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Abstract—Most standard inferential statistical
methods for multivariate data are developed under
the fundamental assumption that the data are from a
multivariate normal distribution. Unfortunately, one
can never be sure whether a set of data is really from
a multivariate normal distribution. There are numer-
ous methods for checking (testing) multivariate nor-
mality, but these tests are generally not very power-
ful, especially for smaller sample sizes. Hence it is
always beneficial to have alternative multivariate dis-
tributions and the methodology for using them.

In this article, we consider a Kotz type multivariate
distribution which has fatter tail regions than that of
multivariate normal distribution and show how mul-
tivariate analysis of variance can be performed using
this distribution as model.

Keywords: Generalized spatial median, Kotz type dis-

tribution, simultaneous confidence intervals, testing

the equality of mean vectors.

1 Introduction

Multivariate normal distribution is fundamental for mul-
tivariate analysis of variance. Elegant results are ob-
tained under this model. However, in practice, the as-
sumption of this distribution may not be valid. Numer-
ous classes of multivariate distributions have been used in
practice in place of multivariate normal distribution. See
[3]-[5] and [11]. In this article, we consider a Kotz type
multivariate distribution (of a p− variate random vector
X) which has fatter tail regions than that of multivariate
normal distribution and its probability density function
(pdf ) is given by:

f(x, µ,Σ) = cp | Σ |− 1
2 exp {−[(x− µ)′Σ−1(x− µ)]

1
2 }, (1)

where µ ∈ <p, Σ is a positive definite matrix (p.d.) and
cp = Γ( p

2 )

2π
p
2 Γ(p)

.

This pdf has appeared in the literature in different
forms. For example, the pdf is a special case of the fol-
lowing families of distributions:
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Multivariate distributions proposed by Simoni (see [18]):
These have the pdf proportional to

exp{−1
r
[(x− µ)′A(x− µ)]

r
2 },

where A is p. d. and r ≥ 1. For r = 1 one obtains our
multivariate distribution.

Elliptically symmetric distributions (see [8]): Let X
be a p × 1 random vector, µ be a p × 1 vector in <p,
and Σ be a p × p non-negative definite matrix. Then
X has an elliptically contoured distribution, denoted by
ECp(µ,Σ, ψ) if the characteristic function φX−µ(t) =
E[exp(it′(X−µ))] of X−µ is a function of the quadratic
form t′Σt as φX−µ(t) = ψ(t′Σt) for some function ψ.

Therefore, the elliptically symmetric distributions de-
noted by ECp(µ,Σ, g), have the pdf (here Σ is p.d.) in
the form

f(x) = kp|Σ|− 1
2 g[(x− µ)′Σ−1(x− µ)],

where g is a one-dimensional real-valued function inde-
pendent of p and

kp =
pΓ(p

2 )

π
p
2 Γ(1 + p

2β )21+ p
2β

.

For our distribution g(t) = exp{−t
1
2 }.

Power exponential distributions (see [5]): A random vec-
tor X has a p-dimensional power exponential distribu-
tion, denoted by PEp(µ,Σ, β), with µ,Σ, and β, where
µ ∈ <p, Σ is a p × p p. d. matrix, and β ∈ (0,∞). Its
density function is

f(x, µ,Σ, β) = k|Σ|− 1
2 exp{−1

2
[(x− µ)′Σ−1(x− µ)]β},

where k = pΓ( p
2 )

π
p
2 Γ(1+ p

2β )2
1+ p

2β
.

For β = 1
2 one obtains our distribution. This function

is actually the pdf of an elliptically contoured random
vector ECp(µ,Σ, g).

