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The Taylor Effect Of Asset Returns: Stylized
Fact Or Finite-Sample Behaviour?
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Abstract—Different power transformations of ab-
solute returns of various financial assets have been
found to display different magnitudes of sample au-
tocorrelations, a property referred to as the Taylor
effect.
stochastic model for the returns under which, the as-

In this paper, we consider the long memory

ymptotic rate of decay of the autocorrelations of pow-
ers of absolute returns is governed by their long mem-
ory parameter. We show that, although the true long
memory parameter of powers of absolute returns is
the same across the different powers, the local Whittle
estimator of the long memory parameter has finite-
sample bias that differs across the power transfor-
mations chosen. A Monte-Carlo experiment provides
evidence in support of our result that the reported
differences in the long-run properties of the various
power transformations of absolute returns could be
due to finite-sample behaviour.

Keywords: Taylor effect, stochastic volatility, local

Whittle estimation

1 Introduction

In the empirical literature, asset returns are commonly
found to be approximately uncorrelated over time while
their non-linear transformations, such as powers of ab-
solute returns and their logarithms, show significant au-
tocorrelation over many lags. The degree of the latter
autocorrelations has been found to vary across the dif-
ferent non-linear transformations chosen. This was first
noted by [19], who found that for various financial series
the sample autocorrelations are higher for the absolute
returns than for the squared ones. In later studies, [7],
[11], [6] and [12] examined a range of financial series and
observed that the sample autocorrelations of the p—th
power of absolute returns for various values of p tend to
be highest when p = 1. This observation was termed in
[11] as the Taylor effect and has been considered as one
of the empirical stylized facts on asset returns.

Various models have been proposed in the literature to ac-
count for the strong sample autocorrelations of the pow-
ers of absolute returns. Among them is the long memory
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stochastic volatility (LMSV) model proposed indepen-
dently by [2] and [14], and whose form has allowed for
certain statistical results to be established across differ-
ent powers p. In particular, the autocorrelation function
of powers of absolute returns under the LMSV model was
derived by [14]. The latter author found that the power
that gives rise to the highest autocorrelations depends
on the parameters in the underlying LMSV model and
therefore, there will be certain LMSV models for which
the autocorrelations of the powers of absolute returns are
highest when p = 1. Hence, one cannot rule out that the
empirical results found for the sample autocorrelations of
powers of returns are simply driven by their population
counterparts. In such a case, the Taylor effect would be
due to the data generating mechanism and then the prac-
titioner would want to choose a model that accounts for
this effect.

However, one would wonder whether any of the observed
differences in the sample autocorrelations of powers of
absolute returns are driven by differences in the finite-
sample behaviour of the sample autocorrelation due to
the power transformation chosen. Indications of this can
be found in studies related to the asymptotic rate of de-
cay of the autocorrelations of powers of absolute returns.
Under the LMSV model, [14] established that the asymp-
totic rate of decay of the autocorrelations of powers of ab-
solute returns is the same for all powers p. This common
rate of decay is governed by the long memory parameter
in the LMSV model, so that powers of absolute returns
have the same long memory parameter irrespective of the
power p chosen. However, Monte-Carlo experiments with
the LMSV model, performed by [20], [15], [5] and [3], sug-
gest that semiparametric estimators of the long memory
parameter of the p—th power of absolute returns display
higher degree of negative finite-sample bias when p = 2
than when p = 1. As these semiparametric estimators
are periodogram-based, the question arises as to whether
when looking at powers of absolute returns the finite-
sample properties of estimators based on second-order
dependence are affected by the choice of the power p. In
such a case, it could be possible that the Taylor effect is
also driven by the finite-sample behaviour of the estima-
tors used to identify the dependence in the p—th powers
of absolute returns.

