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Abstract— In the so-called high dimensional, low
sample size (HDLSS) settings, LDA possesses the
“data piling” property, that is, it maps all points from
the same class in the training data to a common point,
and so when viewed along the LDA projection direc-
tions, the data are piled up. Data piling indicates
overfitting and usually results in poor out-of-sample
classification.

In this paper, a novel approach to overcome the data
piling problem is introduced. It incorporates vari-
able selection into LDA. The underlying assumption
is that, among the large number of variables there
are many irrelevant or redundant variables for the
purpose of classification. By using only important or
significant variables we essentially deal with a lower
dimensional problem. Experiments on both synthetic
and real data sets show that the proposed method is
effective in overcoming the data piling and overfitting
problem of LDA while improving the out-of-sample
classification performance.

Keywords: Classification, linear discriminant analysis,
variable selection, regularization, sparse LDA

1 Introduction

Fisher’s linear discriminant analysis (LDA) is typically
used as a feature extraction or dimension reduction step
before classification. It finds the projection directions
such that for the projected data, the between-class vari-
ance is maximized relative to the within-class variance.
Once the projection directions are identified, the data
can be projected to these directions to obtain the re-
duced data, which are usually called discriminant vari-
ables. These discriminant variables can be used as inputs
to any classification method, such as nearest centroid, k-
nearest neighborhood, and support vector machines.
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An important query in application of Fisher’s LDA is
whether all the variables on which measurements are ob-
tained contain useful information or only some of them
may suffice for the purpose of classification. Since the
variables are likely to be correlated, it is possible that
a subset of these variables can be chosen such that the
others may not contain substantial additional informa-
tion and may be deemed redundant in the presence of
this subset of variables. A case for variable selection in
Fisher’s LDA can be made further by pointing out that
by increasing the number of variables we do not necessar-
ily ensure an increase in the discriminatory power. This
is a form of overfitting. One explanation is that when the
number of variables is large, the within-class covariance
matrix is hard to be reliably estimated. In additional to
avoiding overfitting, interpretation can be facilitated if
we incorporate variable selection in LDA.

We find that variable selection may provide a promising
approach to deal with a very challenging case of data
mining: the high dimensional, low sample size (HDLSS,
Marron et al., 2007) settings. The HDLSS means that
the dimension of the data vectors is larger (often much
larger) than the sample size (the number of data vec-
tors available). HDLSS data occur in many applied areas
such as gene expression microarray analysis, chemomet-
rics, medical image analysis, text classification, and face
recognition. As pointed out by Marron et al. (2007), clas-
sical multivariate statistical methods often fail to give a
meaningful analysis in HDLSS contexts.

Marron et al. (2007) discovered an interesting phe-
nomenon called “data piling” for discriminant analysis
in HDLSS settings. Data piling means that when the
data are projected onto some projection direction, many
of the projections are exactly the same, that is, the data
pile up on top of each other. Data piling is not a useful
property for discrimination, because the corresponding
direction vector is driven by very particular aspects of
the realization of the training data at hand. Data piling
direction provides perfect in sample separation of classes,
but it inevitably has bad generalization property.

As an illustration of the data piling problem, Figure 1
provides views of two simulated data sets, one of which
serves as a training data set, shown in the first row, the
other the test data set, shown in the second row. The
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Figure 1: A simulated example with two classes. Plotted
are the projected data using the estimated and theoretical
LDA directions. Top panels are for training data; bot-
tom panels for test data. Left panels use estimated LDA
directions; right panels the theoretical directions. The
in-sample and out-of-sample error rates are 0 and 32%
respectively, when applying the nearest centroid method
to the data projected to the estimated LDA direction.
The dimension of the training data set is 100 and there
are 25 cases for each class.

data are projected onto some direction vector and the
projections are represented as a “jitter plot”, with the
horizontal coordinate representing the projection, and
with a random vertical coordinate used for visual separa-
tion of the points. A kernel density estimate is also shown
in each plot to reveal the structure of the projected data.
Two methods are considered to find a projection direction
in Figure 1. Fisher’s LDA (using pseudo-inverse of the
within-class covariance matrix) is applied to the train-
ing data set to obtain the projection direction for the
left panels, while the theoretical LDA direction, which
is based on the knowledge of the true within-class and
between-class covariance matrices, is used for the right
panels. The LDA direction estimated using training data
possesses obvious data piling and overfitting. The per-
fect class separation in sample does not translate to good
separation out of sample. In contrast, the projections to
the theoretical LDA direction for the two data sets have
similar distributional properties.