Kotz type distributions (see [4]): If X ∼ ECp(µ,Σ, g)
and the density generator g is of the form g(u) =
cpu

N−1 exp(−rus), r, s > 0, 2N + p > 2 then we say
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that X possesses a symmetric Kotz distribution. The pdf
of X is given by

f(x,µ,Σ) = cp | Σ |− 1
2 [(x− µ)′Σ−1(x− µ)]N−1 ·

exp {−r[(x− µ)′Σ−1(x− µ)]s},

where cp = sΓ( p
2 )

π
p
2 Γ( 2N+p−2

2s )
r

2N+p−2
2s .

When N = 1, s = 1
2 , and r = 1 the distribution

reduces to our distribution.

The pdf (1) can also be written as a multivariate normal
mixtures as in [9] and [10]. The Kotz type distribution
with the pdf given in (1) has heavier tail regions than
those covered by the multivariate normal distribution and
hence can be useful in providing robustness against “out-
liers” (see [13]). For p = 1, the pdf (1) reduces to that
of a double exponential (or Laplace) distribution. Hence
we may treat this distribution as a multivariate gener-
alization of double exponential distribution. However,
this is not a multivariate double exponential distribution
because, its marginal distributions are not double expo-
nential distributions. We note that double exponential
distribution is symmetric around a location parameter µ,
and the maximum likelihood estimate of µ is the median.
It is well known that a median is more robust estimator
of a location parameter than the mean. For this reason,
many times in practice double exponential (Laplace) dis-
tribution is used for data analysis instead of normal dis-
tribution.

In our earlier paper, [15], we have discussed various char-
acteristics of the distribution (1), including its marginal
and conditional distributions and moments. We note that
E(X) = µ, and V ar(X) = (p+1)Σ. Also, we provided an
algorithm for simulating samples from this distribution.
The maximum likelihood estimators of µ and Σ, were
also derived and the asymptotic distribution of the max-
imum likelihood estimate of µ was given. Further, using
Mardia’s multivariate measures of skewness and kurtosis,
we provided a goodness-of-fit test for Kotz type distribu-
tion. Inference for parameter vector µ was also discussed
in [15]. In this article we discuss how this distribution
can be used to perform multivariate analysis of variance.

In the next section, for ease of reading, we will provide
the maximum likelihood estimate of µ and its asymptotic
distribution and also provide some details on how to con-
struct simultaneous confidence intervals using Bonferroni
probability inequality. It is worth noting that the most
interesting property of the distribution in hand is that
the maximum likelihood estimators under this distribu-
tion are the generalized spatial median (GSM) estimators
as defined in [16]. Sections 3 and 4 discuss one way mul-
tivariate analysis of variance. An example to illustrate
the methods is considered in Section 5 and concluding
remarks are provided in Section 6.

2 Estimation of Parameters

Many researchers have discussed statistical inference us-
ing elliptical distributions. For example, see [3] and the
references therein. However, the maximum likelihood
theory developed in [3] assumes that the joint distribution
of the random sample, X1, ...,Xn, is elliptically symmet-
ric. In fact, in this case the maximum likelihood esti-
mators of µ and Σ are essentially same as those in the
multivariate normal case (see [3]).

Several authors have performed statistical inference
based on certain elliptical distributions. For example,
[12] used multivariate t-distribution and maximum likeli-
hood method to analyze certain regression and repeated
measurements, and [13] used multivariate power expo-
nential distribution to analyze a certain repeated mea-
surements. In each case numerical algorithms are used
to find the estimates of the parameters. In the follow-
ing we discuss estimation of parameters using maximum
likelihood methods when an independent identically dis-
tributed sample from (1) is available.

Suppose X1, ...,Xn is a random sample from Kotz type
distribution (1). Then the log-likelihood function is given
by

ln L(µ,Σ) = n ln c− n

2
ln |Σ| −

n∑
i=1

√
(xi − µ)′Σ−1(xi − µ).

The MLEs of µ and Σ are obtained by minimizing

n

2
ln | Σ | +

n∑
i=1

√
(xi − µ)′Σ−1(xi − µ) (2)

simultaneously w.r.t. µ and Σ.

