
  

 
Abstract— Robust parameter estimation of sparse data is 
generally applied to the tasks when data collection is 
time-consuming or of high cost. We point out a new 
problem caused by sparse data. We find that there may 
exists coverage mismatch between data samples and the 
population when the sample size is less than 20. We call it 
the distribution mismatch (DM) problem. In this study, we 
derive a wide-sense joint pdf for coverage, range, the 
sample of minimum order, and data samples themselves to 
analyze the DM problem. Based on the formulation, a new 
algorithm is proposed to compensate the DM problem. 
Experimental results show that the mean estimate of the 
algorithm will converge to the population mean if the 
standard deviation of population is known.  
 
Index Terms: distribution mismatch, sparse data, coverage, 
time-consuming data collection 

I. INTRODUCTION 
arameter estimation for sparse data is sometimes used in 
electronic device testing for lifetime predication over a 

small sample size of observations. It needs to face the problem 
of the sparse input data resulting from time-consuming or 
high-cost data collection. It is also an important issue in the 
field of data mining in the computer society. In this paper we 
address the data sparseness issue in parameter estimation. The 
study is focused on analyzing the mean and variance 
estimations of normally distributed random variables under the 
sparse data constraint. We attack the problem from a new 
viewpoint via introducing a new variable known as coverage. 
Coverage is a macro view of the sample data and has been 
exposited in the past, e.g. for the outlier examination. Hadeed 
(1990)[1] firstly used it in a classification application for the 
quality control of integrated circuit products. Real (2000)[2] 
used it from the viewpoint of “tolerance interval” to do the open 
set classification with integrated circuit, where tolerance 
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interval was the realistic mapping interval from data samples to 
its population.  

We want to point out that coverage is an important factor 
when we perform parameter estimation from data with small 
sample size. This opinion was also examined in [3]. But it 
adopted a nonparametric estimation approach owing to the fact 
of distribution free for the probability density function (pdf) of 
coverage. Recently, Chen (2006, 2007)[4][5] suggested a new 
parametric coverage interval to help to realize a parametric 
form of coverage pdf. In this study, we derive a wide-sense 
joint pdf about the coverage with the same meanings as [5] 

II. PAPER REVIEW 
Balarkrishnan and Clifford Cohen (1991)[ 6 ], Lloyd 

(1952)[7], Teichroew (1956)[8] have suggested a method, 
referred to as best linear unbiased estimation (BLUE), for 
parameter estimation of normal  random variables using order 
statistics. It is a weighted least-square algorithm which is based 
on the Gauss-Markov least-square theorem. It is known that 
BLUE was popularly used for sparse data analysis. It is 
unbiased and more efficient if it takes the censoring sampling 
scheme. 

 Let x  be a normal random variable with pdf 
2( ) ( , ).xf x N u σ=  Assume that there are n  independent 

observed samples 1, , nx xL  of x. Let 1: :, ,n n nx xL  are the ranked 
samples of 1, , nx xL  in increasing order. The BLUE estimator 
is calculated as the sum of products of the observations and 
properly-chosen coefficients. We define the standard normal 
transformation of the data by =( ) /i ix uξ σ− . Then, we have  

1[ , , ]T
n nX x x= L  

1[ , , ]T
nξ ξ ξ= L  

{ }: :i n i nE ξ ρ=  

: : , :( , )i n j n i j nCov ξ ξ β=   for 1 ,  and i j n i j≤ ≤ <  

{ }
{ }

: :i n i nE x u

E x u

σξ

σξ

= +

= Ι +
                   (1) 

[ ] 1I 1, ,1 T
n n×= L  

2B Iσ=                           (2) 

where In  is a n-dimensional all-1 vector and B is the 
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covariance matrix of x. Consider the generalized variance: 

( ) ( )1I IT
n n n nX u B X uσξ σξ−− − − −              (3) 

Minimizing it with respect to u  and σ , we obtain. 

