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Abstract— To address different uncertainties asso-
ciated with patient recruitment in multicentre clinical
trials a mixed Poisson model is elaborated (patients
arrive at different clinical centres according to delayed
doubly stochastic Poisson processes with gamma dis-
tributed rates). Analytic approach to modeling and
predicting the recruitment at the initial and ongo-
ing stages is suggested. A Bayesian approach to re-
estimating recruitment rates using data at intermedi-
ate time point and predicting the remaining recruit-
ment time and the number of recruited patients in
centres/regions is proposed. Different performance
measures of centres are considered.
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1 Introduction

The recruitment time (time required to complete patient
recruitment) is one of the key decision variables at the
design stage of multicentre clinical trials. Existing tech-
niques of recruitment planning are mainly deterministic
and do not account for various uncertainties associated
with stochasticity in patient arrival, variation in recruit-
ment rates between different centres and centre initiation
delays.

It is quite natural to model the patient recruitment
in a particular centre i as a delayed Poisson process
Πλi

(t−ui). In real trials the recruitment rates {λi} vary
between different centres and it is suggested to model this
variation using a gamma distribution. Centre delays ui

are not known in advance and can be also considered as
some random variables. Therefore we come to a Poisson-
gamma recruitment model considered in [1, 2, 3] and
associated with mixed Poisson model with three levels of
stochasticity. Statistical analysis of many studies shows
a good fit of this model to real data [2].

The analytic approach for predicting recruitment time
and the number of patients in different centres/regions is
proposed. Section 2 describes the recruitment modeling
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technique. Section 3 is devoted to the prediction of the
recruitment time at the initial and ongoing stages of the
clinical trial. Section 4 deals with the prediction of the
number of recruited patients in different centres/regions
till the end of the trial or for a particular time interval at
the initial and ongoing stages.

2 Modeling Recruitment

Consider a multicentre clinical study where n patients
have to be recruited by N clinical centres. At study de-
sign stage it is important to predict the duration of the
recruitment and how many patients will be recruited in
particular regions as this may affect the power of sta-
tistical tests and the amount of drug supply required to
satisfy patient demand in regions.

Denote by ni(t) the number of patients recruited by cen-
tre i up to time t and let T (n,N) be the recruitment time.
Assume that centre i is initiated at a random time ui and
patients arrive according to a Poisson process with rate
λi. Thus, ni(t) = Πλi(t−ui)χ(ui ≤ t), where χ(A) is the
indicator of the event A. Let

n(t) =
N∑

i=1

ni(t) (1)

be the total number of patients recruited up to time t by
all N centres. The overall recruitment rate is

Λ(t) =
N∑

i=1

λiχ(ui ≤ t). (2)

Therefore the process n(t) is a nonhomogeneous mixed
Poisson process with instantaneous rate Λ(t). Assume
that recruitment is described by a Poisson-gamma re-
cruitment model [1, 2, 3], that is, the rates {λi} are
viewed as a sample from a gamma distributed popula-
tion. This model accounts for the natural variation in
recruitment over time and in recruitment rates between
different centres and has been validated for many real tri-
als with large enough (≥ 20) number of centres . This
model can be also viewed in the empirical Bayesian set-
ting as the rates are not known in advance and can be
considered as random variables with a prior gamma dis-
tribution.
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3 Recruitment Time Prediction

There are two basic stages of the recruitment prediction:
the design stage (initial stage before study start) and the
intermediate stage (ongoing study).

3.1 Initial prediction

Assume first that all centres are initiated simultaneously
at time t0 = 0. Denote by γ(α, β) a gamma distributed
random variable with parameters (α, β) (shape and rate
parameters, respectively). Assume that {λi} are i.i.d.r.v.
and in distribution λi = γ(α, β). Notice that parameters
(α, β) have a simple interpretation: E λi = α/β, Varλi =
α/β2 and α = 1/c2

v, where cv is the coefficient of variation
of the recruitment rates, cv = sd(λi)/E (λi).

Then n(t) = ΠΛ(t), where Λ = γ(αN, β), and we can
write a representation T (n,N) = βγ(n, 1)/γ(αN, 1).
Thus, the variable T (n,N) has a Pearson type VI dis-
tribution [5] with p.d.f.

p(x, n,N, α, β) =
1

B(n, αN)
xn−1βαN

(x + β)n+αN
, x ≥ 0, (3)

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx is a beta function.