The main purpose of this paper is to investigate the effect
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of the power p of absolute returns on the finite-sample be-
haviour of estimation based on second-order dependence.
We consider the LMSV model for the returns and exam-
ine estimation of the long memory parameter for powers
of absolute returns. We choose the local Whittle (LW)
estimator of the long memory parameter introduced by
[16]; for the p—th power of absolute returns under the
LMSV model its consistency was established by [3] and
its finite-sample properties were examined in some of the
aforementioned Monte-Carlo experiments. We show that
the finite-sample properties of the LW estimator applied
to the p—th power of absolute returns under the LMSV
model differ across the power p chosen. In particular, we
prove that the dominant term in its finite-sample bias de-
pends on the power p and that for certain cases the latter
dependence is quadratic in p. We also conduct a Monte-
Carlo experiment as in [15] and [3] extending the range
of the powers p chosen and find that the finite-sample
bias of the LW estimator of the p—th power of absolute
returns is severely affected by the choice of the power p.
The rest of the paper is as follows. Section 2 discusses
the LMSV model for the returns and the LW estimator of
the long memory parameter. Section 3 contains our the-
oretical results on the finite-sample properties of the LW
estimator applied to powers of absolute returns under the
LMSV model of Section 2. A Monte-Carlo study is con-
tained in Section 4, while Section 5 concludes. The proofs
of Section 3 are found in Appendix A and all figures are
given in Appendix B.

2 LMSV model and LW estimation

We consider a version of the LMSV model of [14] and [2].
We assume that the returns of an asset, denoted by {r:},
satisfy

Ut0¢

= ougexp(ophy), (1)
where o and o), are positive constants, and that the fol-
lowing assumptions hold:

A1 {u;} is a standard Gaussian i.i.d. sequence.
A.2 {h,} is a standard Gaussian sequence.
A3 {h:} and {u:} are mutually independent.

A4 {h;} is a long memory sequence with long memory
parameter 0 < ap < 1, whose spectral density func-
tion fp, (.) satisfies

Fo () = X" (con +c1.nA? +0(N)), A — 0+,

and autocorrelation function py, (.) has the property

—14+ap
)

o (T) ~ ent T — +o0.
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Assumptions A.1-A.3 are as those in [14] and [2]. Un-
der these assumptions, the latter authors derived var-
ious properties for the returns and their non-linear
transformations.  They also considered that {h;} is
a stationary ARFIMA(p,an/2,q) model, see [1] and
[13]. Our assumption A.4 is satisfied by stationary
ARFIM A(p, ap /2, q) models and is one of the conditions
employed in [3] to examine the consistency of the LW es-
timator applied to powers of absolute returns under the
LMSV model (1).

Following [14], we have under assumptions A.1 and A.3
that the autocorrelation function p,, (.) of {|r|”} satisfies

exp (p*oppy (1)) — 1
kpexp (p?o7) — 1

pp (1) = , T (2)

where )
. _ VT (p+3)
P = T Ry
()
with T' () denoting the gamma function, and hence
p’oj,
kpexp (p?os

pp(T) )_1ph(T)7 T — 00,

so that for big lags 7 the autocorrelation function of
{|r¢|"} is proportional to that of {h;}. If furthermore we
use assumption A.4, we have that

2 2
P 0yCh

Kp €Xp (pzcri) —

Pp (1) ~ 1 ‘T|71+ah , T—00. (3)
As noted in [14], it is clear from (2) that it is not possi-
ble to make statements about which power p maximizes
the autocorrelation function of {|r¢|”}. This does not ex-
clude the possibility that the autocorrelation function of
{|r¢|’} is maximized when p = 1. The author also adds
that higher values of o7 are associated with lower pow-
ers p maximizing the autocorrelation function p,, (.) . Ex-
pression (3) implies that, for big lags, the autocorrelation
function of {|r:|"} decays at the same rate for all powers
p, and this rate of decay is controlled by the long memory
parameter oy,

For the estimation of the long memory parameter, we use
the LW estimator, see [16] and [17]. Given a generic set
of data {x1, ..., 2, }, the LW estimator &, is defined as

a, = arg minU, (a),
a€[—1,1]

of the objective function

1 & o =
Un() =log | — > AFL(N) | = — log(A),
j=1 j=1

2mj

where \; = =°4, j = 1,..,n denote the Fourier frequen-

cies,
2

1

n
E xtezt)\
t=1

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol 11

WCE 2008, July 2 - 4, 2008, London, U.K.

is the periodogram of the data and m = m,, is the band-
width parameter for which it is assumed that

m— oo and m=o(n), asn— Q.