When Σ = I, the solution to the above problem or the
MLE of µ is the spatial median introduced in [7] and for
general Σ it is generalized spatial median introduced in
[16] and studied in [14].

J. B. S. Haldane defined (see [7]) the spatial median of
multivariate data vectors x1, ...,xn, as a point (vector)
µ̂ ∈ <p which minimizes

n∑

i=1

‖xi − µ‖ =
n∑

i=1

√
(xi − µ)′(xi − µ)

with respect to µ. For p > 1, the vector µ̂ is unique ex-
cept when all the mass of the distribution is concentrated
on a line and is invariant under orthogonal transforma-
tion, but not under affine transformation (see [1], [2]). C.
R. Rao (see [16]) defined two generalized spatial medians
which are invariant under affine transformation as:

(i) a vector µ̂ which minimizes
n∑

i=1

√
(xi − µ)′S−1(xi − µ)
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with respect to µ, where S is the usual sample vari-
ance covariance matrix, and

(ii) a vector µ̂ which minimizes

n

2
ln |Σ|+

n∑

i=1

√
(xi − µ)′Σ−1(xi − µ)

simultaneously with respect to µ andΣ.

Thus, we note that the MLE of µ under the assumption
of Kotz type distribution (1) for X1, ...,Xn is same as the
generalized spatial median defined in [16].

Computation of GSM and Σ̂: Let X1, ...,Xn be a
random sample from (1). Then the GSM of µ which
minimizes (2) can be computed in two stages as follows
(see [14]).

Suppose Σ is known or set to an initial value and
Σ = GG′, for a nonsingular G. Then the generalized
spatial median µ̂ which minimizes

n∑

i=1

√
(xi − µ)′Σ−1(xi − µ)

w.r.t. µ can be obtained as µ̂ = Gν̂, where ν̂ is the spa-
tial median which minimizes

∑n
i=1

√
(yi − ν)′(yi − ν)

w.r.t. ν. Here yi = G−1xi and ν = G−1µ. Spatial me-
dian can be computed using an algorithm given in [6].
Next using µ̂ the maximum likelihood estimate of Σ is
obtained as the matrix Σ̂ which minimizes (2) with re-
spect to Σ as a solution to the non-linear equations given
by

Σ =
1
n

n∑

i=1

(xi − µ̂)(xi − µ̂)′√
(xi − µ̂)′Σ−1(xi − µ̂)

.

We use nonlinear optimization methods to obtain maxi-
mum likelihood estimates of all the parameters. We have
adopted SAS’ IML procedure for writing the computer
programs. Using the Newton−Raphson method the op-
timization yields unique estimates in the feasible regions
under most covariance structures.

Theorem (The asymptotic distribution of GSM): Let
X1, ...,Xn be a random sample from p−variate (p > 1)
Kotz type distribution (1) with parameters µ and Σ and
µ̂ be the maximum likelihood estimate of µ. Then

√
n(µ̂− µ) D−→ N(0, ΣA−1BA−1Σ),

where B = E

[
(X−µ)(X−µ)′

(X−µ)′Σ−1
(X−µ)

]
and

A = E[
1√

(X− µ)′Σ−1(X− µ)
(Σ− (X− µ)(X− µ)′

(X− µ)′Σ−1(X− µ)
)].

Further B and A can be estimated by

B̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)′

(xi − µ̂)′Σ̂
−1

(xi − µ̂)
,

Â =
1

n

n∑
i=1

1√
(xi − µ̂)′Σ̂

−1
(xi − µ̂)

·

[Σ̂− (xi − µ̂)(xi − µ̂)′

(xi − µ̂)′Σ̂
−1

(xi − µ̂)
],

where Σ̂ is the maximum likelihood estimate of Σ.