In the general case, where centre i is initiated at some
(possibly random) time ui, the process n(t) has a local
rate Λ(t) (see (1),(2)). Denote by

Σ(t) =
N∑

i=1

λi(t− ui)χ(ui ≤ t)

a cumulative rate in the interval [0, t]. Using properties
of a mixed Poisson process and a gamma distribution,
we can write the relation for the cumulative distribution
function of the time T (n,N): for any T > 0,

P(T (n,N) ≤ T ) = P(γ(n, 1) ≤ Σ(T )). (4)

For any particular type of distribution of ui, the right-
hand side in (4) can be evaluated very quickly with high
precision using Monte Carlo simulation.

The expressions (3) and (4) at the design stage also al-
low to calculate the minimal number of centres needed
to complete the recruitment in time with a pre-specified
probability. e.g. to solve the optimization problem: find
the least N∗ such that P(T (n,N∗) ≤ T ) ≥ p, where p is
some prescribed probability.

In real trials the parameters (α, β) of the recruitment
model are not known in advance. At the initial stage
the parameters can be evaluated using planned by study
managers data on recruited number of patients in differ-
ent regions, or using historical data from similar studies.
At the ongoing stage the parameters can be estimated
using recruitment data.

3.2 Prediction of the ongoing study

Consider study at some intermediate time point t1 and
develop the technique of the recruitment prediction for
the remaining period using interim data. Suppose that
up to time t1 a centre i has recruited ki patients. Let τi

be the actual duration of recruitment in centre i, where
τi = t1 − ui, and K1 =

∑N
i=1 ki be the total number of

patients recruited up to time t1. The aim is to construct
the prediction of the remaining recruitment period using
the interim data {ki, τi, i = 1, .., N}. Denote by T (K2, N)
the remaining recruitment time where K2 = n−K1 is the
remaining number of patients left to recruit.

Assume for simplicity that all centres belong to the same
pool (the parameters (α, β) of a Poisson-gamma recruit-
ment model are the same for all centres). If the param-
eters (α, β) were known, then ki, as a Poisson mixed
with gamma variable has a negative binomial distribu-
tion with parameters (α, τi/β) ([4], p.199). Thus, given
data {ki, τi, i = 1, .., N}, the log-likelihood function up
to a constant has the form

L(α, β) =
N∑

i=1

ln Γ(ki + α)−N ln Γ(α)

−K1 ln β −
N∑

i=1

(ki + α) ln(1 + τi/β),

and ML estimators (α̂, β̂) can be numerically calculated
using two-dimensional optimization procedures.

Consider now the prediction of the remaining recruitment
time. If the recruitment rates {λi} were known, then the
overall recruitment rate is Λ =

∑
i λi and the remaining

time can be represented as

T (K2, N) = γ(K2, 1)/Λ.

Using the estimators of Λ based on actual recruitment
data we can construct the estimators of T (K2, N).

Let us use an empirical Bayesian technique. Suppose
first that parameters (α, β) are known. As λi has a prior
gamma distribution with parameters (α, β), then, given
data, the posterior estimator of λi is λ̂i = γ(α+ki, β+τi),
and the posterior estimator of Λ is

Λ̂ =
N∑

i=1

γ(α + ki, β + τi). (5)

Thus, the predicted remaining time can be represented
as

T̂ (K2, N) = γ(K2, 1)/Λ̂.

First, assume for simplicity that τi ≡ τ . Then Λ̂ =
γ(αN + K1, β + τ),

T̂ (K2, N) =
γ(K2, 1)

γ(αN + K1, 1)
(β + τ),
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and therefore T̂ (K2, N) has a Pearson type VI distribu-
tion (see (3)). In realistic situations, where τi can be
different, Λ̂ at large enough N (N ≥ 10) can be well
approximated by a gamma distributed variable with the
same mean and variance as of the variable Λ̂. Therefore,
in general case T̂ (K2, N) can be also approximated by a
Pearson type VI distribution with corresponding param-
eters.

For the values of parameters (α, β) in these formulae we
can take ML estimators (α̂, β̂) using data in the interval
[0, t1]. Simulation results show that if t1/T > 0.5, then
the impact of additional errors in estimating parameters
on the precision of prediction is practically negligible [2].

These results also allow to evaluate numerically at any
stage of the trial the minimal number of centres N∗
needed to complete recruitment with a given confidence,
e.g. satisfy the relation

P(T̂ (K2, N∗) ≤ T − t1) ≥ p,

where p is some prescribed probability.