Here, we consider the LW estimator applied to {|r|"},
which we denote by @,. In the LMSV model with as-
sumptions A.1-A.4, [3] showed that the long memory pa-
rameter of {|r;|"} is always given by «y,, and moreover es-
tablished the consistency of the LW estimator @,,. Under
further assumptions, they also established the asymptotic
distribution of @, which was found do be independent
of the power p. However, the Monte-Carlo experiments
n [15] and [3] for the cases p = 1 and p = 2 suggest
that the finite-sample behaviour, in particular the finite-
sample bias, of the LW estimator &, is heavily affected
by the choice of the power p. These results point towards
the possibility that the choice of the power p affects the
finite-sample behaviour of periodogram-based estimators
applied to {|r|"}.

3 Power transformations of the LMSV
model and LW estimation

In this section we provide our theoretical results on the
finite-sample behaviour of the LW estimator &, applied
to {|r¢|"}. Recall from the discussion above that for all
powers p > 0, the true long memory parameter of {|r;|"}
is equal to aij,. We use the notation Bg = (2W)Bﬁ and

1 . a
Qmp = = z (log (£) +1) (F(p)con) A" e (A,
J_
where ¢;(p) is given in (12). The proof of the following
theorem is found in Appendix 5.

Theorem 1 Suppose that the returns {r;} follows the
LMSV model (1) and that assumptions A.1-A.4 are sat-
isfied.

a) If a, > 3, then

~ m\1=on 02¢5 ,CoB1_q
G- = —(5) T
—(Qm.p — E(Qm.p))(1 +0p(1))

+op <m% v (T:)l_a) : (4)

with Co = [ [ |1 =17 |1|”*" dl.
b) If ap, < %, then
N B m\er B,
Gp =~ = 7 (E) 27TCOhC( P)
—(Qmp — E(Qmp))(1 + 0p(1))

N S I
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where
Cp) = Ci(p)+ Calp)
o 2(k71) 2(k—1)
- P 9 g,
=2
\fF (p+ e (p*o?) (©)
(p—i—l p20% ’

wzthSk—th ), fork=2,3,.

For any power p > 0, equations (4) and (5) provide the
deviation of the estimator @, from its true value o, For
relatively large fixed n, the last term in (4) and (5) will
become negligible. Notice also that in both equations (4)
and (5), the first term is non-stochastic and the second
term has zero mean. Therefore, for any p > 0, the domi-
nant term in the finite-sample bias of the estimator &, is
given by

m\ 1—an CT}%CO hOZBl_a} 9 1
Y _hm e o h if _ 7
(n) 2 P Han > 2’ (™)

or by

m\e B, . 1
(@) o, wa<k

It is clear from (7) and (8) that the p—th power trans-
formation that we apply to absolute returns affects the
finite-sample bias of the LW estimator. If ap > %, the
effect of p is quadratic. If oy, < %, the effect of p comes
through the quantity C(p). Notice that C(p) is a function
of the power p, the variance o2 and also of the autocorre-
lation function of {h;} through the quantities S, in C4 (p).
Moreover, the autocorrelation function of {h;} will have
to be non-negative in order for the autocorrelation func-
tion of {|r;|"} to be non-negative. Since oy, < %, we have
that for all k = 2,3, ... Sy is a positive finite quantity that
does depend on p. So, C1(p) is a strictly increasing func-
tion in p > 0. On the other hand, Cy(p) depends on p and
O'h, and one can easily show that it is strictly increasing
inp> =. For p < 2, Cs(p) can be increasing and/or

decreablng inp dependlng on the value of 02, see Figures
1 and 2. Therefore, the function C ( ) is strictly increas-
ing in p for all p > =. For p < =, the shape of C(p)

depends on the value of o2 and Whether C4(p) dominates
Cs(p) or not. However, even if o7 were known, there are
practical obstacles in the calculation of the derivative of
Cy(p), since Cy(p) depends also on the autocorrelation
function of {h;} for which no parametric model has been
specified’.