Many times in practice, we may be interested in per-
forming simultaneous inference on a set of k parameters,
for example, on components of vector µ. One convenient
and easy way to build simultaneous confidence intervals
on these parameters is using the Bonferroni method. It
is a simple method that allows the construction of many
confidence intervals maintaining an overall confidence co-
efficient. The method is based on Bonferroni’s probabil-
ity inequality, P (∩k

i=1Ai) ≥ 1 − ∑k
i=1 P (Ac

i ), where Ai

is the event that the ith confidence interval contains the
corresponding parameter and Ac

i is the complement of
that event. Hence the left hand side of Bonferroni’s in-
equality is the probability that all the confidence intervals
simultaneously contain their corresponding true parame-
ter values and the right hand side is one minus the sum
of the probabilities that the intervals do not contain the
corresponding true values. Thus if we want the overall
confidence coefficient to be 1−α then we should construct
the individual confidence interval with a confidence level
of 1− α/k.

Proposition 1 (Simultaneous Confidence Intervals):
The 100(1− α)% Bonferroni simultaneous confidence in-
tervals for m linear functions of µ,

is, are given by
(

a′iµ̂− zα/2m

√
a′iτ̂ai

n
, a′iµ̂ + zα/2m

√
a′iτ̂ai

n

)
, i = 1, ..., m,

where a,
is are vectors of known constants and zα/2m

is the upper 100(1 − α/2m) th percentile of a standard

normal distribution, and τ̂ = Σ̂Â
−1

B̂Â
−1

Σ̂.

In [15], we have used these results to perform inference
on the components of vector µ.

3 Testing Equality of Mean Vectors

Suppose Xi1,Xi2, ...,Xini is a random sample of size
ni from Kotz type population with the parameters
µi and Σi, i = 1, ..., g. The random samples from
different g populations are assumed to be indepen-
dent. Let µi = (µi1, µi2, ..., µip)′ and σi =
(σi,11, ..., σi,1p, ..., σi,p−1,p, σi,pp)′, i = 1, ..., g. Let
θ = (µ′1, ..., µ

′
g,σ

′
1, ..., σ

′
g)
′ be the vector of all unknown

parameters.
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Consider the problem of testing H0 : µ1 = µ2 =
· · · = µg = µ when Σ1 = Σ2 = · · · = Σg = Σ,
that is, when σ1 = · · · = σg = σ, where σ =
(σ11, ..., σ1p, ..., σp−1,p, σpp)′.
Under H0, let θ̃ = (µ̃′, σ̃′)′ be the MLE of θ. Then the
maximum of the likelihood function under H0 is given by

L(θ̃) = (cp)n|Σ̃|−n/2 e−
∑g

i=1
∑ni

j=1

√
(xij−µ̃)

′Σ̃
−1

(xij−µ̃),

where n = (
∑g

i=1 ni).

Next, let θ̂ = (µ̂′1, ..., µ̂
′
g, σ̂

′)′ be the MLE of θ un-
der no restrictions. Then the maximum of the likelihood
function is given by

L(θ̂) = (cp)n|Σ̂|−n/2 e−
∑g

i=1
∑ni

j=1

√
(xij−µ̂i)

′Σ̂
−1

(xij−µ̂i).

Then the likelihood ratio test for testing H0 rejects H0

if

Λ =
L(θ̃)

L(θ̂)
< c,

where c is the critical value to be obtained appropriately.

If σ,
is are different and we wanted to test H0 : µ1 =

µ2 = · · · = µg = µ, the likelihood ratio test for testing
H0 is given as follows. Let θ̃ = (µ̃′, σ̃′1, ..., σ̃

′
g)
′ be the

MLE of θ. Then the maximum of the likelihood function
is given by

L(θ̃) = (cp)n
g∏

i=1

|Σ̃i|−ni/2e−
∑g

i=1
∑ni

j=1

√
(xij−µ̃)

′Σ̃
−1

i (xij−µ̃).