One contribution of the present paper is to offer a method
to deal with the “data piling” problem in HDLSS set-
tings. If a small number of significant variables suffice
for discrimination, then identifying these variables may
help prevent “data piling” in the training data and con-
sequently yield good out-of-sample classification. In Sec-
tion 4, the proposed sparse LDA method will be applied
to the same data sets used in Figure 1. We will see that
the projections to the sparse LDA direction will resemble
the distributional behavior on the right panels of Figure 1
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that are based on the theoretical LDA direction. The
main message is that without variable selection, LDA is
subject to data piling and leads to bad out-of-sample clas-
sification; with variable selection, data piling on training
data is prevented and thereby good classification on test
data is obtained.

The rest of the paper is organized as follows. Section
2 reviews Fisher’s LDA and also serves the purpose of
introducing necessary notations for subsequent sections.
In Section 3, we describe our sparse LDA method for
constructing sparse discriminant vectors. Sections 4 and
5 illustrate the proposed method using a simulated data
example and a real data set. Section 6 concludes.

2 Review of Fisher’s LDA

Fisher’s LDA looks for the linear function ¢’z such that
the ratio of the between-class sum of squares to the
within-class sum of squares is maximized. Formally, sup-

pose there are k classes and let x;;,j = 1,...,n,, be vec-
tors of observations from the i-th class, i = 1,...,k. Set
n=ny+...,ng Let
_ (T T T T \T
Xoxp = (T115 o3 Ty o ooy Thpyee o Thp, )

and y = Xa, then Fisher’s LDA solves

k o
>ima i(¥i — y)?

max ; (1)

k i —
@i Z?:l(yij —¥i)?

where g; is the mean of the ith sub-vector y; of y. Sub-
stituting y by Xa, we can rewrite the within-class sum of
squares as

k  ny k  n;
Z Z(yzg —5:)°=a’ Z Z(%; —Z)(wi; — 1) a

i=1 j=1 i=1 j=1

def
= a'Sa,

and the between-class sum of squares as
k k
> ni@i— 9 = nifa" (@ — 2)}?
i=1 i=1
k
=a’ Z ni(z; —z)(7; — )% a LTS,
i=1

Therefore the ratio is given by
aTEba/aTZwa.

If aq is the vector that maximizes the ratio, one can find
the next direction as orthogonal in ¥, to a1, such that
the ratio is maximized; and the additional directions can
be computed sequentially.

In this paper, we view LDA as a supervised dimension
reduction tool that searches for suitable projection di-
rections, and therefore refer to eigenvectors a;’s as the
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discriminant directions or discriminant vectors. These
discriminant directions/vectors are useful for data visu-
alization and also for classification.

To facilitate subsequent discussion, we introduce some
notations here. Define n X p matrices

ezl e (z; —x)T
H,=X-— : and Hy, = ,
ez e (z, — z)7

where €™ is a column vector of ones with length n; and e
is a column vector of ones with length n. It is clear that
with these notations, we have

Yo =HYH, and X, = H]H,.

Notice that the matrix Hp can be reduced to a lower
dimension (k X p) matrix

(Vi (@ = 7). /(@ — 7)), (2)

which also satisfies > = HZT H,. In the discussion that
follows, this latter form of Hj is used throughout without
further mentioning.

3 Sparse Discriminant Vectors

When %, is positive definite, the first discriminant di-
rection vector a in Fisher’s LDA is the eigenvector corre-
sponding to the largest eigenvalue of the following gener-
alized eigenvalue problem

Y0 = nXwf. 3)

To incorporate variable selection in LDA corresponds to
making the eigenvector a sparse. Here “sparsity” means
that the eigenvector a has only a few nonzero components
or it has lots of zero components. Our approach for ob-
taining sparse discriminant vectors is an extension of the
sparse PCA method of Zou et al. (2006). It first relates
the discriminant vector to a regression coefficient vector
by transforming the generalized eigenvalue problem to a
regression-type problem, and then applies penalized least
squares with an L; penalty as in LASSO (Tibshirani,
1996). We refer to our method as sparse LDA.

3.1 Link of generalized eigenvalue problems
to regressions

We will first consider the case that ¥, is non-singular.
The ¥, singular case will be discussed in Section 3.3.
The following theorem is crucial to our approach. The
proof of the theorem can be found in Qiao (2006).