'Even if we chose the

simple ARFIMA(O, a2” ,0)

model for {h¢} and knew the true value of op, we
would need to compare for fixed «p the derivative of
2(k=1) 52(k=1) (p(q_2h k (14 %k k

— P ) (+=)

Al = Z ( () ) lezz(r(mf%)

with that of Cz( ).
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Corollary 1 In the LMSV model (1) with assumptions
A.1-A.4, we have that the finite-sample bias of the LW
estimator applied to |ry|" depends on the power transfor-
mation p > 0 chosen. In particular, when ap > % or

when ap, < % and p > U%, the dominant term in the
h

finite-sample bias of the LW estimator Q) increases (in
absolute terms) as p increases.

The results of the corollary help explain the results of
the Monte-Carlo experiments conducted by [15] and [3],
which showed that the LW estimator @, displays a higher
degree of negative finite-sample bias when p = 2 than
when p = 1. As the LW estimator is based on the peri-
odogram of the data, the corollary also suggests that the
choice of the power p of absolute returns can affect the
finite-sample behaviour of estimation based on second-
order long-run dependence.

4 Monte-Carlo simulations

In this section, we present our results on Monte-Carlo
simulations conducted to examine the effect of the power
p on the finite sample behaviour of the LW estimator &,
under the LMSV model (1) for the returns. We carry
out 2,000 replications of sample size n = 8192. We em-
ploy the [4] algorithm and generate {h;} as a standard
Gaussian ARFIM A(0, %-,0) process with o, = 0.4,0.8.
The process {u;} is generated independently of {h;} and
is drawn as a sequence of i.i.d. standard Gaussian vari-
ables. We set ¢ = o5, = 1. We choose the powers
p = 0.125,0.25, ..., 2 in the p—th power transformation of
the absolute simulated returns. We take the bandwidth
parameter to be m = [n%6]. We calculate the Monte-
Carlo bias, standard deviation and RMSE. The Monte-
Carlo bias and RMSE are presented in Figures 3-6 in
Appendix B.

Concentrating on the effect of the power p, it is clear from
the figures that the finite-sample bias and RMSE tends
to increase in absolute value with p. The magnitude of
the finite-sample bias is smallest at either at p = 0.25
or p = 0.375. The differences across the biases for p =
0.125,..,0.5 are small as evident from the figures. The
finite-sample bias of @, when p = 2 is approximately
twice as large of that when p = 1. It is also interesting
to notice the difference in the biases for the two memory
parameters ay, = 0.4, 0.8; the finite-sample bias increases
faster (in absolute value) with p when aj = 0.8 than
when a;, = 0.4.

The results of the Monte-Carlo simulations support our
theoretical findings. Under the LMSV model (1) for the
returns {r.}, the finite-sample bias of the LW estimator
applied to the transformation {|r;|"} is affected by the
choice of the power p and this effect depends on the long
memory parameter ay,.

ISBN:978-988-17012-3-7

5 Conclusions

This paper considers the LMSV model for asset returns
and examines the effect of the power p on the finite-
sample behaviour of the LW estimator applied to pow-
ers of absolute returns {|r;|"}. We find that the finite-
sample bias of the LW estimator of {|r;|"} is affected by
the choice of the power p. The Monte-Carlo experiment
conducted is in line with our theoretical findings and sug-
gests that the finite-sample bias of the LW estimator of
{|r¢|’} is smallest when p = 0.25 or p = 0.375 and is
increasing for bigger powers p.

There are two main conclusions to be drawn from our
results. Firstly, for the estimation of the long mem-
ory parameter in the LMSV model for the returns, ab-
solute returns are more appropriate than squared returns.
This should not come as a surprise, as it is not the first
time that absolute returns have been found to outper-
form squared returns. In their empirical study, [10] found
that measures of the volatility based on absolute returns
outperform in terms of predictability the equivalent mea-
sures based on squared returns; [9] showed that volatility
measures based on absolute returns have more desirable
properties that those based on squared returns. Secondly,
the finite-sample behaviour of statistics applied to pow-
ers of returns and which are based on second-order mo-
ments is likely to be affected by the choice of the power.
The latter conclusion would suggest that the Taylor ef-
fect observed in empirical applications can be also driven
by the finite-sample properties of the sample autocorre-
lation function used to identify the dependence in powers
of absolute returns.