1 1 1

1 1 1

I I I I
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n n n n n
T T T

n n

u B B B X

u B B B X
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− − −

− − −

+ =

+ =
 (4) 

The solution of Eq.(4) is 
1 1 1 1

*
1 1 1 2
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where *u  and *σ  are the estimated parameters, and 1:iα  and 

2:iα  are weighting coefficients. These coefficients have been 
tabulated by Sarhan and Greenberg (1956,1962)[9,10], entries 
in the 1956 tables are given for sample size up to 10 and in 1962 
up to 20. 

Generally speaking, BLUE performs well in small sample 
size. But it needs a table to look up, and this is a shortcoming. 
The other technique used is the maximum likelihood estimation 
(MLE) which is often applied to truncated normal distribution 
in spare data condition. Clifford Cohen (1991)[11] derived the 
singly truncated and doubly truncated maximum likelihood 
estimator and found that they outperformed BLUE when the 
sample size was grater than 20. Cohen recognized the sparse 
data problem as a truncated normal pdf and defined its 
likelihood by  

2
1: 1:

2
11: 1:

( ) ( ) ( )exp( )
22 ( ( ) ( ))

n
n

n n i

ix n x n

U x x U x x r x uL
F x r F x σπσ =

⎛ ⎞− − − − −
= −⎜ ⎟⎜ ⎟+ −⎝ ⎠

∑  (7) 

where ( )U ⋅  is the unit step function, 1:nx  is the sample of 
minimum order, r  is the range of the whole sample set, and 

( )xF ⋅  is the cumulative distribution function (cdf) of x.  
 

III. DEFINE THE DISTRIBUTION MISMATCH  PROBLEM 
In this work, we present a new idea different from BLUE 

and MLE. First, we want to point out that there exists a 
coverage mismatch between the sample pdf and its population 
pdf. Fig. 1 displays the basic relation of normal random variable 
x , the minimum order 1:nx , the range of the whole sample r , 
and the sample’s coverage c . All of them are random variables 
and affected to each other. We then write the coverage pdf 
according to the result of order statistics inference. It is easy to 
derive the pdf of range from order statistics: 

1: ::| , 1: 1: 1:

2
1: 1: 1: 1: 1:

( ) ( , )

( 1) ( ) ( )( ( ) ( ))

n n nr n x x n n n

n
x n x n x n x n n

f r f x x r dx

n n f x f r x F r x F x dx

∞

−∞

∞ −

−∞

= +

= − + + −

∫
∫

(8) 

where :n nx  is the maximum order of random variable. The 
coverage pdf can be found from Eq.(8) and expressed by 

2
| ( ) ( 1) (1 )  for 0n

c np c n n c c c−= − − >  (9) 

Fig. 2 displays the coverage pdf for some n.  

 
Fig. 1: Relation of variables’ interference model 
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Fig. 2: The coverage pdf for some sample size 

 
As shown in Fig.2, the pdf of coverage spreads away from 1 

as n is less than 20, and the situation becomes more serious as n 
decreases. We call this phenomenon as the distribution 
mismatch (DM) problem.  

We then derive a wide-sense normal joint pdf for 
coverage, range, the minimum order, and samples themselves 
based on Fig. 1 to solve the DM problem. We treat the 
wide-sense normal joint pdf as a variably truncated normal joint 
(VTNJ) pdf. It describes the randomness of the truncated points 
in the truncated normal distribution. Referring to Fig. 1, we 
express the joint pdf 

1:, , , | 1:( , , , )
nx x r c n np x x r c  by 

1:

1: 1:

, , , ; , | 1:

| , , , | , 1: | , |

( , , , )

( ) ( ) ( ) ( )
n

n n

x x r c u n n

x x r c n x r n n r c n c n

p x x r c

p x p x p r p c
σ

= ⋅ ⋅ ⋅
 (10) 

where  

x

1:nx
r

c
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1:

1: 1:
; , | , , ,

1:

( ) ( )
( ) ( )

( , )n

n n
x u x r c n x

n

U x x U x x r
p x f x

Q x rσ
− − − −

=   

is the truncated normal pdf given with sample size, the 
truncated points and the sample’s coverage, and 

1: 1: 1:( , ) ( ) ( )n x n x nQ x r F x r F x= + −  

The other terms in Eq. (10), (
1: | , 1:( )

nx r n np x , | , ( )r c np r , 

| ( )c np c ), must be derived from the original nonparametric 
order statistics pdf of range showing below: 

1:

| 1: 1: 1: 1:( ) ( 1) ( ) ( )( ( ) ( ))
n

r n x n x n x n x n
dx

p r n n f x f x r F x r F x= − + + −∫ (11) 

We discuss them as follows. First, the minimum order pdf can 
be derived from the Bayes’ theorem and expressed by 

{ }

{ }1: 2
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1: 1: 1:
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2

1:
1
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Second, | ( )c np c  has been given in Eq. (9). Third, | , ( )r c np r  can 
be derived with the Jacobian transform and expressed by 

{ } 2

| ,
1

( ) ( ) ( ) ( )
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where 

{ } 2

1

( , , )

( 1) ( ) ( ) ( ) ( )

( ) ( )

t

n
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x j x j x j x j

jdr x j x j

Z r Cc n
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−

=
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IV. THE PROPOSED METHOD 
 

The proposed method adopts an approach different from 
BLUE to use VTNJ marginal likelihood to formulate the 
closed-form equations for estimating mean and standard 
deviation. Because coverage is also a random variable in our 
formulation architecture, it is important to take into account the 
coverage of samples as interval estimation. The coverage 
interval is set in the form of the percentile of the relative order 
statistics and 0.15 percent fluctuation is added when we applied 
interval estimation for coverage in this study.  

The whole estimation interval is represented in the 
following form: 

: 1: : 1:[ , ] [ ( ) ( ) 0.15, ( ) ( ) 0.15]x n n x n x n n x na b F x F x F x F x= − − − +  (12) 

The VTNJ pdf considers implemented by chain rules but 
such a decision make it must fact a difficult problem which 
there is no explicit transformation from coverage to range with 

the term 1: 1: 1:( , ) ( ) ( )n x n x nQ x r F x r F x= + − in | , ( )r c np r . To 
overcome this problem, the sampling concept is a natural 
solution. We first apply the Gauss Legendre Integration (GLI) 
to | ( )c np c for interval estimation where the sampling points may 
be decided by Legendre polynomials computing. If we apply 
GLI to | ( )c np c , | , ( )r c np r  is naturally a profile-conditional pdf 

as shown in Fig.3. Here k  represents a constant for coverage. 
 

1 
Fig.3: Profile-conditional pdf for | , ( )r c np r  resulting from 

applying GLI to | ( )c np c . 
 

By using the GLI to implement the | ( )c np c  of VTNJ pdf, 
we can approximate the joint distribution of 1:,  ,  nx x r , and c  by  
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         (13) 

where a and b are the endpoints of coverage interval shown in 

Eq.(14); 
2 2t t

b a b aCc ξ− +
= + , for 1 1tξ− < < , are the sampling 

points of coverage; t  is the sampling index; iγ  is the i-th root 
of the m-th order Hermite polynomial; 

[ ]

1

22
1

2 !( )
Hermite ( )

m

Hm i
m i

mw
m

πγ
γ

−

−

=  is the weighting coefficient for 

the i-th root of the m-th order Hermite polynomial; and jη  is 
the j-th root of ( ) ( ) 0x j x j tF r F Ccη η+ − − = ; jη  must satisfy the 
following constrains:  

jη ∈� , 
( ) ( ) 0x j x jf r fη η+ − ≠ , 

jlb ubη≤ ≤ , and 

1: 1: 1:( , ) ( ) ( )n x n x nQ x r F x r F x= + − ; 
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, 1 1
2 2t t t

b a b aCc ξ ξ− +
= + − < < ; +jlb r ubη≤ ≤ , lb  and ub  

are empirically set to 4σ−  and 4σ , respectively; 
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tξ  is the t-th root of Legendre polynomial; and 

21( ) ( 1) ,  for 0,1,2,
2 !

v
v

v v vP x x v
v x

∂
= − =

∂
L . 