Theorem 1 Suppose X, is positive definite and de-
note its Cholesky decomposition as ¥, = RLR,,, where
R, € RPXP js an upper triangular matriz. Let H, € RF*P
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be defined as in (2). Let V1,...,V, (¢ < min(p,k — 1))
denote the eigenvectors of problem (3) corresponding to
the q largest eigenvalues A1 > Xy > -+ > A;. Let
Apxg = [011/1- s aq] and Bpxg = [B1,...,84]. For A >0,
let A and B be the solution to the following problem

k q
glinz IR, Hy i — ABTHyi|> + XY 87 S B,
i j=1 (4)
subject to ATA = Iyxq,
where Hy; = \/n;(T; — z)7 is the i-th row of Hy,. Then

Bi,j =1,...
1,...,q.

,q, span the same linear space as Vj,j =

The optimization problem (4) can be solved by iteratively
minimizing over A and B. The update of A for fixed B
is a Procrustes problem (Gower and Dijksterhuis 2004).
To see this, note that

k
> IR Hyi — AB"H, ;||* = | HyR,,' — H,BA"||*.
=1

Since AT A = I, the above expression equals
tr{HyR,' R, H + H,BBTH}'} -2 tr{ BT H} H,R,;' A}

Thus, if B is fixed, the update of A maximizes
tr{ BT H H,R,;' A} subject to the constraint that A has
orthonormal columns. This is an inner-product version
of projection Procrustes that has an analytical solution.
The solution is given by computing the singular value
decomposition

R,U(HI ' H,)B=UDV",

where U (p x ¢) has orthonormal columns and V' (¢ x q)
is orthogonal, and setting A = UV”. (See Section 5.1 of
Gower and Jijksterhuis, 2004).

The update of B for fixed A is a regression-type problem.
To see this, let A, be an orthogonal matrix such that
[A; A ] is p x p orthogonal; this is feasible since A has
orthonormal columns. Then we have that

|HyR," — HyBA"||?

= |HyR, ' [A; A1) — HyBAT[A; AL]|1?

= |HyRy,' A — HyB|” + || HyRy, AL

q
= ([HyRy a; — HyfB | + || Hy Ry AL,

j=1
If A is fixed, then the B that optimizes (4) solves

q
mBinZ{HHbR;IQj — HoBi|I> + A8 SwfBs},  (5)

Jj=1

which is equivalent to ¢ independent ridge regression
problems.

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol 11
WCE 2008, July 2 - 4, 2008, London, U.K.

3.2 Sparse eigenvectors

According to (5), the eigenvectors 3, are regression co-
efficient vectors. As in the LASSO, by adding an L,
penalty to the objective function in the regression prob-
lem, we can obtain sparse regression coeflicient vectors.
Therefore we consider the optimization problem

q
min > {1 Hp R o = Hys 1 4+ A57 2005 + Ml

j=1

subject to AT A = I ., where ||3;]|1 is the 1-norm of the
vector 3;, or equivalently,

k
. T L T 12
IE%IEHRW Hy; — ABTHy,|
q q (6)
+ADB5uBi + Y AillBila,
j=1 j=1

subject to ATA = I,5,. Whereas the same \ is used for
all g directions, different \; ;’s are allowed to penalize the
loadings of different discriminant directions.

The optimization problem (6) can be numerically solved
by alternating optimization over A and B.

e B given A: For each j, let Y = HbR;lozj. For
fixed A, B is solved by ¢ independent LASSO prob-

lems
min ¥ — HyB511* + A8} TwBi + A illB; 1,
J
1=1,...,q.

e A given B: For fixed B, compute the singular value
decomposition

RY(HI ' H,))B=UDVT

and let A =UVT.

Using the Cholesky decomposition 3, = RLR,,, we see
that for each j, (7) is equivalent to minimization of

1Y = WBi 12+ A jllBs

where }N/j = (Y77, 0pxp)" and W= (HI',RT)T. Thisis a
LASSO-type optimization problem which can be solved
by an efficient computation algorithm (Zou et al. 2006).