Under no restrictions, let θ̂ = (µ̂′1, ..., µ̂
′
g, σ̂

′
1, ..., σ̂

′
g)′

be the MLE of θ. Then the maximum likelihood function
is given by

L(θ̂) = (cp)n
g∏

i=1

|Σ̂i|−ni/2e
−∑g

i=1
∑ni

j=1

√
(xij−µ̂i)

′Σ̂
−1

i (xij−µ̂i).

Then the likelihood ratio test rejects H0 if

Λ =
L(θ̃)

L(θ̂)
< c,

where c is a suitably chosen constant. When the sample
size n is large,

−2 ln Λ = −2 ln
(L(θ̃)

L(θ̂)

)
is approximately distributed as χ2

r

random variable, where the degrees of freedom, r = (di-
mension of θ under no restrictions) - (dimension of θ
under H0).

4 Simultaneous Confidence Intervals

Let Xi1,Xi2, ...,Xini , i = 1, .., g, be g independent ran-
dom samples of size ni each from Kotz type distributions
with parameters µi, and Σi, i = 1, ..., g. Suppose the
tests have revealed that a significant difference exists be-
tween the population means. In order to pinpoint the
differences we construct simultaneous confidence intervals
on various contrasts of difference between any two mean
vectors. The following results provide distributional re-
sults that enable constructing simultaneous confidence in-
tervals for linear combinations of µ,

ijs.

Proposition 2 (Simultaneous Confidence Intervals): Let
Xi1,Xi2, ...,Xini be a random sample of size ni from Kotz
type distribution with parameters µi, and Σi, i = 1, ..., g
and suppose the samples from different g populations are
independent. Suppose Σ1 = · · · = Σg = Σ. Using the
Theorem and Proposition 1, the 100(1− α)% Bonferroni
simultaneous confidence intervals for m linear combina-
tions of µl − µl′ , l < l′ = 1, ..., g are given by

a′k(µ̂l − µ̂l′)± zα/2m

√
a′k(

1

nl
τ̂ l +

1

nl′
τ̂ l′)ak, k = 1, ..., m (3)

where a,
ks are vectors of known constants, zα/2m is the

upper 100(1−α/2m)th percentile of the standard normal

distribution, τ̂ i = Σ̂Â
−1

i B̂iÂ
−1

i Σ̂, i = l, l′ = 1, ..., g,
and

B̂i =
1
ni

ni∑

j=1

(xij − µ̂i)(xij − µ̂i)′

(xij − µ̂i)′Σ̂
−1

(xij − µ̂i)
,

Âi =
1
ni

ni∑

j=1

1√
(xij − µ̂i)′Σ̂

−1
(xij − µ̂i)

·

[Σ̂− (xij − µ̂i)(xij − µ̂i)′

(xij − µ̂i)′Σ̂
−1

(xij − µ̂i)
].

If the variance covariance matrices from different pop-
ulations are different then we have the following result.

Proposition 3 (Simultaneous Confidence Intervals):
Like before, let Xi1,Xi2, ...,Xini

be a random sample
of size ni from Kotz type distribution with µi, and
Σi, i = 1, ..., g, and the samples from different g pop-
ulations are independent. Then 100(1− α)% Bonferroni
simultaneous confidence intervals for m linear combina-
tions of µl − µl′ , l < l′ = 1, ..., g are given by

a′k(µ̂l − µ̂l′)± zα/2m

√
a′k(

1

nl
τ̂ l +

1

nl′
τ̂ l′)ak, k = 1, ..., m (4)

where a,
ks are vectors of known constants, zα/2m is the

upper 100(1−α/2m)th percentile of the standard normal

distribution, τ̂ i = Σ̂iÂ
−1

i B̂iÂ
−1

i Σ̂i, i = l, l′ = 1, ..., g,
and

B̂i =
1
ni

ni∑

j=1

(xij − µ̂i)(xij − µ̂i)′

(xij − µ̂i)′Σ̂
−1

i (xij − µ̂i)
,
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Âi =
1
ni

ni∑

j=1

1√
(xij − µ̂i)′Σ̂

−1

i (xij − µ̂i)
·

[Σ̂i − (xij − µ̂i)(xij − µ̂i)′

(xij − µ̂i)′Σ̂
−1

i (xij − µ̂i)
].

