of their true values. 
However, Tables II and III show that the MRD values returned 
for the SME dataset were 6.50 (for the EM imputation process) 
and 9.58 (for KNN)  -  i.e. the expected high uncertainty levels 
appeared, because of the overall poor quality of the data. 

The MRD values in Table II show that the EM imputation 
process created less uncertainty than the KNN process, and the 
SRD values show that EM also produced less variable 
uncertainty than KNN - i.e. the uncertainty for the KNN 
process was much more dependant on the particular set of 
values that were deleted. The MRZ and % Outliers show that a 
small proportion of the deleted values were “put back” very 
inaccurately for every experiment. Further investigation 
revealed that these inaccurately replaced values were causing 
the major portion of the uncertainty - i.e. equation (1) returned 
RD values of between zero and one for at least 83% of the 
deleted values for every experiment, but the MRD values were 
always much larger, as Tables II and III show. 

For EM, the same two missingness patterns were found to be 
causing the major portion of the overall uncertainty for every 
experiment. However, these patterns contained most of the 
SME’s, and discarding the imputed values in them would have 
removed over 80% of the imputed values, so this was not 
attempted. For KNN the UKSIC categories causing the most 
uncertainty differed for every experiment  -  i.e. they depended 
on the particular set of values that were deleted  -  so there was 
no point in discarding the imputed values in any of these 
categories. 

It was therefore concluded that the high proportion of 
missing Payroll values, combined with the overall poor quality 
of the dataset, made the feasibility of Payroll imputation 
questionable, and that in this case discarding the imputed 
values in selected data segments could not be effectively used 
to decrease imputation uncertainty. It was further concluded 
that if imputation was to be attempted, a parametric method 
should be used, but the simple EM method described above 
should be improved. For example, the missing values within 
each UKSIC category could be imputed separately, and some 
way of utilising the geographical information could be built 
into the process. 

 

V.  SUMMARY AND DISCUSSION 
How can the feasibility of the imputation project be assessed?  

How can the results of the imputation process be evaluated? 
How can the effectiveness of candidate imputation methods be 
compared? We argue that these problems have not been 
sufficiently addressed, and we have presented a new method 
for the estimation and reduction of imputation uncertainty, 
which helps to solve them. All imputation methods have the 

same basic objective - i.e. they try to make the best possible use 
of the information content (the patterns etc.) within the known 
values, to generate the best possible estimates for the missing 
values. We argue that uncertainty evaluation methods should 
also make the best possible use of the known values, and the 
method described in this paper does just this. 

Current uncertainty estimation methods have their 
limitations. In particular, they take no account of the accuracy 
of the imputed values, and they make no provision for the 
reduction of imputation uncertainty. The proposed approach 
addresses these problems, and we argue that the new method is 
fully consistent with imputation objectives, since it would be 
very hard to deny the success of any imputation method which 
can be shown to have repeatedly “put back” a set deleted values 
with a high degree of accuracy. 

The proposed approach allows the uncertainty within 
different data segments (such as missingness patterns) to be 
estimated separately. And in cases where the uncertainty for a 
particular segment is disproportionately large, the overall 
uncertainty can be reduced by discarding all of the imputed 
values in that segment. Current uncertainty estimation methods 
do not adopt this approach, but there seems to be no reason why 
they could not be adapted for this purpose. However, is 
important to emphasise that the decision to discard the imputed 
values in a particular segment must be taken by the user of the 
imputation software. We argue that there is no substitute for 
human judgment when considering these matters, and that the 
proposed method simply facilitates the decision making 
process, by automating the calculation and display of various 
uncertainty statistics. 
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