Remarks: 1. Theorem 1 implies that the solution of the
optimization problem (4) is independent of the value of \.
This does not imply that the solution of the regularized
problem (6) is also independent of A. However, our empir-
ical study suggests that the solution is very stable when
A varies in a wide range, for example in (0.01,10000).
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2. We can use K-fold cross validation (CV) to select the
optimal tuning parameters {\; ;}. We use the error rate
of a specified classification method such as the nearest
centroid or nearest neighbor method applied on the pro-
jected data to generate the cross validation score. When
the dimension of the input data is very large, the numer-
ical algorithm becomes time-consuming and we can let
A11 = = A14 to expedite computation.

3.3 Sparse regularized LDA

When the within-class covariance matrix is singular, reg-
ularized LDA (rLDA for short) can be used to circumvent
the singularity problem as in ridge regression. Specif-
ically, one version of regularized LDA replaces ¥, by
Yw =2y + (7/p)tr (X,)I in the standard LDA, where
~v > 0 is a tuning parameter that controls the strength of
regularization of the within-class covariance matrix. The
identity matrix is scaled by tr (2,,)/p here so that the ma-
trices 3, and {tr (X,,)/p}I have the same trace. There
is a straightforward extension of sparse LDA to regular-
ized LDA: One just replaces ¥, by ¥, when compute the
Cholesky factor R,, in Theorem 1. We refer to the result-
ing method as sparse regularized LDA (sparse rLDA for
short).

Remark: In our empirical studies, we find that the results
of sparse rTLDA are not sensitive to the choice of v if a
small value that is less than 0.1 is used. We shall use v =
0.05 for the empirical results to be presented in Sections 4
and 5. More careful studies of choice of v are left for
future research.

4 Simulated Data

We illustrate our method using a simulated data example
which contains training data set of size 25 for each of the
two classes and test data set of size 100 for each class.
The input data X has dimension p = 100 so this is a
HDLSS setting. Only the first two variables of X can
distinguish the two classes, and the remaining variables
are irrelevant for discrimination. The distribution of each

class is
:CZN( >a i:1727
0 1 07
’“‘(i().g)’ EW‘(o.? 0 )

There is only one discriminant direction of Fisher’s LDA
since we have two classes. Clearly, the theoretical dis-
criminant direction depends only on the first two vari-
ables. Hence we can ignore the redundant variables in
deriving the theoretical direction. The between-class co-
variance matrix is given by

No(pi, X 2)
Np72(07 Ip72)

2

Soe = Y — W — 1) = 3 — pa) s — )"
=1
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Figure 2: A simulated example with two classes. Top
panel: The average of angles between the estimated and
theoretical directions as a function of the number of vari-
ables used. Bottom panel: Average classification error
rates using least centroid on the projected data. Based
on 50 simulations.

and the within-class covariance matrix is ¥, 2. The the-
oretical discriminant direction is the leading eigenvector
of X% (11 — pa) (1 — p2)™, which is (—0.57,0.82) in this
example. The estimated direction will be compared with
the theoretical direction derived here.

Since this is a HDLSS case, ¥, is singular and therefore
sparse LDA is not directly applicable. We applied the
sparse rTLDA with penalty parameter v = 0.05 to the
simulated data sets. Denote the number of significant
variables involved in specifying the discriminant direction
to be m. For each of 50 simulated data sets, we applied
sparse rLDA for m =1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75,
100, and calculated the angles between the estimated and
the true discriminant directions. The average angles as a
function of m is plotted in the top panel of Figure 2. It
is very clear that sparsity helps: Compare average angles
around 30 degrees for m = 2-20 to an average angle about
60 degrees for m = 100. Sparse discriminant vectors are
closer to the theoretical direction than the non-sparse
ones. That the smallest average angle is achieved when
m = 10 instead of m = 2 is because of the insufficiency
of training sample size, which causes the estimation of
the covariance matrix ¥, inaccurate and therefore the
inclusion of more variables.

The closeness of estimated direction to the theoretical
direction also translates into out-of-sample classification
performance. The bottom panel of Figure 2 shows the in-
sample and out-of-sample classification error rate using
nearest centroid method applied to the projected data.
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Figure 3: A simulated example with two classes. Top
panels are the results of rTLDA and sparse rLDA (m = 5)
for the training data; bottom panels are the results for the
test data. The in-sample and out-of-sample error rates
are 0 and 32% for rLDA and 12% and 13.5% for sparse
rLDA, when applying the nearest centroid method to the
projected data. The dimension of the training data set is
100 and there are 25 cases for each class.