4 Patient Recruitment Prediction

4.1 Prediction at the initial stage

Consider the design stage of the study and assume for
simplicity that all centres were initiated at the initial
time. Let us first study the prediction of the total num-
ber of patients to be recruited in different centres and
regions.

Consider some region Is with Ns clinical centres. Denote
by ni the total number of patients recruited in centre i
(n(Is) – number of patients recruited in region Is), re-
spectively, where n(Is) =

∑
i∈Is

ni. Then, given rates
λi, n(Is) has a binomial distribution with parameters
(n, p(Is)), where

p(Is) = λ(Is)/Λ, λ(Is) =
∑

i∈Is

λi, Λ =
N∑

i=1

λi.

As according to Poisson-gamma model the recruitment
rates λi are i.i.d.r.v. having a gamma distribution with
parameters (α, β), then we can write representations:
λ(Is) = γ(αNs, β) and Λ = γ(αN, β), respectively. Fur-
thermore, p(Is) has a beta distribution with parameters
(αNs, α(N − Ns)) and, consequently, n(Is) as a mixed
binomial with beta random variable has a beta-binomial
distribution. Thus, in region Is, for any k = 0, .., n,

P(n(Is) = k)

=
(

n

k

)B
(
αNs + k, α(N −Ns) + n− k

)

B
(
αNs, α(N −Ns)

) .

4.1.1 Prediction for a fixed time interval

Let us study now a prediction for a fixed time interval
[0, ∆]. Consider some region Is with Ns clinical centres
and denote by n(Is, t) the total number of patients re-
cruited in this region in the interval [0, t].

If all centres were initiated at time t0 = 0, then in cen-
tre i, ni(t) = Πλi(t) is a mixed Poisson process. There-
fore, the process n(Is, t) is a doubly stochastic Poisson
process with rate Λ(Is) = γ(αNs, β) and the variable
n(Is, ∆) has a negative binomial distribution with pa-
rameters (αNs, ∆/β). According to [4], p.199,

P(n(Is, ∆) = k) =
Γ(k + αNs)
k!Γ(αNs)

∆kβαNs

(β + ∆)αNs+k
, k = 0, 1, ...

This relation can be used for evaluating critical bound-
aries of the number of patients supposed to be recruited
in different centres/regions.

If the centres are initiated at different times ui, then
n(Is, t) is developing as a nonhomogeneous mixed Poisson
process ΠΛ(Is,t)(t) with instantaneous rate

Λ(Is, t) =
∑

i∈Is

λiχ(ui ≤ t).

In this case we have two levels of stochastic mixing, by
random rates and by random delay times. If we know the
distribution of delay times ui, all characteristics of n(Is, t)
can be computed very fast using Monte Carlo simulation.

In some special cases the mean and the variance of n(Is, t)
can be calculated in the closed form. For example, if for
centre i the time ui is uniformly distributed in interval
[a, b], then as t > b,

E ni(t) = mt−m(a + b)/2,

Varni(t) = (m2 + s2)(b− a)2/12 + s2(t− (a + b)/2)2,

where m = α/β, σ2 = α/β2 [3]. Similar formulae can
be derived for t < b. Correspondingly, the mean and the
variance of n(Is, t) can be easy calculated as n(Is, t) =∑

i∈Is
ni(t) and ni(t), i ∈ Is, are independent.

4.2 Ongoing stage

Consider at some intermediate time t1 the prediction of
the number of recruited patients in the remaining period.
Let (α, β) be the parameters of the model estimated using
recruitment data up to time t1. Consider some region Is

with Ns clinical centres. To predict future behaviour of
recruitment we use empirical Bayesian approach and re-
estimate rates in each centre.

Given data, the patients in centre i after time t1 arrive
according to a mixed Poisson process Π

λ̂i
(t) with a ran-

dom posterior rate λ̂i = γ(α + ki, β + τi). Denote by n̂i
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and n̂(Is) the predicted number of patients supposed to
be recruited in centre i and region Is, respectively, in the
remaining period. Then the variable n̂(Is) has a mixed
binomial distribution with parameters (K2, p̂(Is)), where
p̂(Is) =

∑
i∈Is

λ̂i/Λ̂ (see (5)) is a random variable. As-
sume for simplicity that τi ≡ τ . Let k(Is) =

∑
i∈Is

ki be
the number of patients recruited in the region Is up to
time t1. Then p̂(Is) can be represented as

γ(αNs + k(Is), 1)
γ(αNs + k(Is), 1) + γ(α(N −Ns) + K1 − k(Is), 1)

and has a posterior beta distribution with parameters
(αNs + k(Is), α(N −Ns) + K1 − k(Is)). Thus, n̂(Is) has
a posterior beta-binomial distribution and for any j =
0, ..,K2,

P(n̂(Is) = j | data)

=
(

K2

j

)B
(
αNs + k(Is) + j, α(N −Ns) + n− k(Is)− j

)

B
(
αNs + k(Is), α(N −Ns) + K1 − k(Is)

) .