Using the following example, we illustrate the compu-
tation of the maximum likelihood estimates and perform
some statistical inference under Kotz type distribution
(1). All the computations are done using programs writ-
ten in SAS/IML software.

5 An Example

In the following, we illustrate the procedure for testing
the equality of several population means using the
Football helmet data given in the example below. Before
testing the equality of the means, we first test the
equality of the variance covariance matrices using the
likelihood ratio test. Data on three variables, x1 = eye-
to-top-of-head measurement, x2 = ear-to-top-of-head
measurement, and x3 = jaw width are given for three
groups of players, namely, high school football players,
college football players, and non-football players. There
are 30 observations in each group. The helmet data
collected as part of a preliminary study of a possible
link between football helmet design and neck injuries are
provided in [17]. The hypotheses and the results from
testing are as follows:

(i) Test H0 : Σ1 = Σ2 = Σ3 = Σ.

The test statistic = −2 lnΛ = 13.054878. Using
−2 lnΛ ∼ χ2

12, the P-value = 0.3650646. Hence, we do
not reject H0 and conclude that the variance covariance
matrices are the same for the three groups.

(ii) Next, we test H0 : µ1 = µ2 = µ3 = µ, given
Σ1 = Σ2 = Σ3 = Σ.

The test statistic = −2 lnΛ = 91.70311. The P-value
= P [χ2

6 > 91.70311] < 0.0001. Hence we reject H0 and
conclude that at least two µ,

is are different.

(iii) Since we rejected the hypothesis of equality of means
we want to find simultaneous confidence intervals for
linear functions of µl − µl′ , l < l′ = 1, 2, 3. Let
µi = (µi1, .., µip)′, i = 1, 2, 3. Then with the choices,
a′1 = (1, 0, 0), a′2 = (0, 1, 0), and a′3 = (0, 0, 1) using (3),
the 95% Bonferroni simultaneous confidence intervals for
µ1j − µ2j , j = 1, 2, 3 are:

µ11 − µ21 ∈ (2.2932274, 3.9341077),
µ12 − µ22 ∈ (0.4294995, 2.0009086),

µ13 − µ23 ∈ (−0.212608, 0.923095).

The 95% Bonferroni simultaneous confidence intervals for
µ1j − µ3j , j = 1, 2, 3 are:

µ11 − µ31 ∈ (1.3875155, 3.1273591),
µ12 − µ32 ∈ (0.3040446, 1.6128665),
µ13 − µ33 ∈ (−0.000264, 1.0659512).

The 95% Bonferroni simultaneous confidence intervals for
µ2j − µ3j , j = 1, 2, 3 are:

µ21 − µ31 ∈ (−1.709631, − 0.002829),
µ22 − µ32 ∈ (−0.835963, 0.3224655),
µ23 − µ33 ∈ (−0.374984, 0.7301842).

6 Concluding Remarks

In our earlier paper [15], we proposed the Kotz type dis-
tribution given in (1) as an alternative to the multivariate
normal distribution for performing multivariate inference.
We introduced various properties of the distribution there
and discussed the maximum likelihood estimation of the
parameters. Further we have provided a goodness-of-fit
test and a simulation algorithm. Application of this dis-
tribution to multivariate analysis of variance and simul-
taneous confidence interval construction is provided here
in this article. Using an example, we have illustrated the
computations. However, one need to perform an in-depth
study, perhaps using an extensive simulation, to compare
the performance of this distribution under the presence
of outliers and other scenario against the multivariate
normal (the gold standard) distribution. We intend to
undertake such a study in the near future.
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