When all variables are used in constructing the discrim-
inant vectors, the overfitting of training data is obvious,
and is associated with low in-sample error rate and high
out-of-sample error rate. The out-of-sample error rate
is minimized when the number of significant variables
used in constructing the discriminant vectors is ten. It
is also interesting to point out that the shape of the out-
of-sample error rate curve resembles that of the average
angle curve shown on the top panel of Figure 2.

The discriminant power of the sparse discriminant pro-
jection is illustrated in Figure 3, where we plotted the
projected, both training and test, data. Regularized LDA
was used to obtain the discriminant direction for the left
panels. Comparing with the upper left panel of Figure 1,
we see that regularized LDA does help alleviate data pil-
ing slightly, but does not help improve out-of-sample clas-
sification. On the other hand, if sparsity is imposed in
obtaining the discriminant direction, data piling of train-
ing set disappears and substantial improvement in test
set classification is manifested.

We have done more simulation studies of various number
of classes and have reached the same conclusion as in the
above example.

5 Gene expression microarray data

We use a gene expression microarray data to illustrate
the sparse rTLDA method. The Colon data set (Alon et
al., 1999) contains 42 tumor and 20 normal colon tissue
samples. For each sample there are 2000 gene expression
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Figure 4: Colon data. The average test error rate as a
function of the number of significant genes for the nearest
centroid, 1-nearest neighbor and support vector machine,
applied to the reduced data obtained from sparse rLDA.
Based on 50 (2:1) training-test partition of the original
data set.

level measurements. The goal of the analysis is classifi-
cation of tumor and normal samples based on the gene
expression measurements.

We first reduce the dimensionality of the data by pro-
jecting the data to the discriminant direction obtained
using rLDA, then the reduced data is used as an input to
some standard classification methods. We shall examine
the effect of gene selection on classification. Our sparse
rLDA algorithm incorporates gene selection to construct-
ing discriminant vector. To expedite the computation, we
implemented a two-step procedure. First we do a crude
gene preselection using the Wilcoxon rank test statistic to
obtain 200 significant genes. Then the preselected gene
expressions are used as input to sparse rLDA. Note that
even after gene preselection, we still have HDLSS set-
tings, so regularization of within-class covariance matri-
ces is needed and the sparse rLDA instead of the sparse
LDA algorithm should be applied.

In the absence of genuine test sets we performed our com-
parative study by repeated random splitting of the data
into training and test sets. The data were partitioned
into a balanced training set comprising two-thirds of the
arrays, used for gene preselection, applying sparse rLDA
for dimension reduction and fitting the classifiers. Then,
the class labels of the remaining one-third of the experi-
ments were predicted, compared with the true labels, and
the misclassification error rate was computed. To reduce
variability, the splitting into training and test sets were
repeated 50 times and the error rate is averaged. It is
important to note that, for reliable conclusion, all gene
preselection, applying sparse rLDA and fitting classifiers
were re-done on each of the 50 training sets.

Three classifiers, the nearest centroid, 1-nearest neighbor
and support vector machine, have been applied to the re-
duced data for classification. Figure 4 plots the average
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test error rate as a function of significant genes used in
sparse rLDA for the two data sets. The x-axis is plotted
using the logarithmic scale to put less focus on large val-
ues. As the number of significant genes vary from 2 to
200, the error rates for the three methods all decrease first
and then rise. The nearest centroid method has the best
overall classification performance. The beneficial effect of
the variable selection in sparse rLDA is clear: The classifi-
cation using reduced data based on a sparse discriminant
vector performs better than that based on a non-sparse
discriminant vector. For example, if the nearest centroid
method is used as the classifier, using the sparse discrim-
inant vectors based on only 10-20 significant genes gives
the best test set classification, while using all 200 genes
leads to larger classification error rate.

6 Conclusions

In this paper, we propose a novel algorithm for construct-
ing sparse discriminant vectors. The sparse discrimi-
nant vectors are useful for supervised dimension reduc-
tion for high dimensional data. Naive application of clas-
sical Fisher’s LDA to high dimensional, low sample size
settings suffers from the data piling problem. Introduc-
ing sparsity in the discriminant vectors is very effective
in eliminating data piling and the associated overfitting
problem. Our simulated and real data examples results
suggest that, in the presence of irrelevant or redundant
variables, the sparse LDA method can select important
variables for discriminant analysis and thereby yield im-
proved classification.
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