If we want to directly calculate the VTNJ pdf  in | , ( )r c np r , 
we will face the problem that the mean and standard deviation 
of the population must be known in advance. But this is 
unrealistic in our mission. We therefore adopt an alternative 
approach to construct a new bridge to conjoint with these 
variables. The idea is to transform the observed data into the 
standard normal domain. The suggestion is shown in Fig. 4. As 
shown in the figure, we transform the observed ranked samples 
into the domain of standard normal by : :( ) /i n i nx uξ σ= − . 
Each transform pair is marked with the same digit number. The 
coverage is also transformed by : 1:s n n nr ξ ξ= − .  
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Fig. 4: Relative quantile mapping invariance based on their 
percentiles. Dash-line represents the original normal pdf and 
solid-line represents the standard normal pdf. 
  

We then apply GLI to the VTNJ pdf to obtain the marginal 
log likelihood by 
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An example of profile-conditional pdf, | , ( )r c np r , is plotted in 
Fig. 5. It is to demonstrate the fact that if we would like to 
guarantee the coverage of the estimation large enough to above 

a lower bound, then there will be much more tolerance intervals 
qualified as the solution. Let we return to Eq.(9) to inspect the 
pdf of coverage which is distribution free. We find that its form 
is inconvenient for parameter estimation due to the no use of 
derivative operator. Fortunately, Chen [5] gave a good 
suggestion to the computation of coverage. In accordance with 
the conclusion of Chen [5], the pdf of coverage can be 
parametric if we constrain the tolerance interval (range) in its 
minimum case of all possible values. The plot shown in Fig. 5 
demonstrates that | , ( )r c np r  looks like an impulse with its 
distribution concentrating near the minimum-case. It is hence 
reasonable to take { }sMin r  to substitute all other possible 
values of sr . Fig. 5 also proves that our result is consistent to 
that of Chen [5]. 
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Fig. 5: Exemplified profile-conditional pdf  to show the impulse 
properties for the sample size 15n =  and coverage=0.95 of 
standard normal pdf. 

Eq.(16) can be optimized and simplified as a quadratic 
equation of variables σ  and u . Take the roots of the 
quadratic equation will result in the following solutions: 
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Where 
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sample square, t( )
vPw κ  is the weighting coefficient of the t-th 

root of the -thv  order Legendre polynomial 
2 2
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(1- )( ( ))t v t

b a
Pκ κ′

, 

[ , ]a b  is the coverage estimation interval, and ( )ξ ξΦ  is the cdf 
of the standard normal distribution. The same strategy can be 
applied to the order statistics random variable via replacing :n nξ  
by 1:nξ . 

V. SIMULATION RESULTS 
By checking Eqs.(17) and (19), we find that they are 

mainly affected by the sample mean, x , and the individual 
order statistics random variables, :i nx ,1 i n≤ ≤ . Our strategy is 
to adjust the coverage to make it approach to the real coverage, 
generated from x  and :i nx , 1 i n≤ ≤ , in order to compensate 
the DM effects. We examine two methods. One is to view the 
joint effect of x  and :i nx  under our suggestion, QMI. The 
other is to realize the QMI based only on the real coverage. Its 
purpose is to see only the effect of sample mean. 