In the realistic situations, where τi can be different, the
approximate formulae of a similar form can be derived
using at large enough N (N ≥ 10) the approximation of
the variable Λ̂ in (5) by a gamma distributed variable.

4.2.1 Prediction for a fixed time interval

Consider now prediction on some fixed interval [t1, t1+∆].
Denote by n̂i(t1,∆) the predicted number of patients sup-
posed to be recruited in centre i in this interval. Given
recruitment data up to time t1, the posterior distribu-
tion of n̂i(t1, ∆) is negative binomial ([4], p.199) with
parameters (α+ki, ∆/(β+τi)), and for any j = 0, 1, ...,

P(n̂i(t1, ∆) = j | data)

=
Γ(j + α + ki)
j!Γ(α + ki)

∆j(β + τi)α+ki

(β + τi + ∆)α+ki+j
, (6)

where (α, β) are estimated using recruitment data up to
time t1. Correspondingly,

E [n̂i(t1, ∆) | data] =
(α + ki)∆

β + τi
. (7)

This result can be used for evaluating different perfor-
mance measures of recruitment, for example, the proba-
bility Pi(0,∆, data) that a centre i will not recruit any pa-
tients in the interval [t1, t1 +∆] given that this centre did
not recruit any patients during the recruitment duration
τi, the mean predicted number of patients Mi(∆, data)
to be recruited by this centre in the interval [t1, t1 + ∆],
etc. Using relations (6), (7) we can easy calculate that

Pi(0, ∆, data) =
(β + τi)α

(β + τi + ∆)α
, Mi(∆, data) =

α∆
β + τi

.

For example, Pi(0,∆, data) is increasing if the duration of
the empty period τi during which a centre did not recruit
any patients is increasing. This illustrates the fact that it
is less likely to recruit in future patients by centres with
longer empty periods.

These measures can be extended to groups of centres and
can be used to alert low performing centres/regions.

5 Conclusions

The innovative analytic approach to evaluating various
distributions associated with the prediction of the recruit-
ment time and the number of patients to be recruited in
different centres/regions at the design and ongoing stages
of multicentre clinical trials is proposed. The approach
is based on using mixed Poisson models and empirical
Bayesian technique. These predictive distributions can
be used for evaluating various trial characteristics, in par-
ticular, critical boundaries of the number of patients to
be recruited in particular regions, critical supply levels
needed to cover patient demand in these regions, the max-
imum number of places in hospitals, different associated
costs, etc.

References

[1] Anisimov, V., Fedorov, V., “Design of multicentre
clinical trials with random enrolment,” in: N. Bal-
akrishnan, J.L. Auget, M. Mesbah, and G. Molen-
berghs (Eds). Advances in Statistical Methods for the
Health Sciences, Birkhuser, pp. 387-400, 2006.

[2] Anisimov, V., Fedorov, V., “Modeling, prediction
and adaptive adjustment of recruitment in multicen-
tre trials,” Statistics in Medicine, 26, 27, pp. 4958-
4975, 2007.

[3] Anisimov, V., Downing, D., Fedorov, V., “Recruit-
ment in multicentre trials: prediction and adjust-
ment,” in: J. Lopez-Fidalgo, J.M. Rodriguez-Diaz,
B. Torsney (Eds.): mODa 8 - Advances in Model-
Oriented Design and Analysis, Physica-Verlag, pp.
1-8, 2007.

[4] Johnson, N.L., Kotz, S., Adrienne W.K., Univariate
Discrete Distributions, 2nd Edition, Wiley & Sons,
New York, 1993.

[5] Johnson, N.L., Kotz, S., Balakrishnan, N., Continu-
ous Univariate Distributions, V.1, 2nd Edition, Wi-
ley & Sons, New York, 1994.

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008