Appendix A

Proof of Theorem 1.
the LMSV model (1) that

For any p > 0, we have under

[P = oPE (Jug]?) exp (ponhy)
+0? (Jue]” — E (Jue|”)) exp (ponhs)
= /,L(p) + Yt + Zt,
where
yr = oPE(Jul”)exp (ponhi) —
2 = o (Jul” — E(lui]")) exp (ponhe),

and
1, = 0P E (Jue|”) E (exp (ponhy)) -

To show equations (4) and (5), we will apply Theorem 2 of
[3]. Assumption B in [3] was shown by the same authors
to hold for {|r¢|"}. So, we need to establish assumption
T(a, ) in [3] on the spectral density fi.» (.) of {|r|"}.
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Under assumption A.3, we have that {y;} and {z} are
uncorrelated from each other and that {z;} is a sequence
of zero mean uncorrelated random variables with variance
o2. Hence, for all A € (—m, 7],

for O = 5,0+ 1O
- LW+ Z o)
where
o= Var(o (ul’ - E (ul)exp (bonh)

~(Gefped) ()

X exp (2p202) , (10)

using assumption A.3 and equations (20) and (21) in
Lemma 1.

Next, we examine the spectral density f, (.). We have
that y, = 0P E (|u|”) exp (ponhe) — p, := Gy (hy) . Since
E (Gp(ht)) = 0 and E? (G, (ht)) < oo, {y+} admits the
Hermite expansion

- Z Ckkl K (he)

where Hy(x) is the k—th Hermite polynomial defined as

2

_ k<2 d"(e”7)
Hk(x) = (—1) € W, x € R7 (].1)
and ¢ (p) is the k—th Hermite coefficient given by
cr (p) = E(Gp (he) Hi (he)) . (12)

Notice that for all p > 0, we have from Lemma 1 that
¢k (p) #0forall k =1,2, ...

Following the steps of [3] pp. 228-229, we have that the
spectral density of {y:} satisfies

=35

where f(*k) (.) is the k—th order convolution of the spec-
tral density of {h;} for which we have under assumption
A.4 that, for k > 2 :

FLNOVE (13)

L IfE(l -« )
( 1+k(1— ah)) . as A — 04, (14)
where Cy = f f R S | e [

— 00

X |lk_1 |_ah dll...dlk_l.

2For more details on Hermite expansions see [18] and [8].
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i If k(1 —ap) = 1,

CF () <CA%, as A — 0+,

for any § > 0.
i, If k(1 — ap) > 1,

f}(L*k) (N <C, forall A€ (—m, ] (15)

From (9) and (13) we have that for all A € (—m, 7],

o?
fop ) = £+ 2

62 2
& ) fu ) + 2 502 )

2
Ck (*k) g,
+ Z k, )+ A

a) Since ap > 3%, then we deduce from (14) that
f’(l*z) ) = CghCQ/\71+2(1fah) n 0(/\71+2(17ah)> as

A — 0+, and from (15) that for all k > 3, f;™ (\) < C

for all A € (—m, «]. Hence, from assumption A.4 we have
that, as A — O+
f|r|p ()\) = c% (p) AT n (Co,h + C1’h)\2 + O()\Q))
2
+cz2(p) C%,hCZ)\—(Qah—l)
+o (A*(zah*”) +C'(p)
2
—a C —a
= A\ <c¥ (p) co.n + 22(17) cath)\l "
0 ()\1—04)1)) , (].6)
where C/ (p) = Z Ck (P) fh*k ()\)4—%7 which satisfies that

k=3
C’;, =0 ()\7(30"‘72)> as A — 0+ using (14) and (15).