1) Test the results with consistency to sample mean under the 
QMI principle—case of the default percentile 

We first formed an interval estimation for coverage by 
performing a coverage estimation from the expectation of order 
statistics by : 1:( { }) ( { })x n n x nF E F Eξ ξ−  and adding fluctuation 
of 0.015± . We then examined the accuracy of the conventional 
sample mean estimator. Two different conditions for sample 
mean were considered. One was to constrain the sample means 
in the interval of 0.3 0.3u x uσ σ− + ≤ ≤ + . It was referred to as 
the good sample mean case. The other was to constrain the 
sample means in the interval of 2.3 1.3u x uσ σ− + ≤ ≤ − +  or 
1.3 2.3u x uσ σ+ ≤ ≤ + , and was referred to as the bad sample 
mean case. Three estimators were compared: A represented the 
conventional sample mean estimator; B was the 
coverage-based estimator defined below 
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∑

∑
 (20) 

where p  was constrained to be either 1 or n  which 
corresponded to the endpoints of the range; and C was the 
estimator defined in Eq.(21). If p n= , then the term 

{ } { }
:

:| , ,p n t p
p nCc Min w n

E
ξ

ξ  can be computed by 

{ } { }
1: 1 1:| , ,( 1)

n t nCc Min w nEξ ξ− . The results are displayed in Fig. 6. It 

can be found that the MSE were very small if the sample mean 
is near the population mean. This implies that if we want to 
obtain a guaranteed coverage, then the difference between the 
estimated mean and the sample mean should be small. 
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Fig. 6: Comparison of the conventional sample mean estimator 
and two coverage-based mean estimators. 

2) Test the results with consistency to sample mean under the 
QMI principle—case of realistic percentile 

In the test phase, we eliminated the effects caused by the 
QMI mapping mismatch for 1:nξ  to 1:nx  or :n nξ  to :n nx . In such 
a case, 1: 1:( ) /n nx uξ σ= −  and : :( ) /n n n nx uξ σ= −  were known. 
But, we pretended that we did not know and u σ . The 
fluctuation assumption for coverage was therefore not needed. 
So, the previous formulation could be simplified and expressed 
by 
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2 2
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where p  was constrained to be either 1 or n . Actually, 

Eq.(22) is equivalent to Eq.(23) because * *
: :p n p nu x ξ σ= − . 

We generated 1,000 trials to examine the new estimator and 
used MSE as the score of comparison. The results are listed in 
Table 1. 
 
Table 1: Performance of realistic QMI analysis 

Item Sample mean Realistic QMI 
MSE 0.0765 0.0252 
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Notice that the MSE of realistic QMI was defined by 

2
1( )1

1000 2
nu u u+⎛ ⎞−⎜ ⎟

⎝ ⎠
∑ , where 1u  and nu  were the estimated 

results for 1:nx  and :n nx , respectively. It can be found from 
Table 2 that the realistic QMI mean estimator performed better 
than the sample mean estimator. 

VI. APPLICATION OF USING THE RESULTS OF REALISTIC QMI 
The above testing results of realistic QMI show us that if 

we are able to take the relative coverage for the range, then we 
can probably reduce the bias of the sample mean. Now we 
utilize the above result for analysis in depth. The transform 

: :p n p nu x ξ σ= −  has only two degree of freedom. So, if :p nξ  is 
known, the degree of freedom will be reduced to 1. We will 
have an opportunity to approach the real value by iteration. 

We performed 1,000 trials. In each trial, 13 samples of the 
normal random variable of (10,1)N  were generated. We 
assumed that the standard deviation was known to be 1 and the 
quantile :p nξ  was unknown.  

In the beginning, a pseudo mean was tried. Then, we got a 
:p nξ . The estimator of *u  was then found. The pseudo MSE 

could be computed by ( )2*1
1000 su u−∑ , where su  was the 

pseudo mean. As the pseudo MSE decreased, the pseudo mean 
would be closer to the true mean. Table 2 listed the 
experimental results. It can be seen from Table 2 that the 
pseudo MSE became low when the pseudo mean was close to 
the true population mean (=10). 

Table 2: Results of realistic QMI via pseudo mean 
Pseudo 

mean 

Pseudo 

MSE 

Pseudo 

mean 

Pseudo 

MSE 

9.70 0.0164 10.00 0.0059 

9.72 0.011 10.02 0.0058 

9.74 0.009 10.04 0.008 

9.76 0.0117 10.06 0.0056 

9.78 0.0114 10.08 0.0072 

9.80 0.0107 10.10 0.0079 

9.82 0.0063 10.12 0.0067 

9.84 0.0113 10.14 0.0066 

9.86 0.0096 10.16 0.0092 

9.88 0.0097 10.18 0.0086 

9.90 0.0056 10.20 0.0146 

9.92 0.004 10.22 0.0112 

9.94 0.0066 10.24 0.0118 

9.96 0.0087 10.26 0.0156 

9.98 0.0061 10.28 0.0109 

VII. CONCLUSIONS  
In this paper, the detail proof of parametric coverage has 

not been presented before and we show it in Fig. 5. In the other 
hand we have discussed the DM problem encountered in 
parameter estimation using data samples with size less than 20. 
The problem is addressed from the coverage of data samples. 
We referred the old skills and develop the advance truncated 
normal distribution, the variably truncated normal joint pdf , to 
formulate the DM problem. In the realization consideration, 
parametric coverage and QMI are also the core for successfully 
passing the test. In the default QMI test, we have showed that 
our coverage-based mean estimator follows the sample mean. It 
outperforms the sample mean in the realistic QMI case.  

This conclusion of the realistic QMI implies that if either 
σ  or u  is known in our estimation process, we are able to 
approach the real mean by iteration. Finally let us mention a 
thing that the result of realistic QMI is also accepted for large 
sample size condition. The reason is that it is free to coverage.   

VIII. REFERENCE 
                                                           
[1] Y. T. Hadeed, and K. T. Lewis, “The use of tolerance 

intervals in the characterization of semiconductor devices”, 
Inter. Test conf. proc., pp.924-928, 1990. 

[2] Real, E. C. and Baumann, A. H., “Open set classification 
using tolerance intervals”, Signals, systems and computers, 
the 34th  Asilomar conf. , vol. 2, pp.1217-1221, 2000. 

[3] H. Chen and T.-K. Yang, “Estimation of the sample and 
coverage for guaranteed-coverage nonormal tolerance 
intervals”, Winter simulation conf., pp.593-600, 1998  

[4] L-A. Chen and H-N. Huag, “Extending the discussion on 
coverage intervals and statistical coverage intervals”, 
Metrologia, vol. 43, L43-L44, 2006.  

[ 5 ] L-A. Chen, J-Y. Huang and H-C Chen, “Parametric 
coverage interval”, Metrologia, vol. 44, L7-L9, 2007.  

[6] N. Balarkrishnan, A. Clifford Cohen , “Order statistics and 
inference estimation methods”, Academic Press, Inc., 1991. 

[7] E. H. Lloyd, “Least-square estimation of location and scale 
parameters using order statistics”, Biometrika, 39, pp.88-95, 
1952. 

[8] D. Teichroew, “Tables of expected values of order statistics 
for samples of size twenty and less from the normal 
distribution”, The Ann. of Math. Stat., vol. 27, pp.410-426, 
1956. 

[9 ]A. E. Sarhan and B. G. Greenberg, “Estimation of location 
and scale parameters by order statistics from singly and 
doubly censored samples, part one. The normal distribution 
up to size 10”, The Ann. of Math. Stat., vol. 27, pp.427-451, 
1956, (correction , vol. 40, p.325) 

[10] A. E. Sarhan and B. G. Greenberg. eds., “Contributions to 
order statistics”, Wiley, New York, 1962. 

[11] A. Clifford Cohen, “Truncated and censored samples — 
theory and applications”, New York, Marcl Dekker, 1991. 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008