From (16) we have that assumption T'(ag, 8) in [3] is sat-
isfied. Therefore, we can apply Theorem 2 of [3] and
Lemma 1.to obtain that

N . m\eh c3 (p) co,nCa
G-an = —(3) e B
*(Qm,p - E(Qm,p))(l + Op(l))

1 m\ 1—an
+o, (m‘? + (—) )
n

my\ %h U2CO,hC2Blfah
= - (5) g
~(Qmp = E(Qmp))(1 + 0p(1))

1 m 17ah
+op (m_2 + (—) ) ,
n
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as required.

b) Since aj, < %, then we deduce from (15) that for all

k>2 f*(\) < Cforall A € (—7,7]. Hence, from
assumption A.4 we have that, as A — 0+

frp ) = & () A" (con + c1uA? + 0(X?)) + c(p)
E )\*ah, (C% (p) Co.h + C(p)>\ah + 0()\04)1)) (17)
- ci( *k) a?
where ¢(p k"’ )+ 2=
k=2

From (17) we have that assumption T'(ayg, 8) in [3] is sat-
isfied. Therefore, we can apply Theorem 2 of [3] and
obtain that

. m\en  c(p)
B = =) Freon
~(Qmp — E(Qmp)) (1 + 0p(1))

o+ (2)7)
- (@) v

2’/TC()7}L
_(Qmm -

E(Qm’p)cz(l +0p(1))
+op (mfé + (%) ) .

We have that

where we denote C(p) = 27 Cz((p ))

2w Z *k) +a§
o) = 0
icﬂ
k=2
ETE N (18)

where for k = 2,3,... we denote S = Y pk (1) and use
l€Z

assumption A.4 and the properties of the Hermite poly-

nomials (11) to deduce that f(*k)( 0) = 7 I(;kk()h) (0) =
5= > pf (1) . Lemma 1 and equation (10) imply that (18)
lEZ

becomes

00 ,) Z(k 1)

B L

k=2

(o o ) el

eem ) e

to complete the proof of the theorem. m

Lemma 1 Suppose that assumptions A.1-A.3 hold.

a) For anyp > 0 and k = 1,2, .. we have that the Hermite

coefficients in (12) satisfy

kK p20.2
o) =B (ful) ke (7). 19)
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b) For any p > 0 we have that

25 p+1
E Py = I({——]. 20
() = 221 (257 (20)
Proof. a) We have that for all k > 1,
cx(p) = E(Gp(he) Hy (b))
E (6PE (|u¢|?) exp (pophy) Hy (hy))
E (Hy (ht))
2 2
= @B (ul) ok (),
since we have that
E (exp (popht)) 76 (popx) ! e ( xQ)dw
xp (po = xp (popx) ——exp | ——
P (PO Rt P (Poh N P 2
—o0
2 2
= exp (p Uh) , (21)
2
and for all £k = 1,2, .. that
B (exp (ponhe) Hi () = [ exp (prna) H ()
X 1 ( xQ)d
——exp| —— | dz
Vor P 2
2 2\ F
_ poy, / 1
= e Hy(x)—
2
o (Jw—pm)) i
2
2 2
pio
= p’%ﬁexp( 2”).
b) Also, we have that
Ellul) = [l e (-5 )
2% T

= /xp%l exp (—z) dx

0

_2%Fp+1
I 2 )’

from the definition of the gamma function. m

Appendix B

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol 11
WCE 2008, July 2 - 4, 2008, London, U.K.

30 q 0 0125 025 0375 05 0.625 075 0875 1 1125 1.25 1.375 1.5 1.625 1.75 1.875 2
L L L L L L L L L L L L L L L )

10 -0.35

Fieure 1: The eraph of C in [0,2] with 02 = 1. Figure 4: Bias of oy, for p = 0.125,0.25, ..., 2, when oy, =
& graph of Ca(p) in {0, 2] h 0.8, n = 8192 and m = [n%9].
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Figure 2: The graph of Ca(p) in [0,2] with 02 = 0.01.  Figure 5: RMSE of @, for p = 0.125,0.25, ...,2, when
ap = 0.4, n = 8192 and m = [n%°].
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Figure 3: Bias of &, for p = 0.125,0.25, ..., 2, when an = pigure 6: RMSE of @, for p = 0.125,0.25,...,2, when
0.4, n = 8192 and m = [n : ] ap, = 087 n = 8192 and m = [nO.ﬁ].
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