
 
 

 
Abstract— As shape parameterization defines the design 

variables for the optimization of some object (geometric 
knowledge representation), it is very important to apply 
parameterizations with a low number of control points in order 
to reduce the dimensionality of the search space. A 
parameterization for 2D and 3D geometries based on piecewise 
Bezier curves and surfaces is proposed here. The requested C1 
inter- segment continuity is accomplished by automatically 
generating additional control points without increasing the 
number of optimization variables. The computational 
procedure takes the initially given complex surface or points 
cloud (2D or 3D), adaptively splits the domain into 2D or 3D 
patches and iteratively tries to reduce the necessary number of 
control points while satisfying the requested modeling accuracy. 
This adaptive parameterization procedure can serve as a 
geometric data-set compression utility and fits well into 
evolutionary optimization. 
 

Index Terms—Geometry parameterization, piecewise Bezier 
patches,  shape optimization, aerofoils and blades 
 

I. INTRODUCTION 
  The traditional engineering approach to design is more or 
less one of trial-and-error. Geometric shapes are  iteratively 
proposed as candidate designs and subsequently verified for 
given design requirements by applying engineering analysis. 
Optimization is a process of determining the best-possible 
values for the free variables x (continuous or discrete) of a 
problem, [1], [2], where some objective function defines 
excellence criteria such as weight, cost, net-present-value 
(NPV), etc, and constraints provide requests related to 
sustaining loads, permissible deflections, stresses, 
eigenfrequences, dimensions, technological constraints, 
technical regulations, etc, [3], [4]. 

Optimum design for given functionality is generally an 
inverse problem, more specifically one of synthesis, since the 
shape being generated arises as a consequence of the required 
functionality. The objective is to create the best possible 
design for the given design specification consisting of a set of 
excellence criteria and a set of design 
requirements-constraints. With this respect, optimum design 
is a process where the excellence criteria and design 
constraints steer the change of shape towards optimality in an 
evolution-like procedure. However, full-scale automatic 
design synthesis based on design specifications is yet to 
become a routine and mature general methodology. 
Integrating the worlds of engineering design (geometric 
modeling), engineering analysis and optimization also 
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imposes difficulties as the corresponding tools need to be 
harmonized. This applies primarily to mutual 
synchronization, respective communication and transfer of 
data as well as coordination of all processes. The 
corresponding numerical packages must be coupled by data 
exchange (with data mining) processes as well as 
synchronized execution in sequential and parallel modes with 
branching when necessary. Appropriate data mining is 
necessary since different analysis and/or synthesis programs 
are automatically executed during processing whereby they 
mutually write and read from each other’s native input and 
output files, possibly having a changing structure. In design 
optimization, the optimizer changes the values of the 
optimization variables and consequently both the 
parameterized geometric model in CAD 
(computer-aided-design) and the data input on geometry, 
loading and boundary conditions in FEA 
(finite-element-analysis) , which steers the search process by 
evaluation of constraints and objective functions.   
                              
 
  
  
 
 
 
 
 
 
 
 
 
 
 
   Fig. 1. Optimization logistics 
 

The complexity of the design process makes it 
computationally very intensive. In order to obtain solutions 
in reasonable computer time, numerical provisions such as 
parallelization (especially suited with evolutionary 
algorithms) and approximate and surrogate models (such as 
response surfaces or neural networks) are applied. Moreover, 
efficient description of 2D and 3D geometric objects is of 
critical importance in engineering design since it reduces the 
dimensionality of the search space. 
Design optimization is usually viewed as consisting of three 
different stages [5], [6], [7]: topology optimization, shape 
optimization and dimensional (sizing) optimization. Shape 
optimization is a difficult issue, since it involves a 
substantially changing geometry, the current state of which in 
each iteration must be communicated to the simulation 
package (eg. FEA). Typically the entire geometry of the 
domain changes with boundaries and nodes having new 
locations and possibly new FE meshing to be undertaken. 
These difficulties and the need to define efficient shape 
parameterizations for complex 3D geometries have so far 
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prevented shape optimization from being a routine procedure 
in engineering design in the industry. Shape optimization can 
also be part of the reverse engineering process, where some 
object's (undocumented) geometry is scanned in high-density 
3D optical technology, post-processed and parameterized to 
reduce the resulting point clouds into a compact set of data, 
and then subjected to shape optimization to improve 
performance. 
The fact that in shape optimization the optimization variables 
also have to steer the forming of the FE mesh led to several 
approaches in practical numerical implementations, [8], [9], 
[10]. One is the concept of design elements whose control 
nodes are directly linked to the optimization variables. Based 
on the current positions of the control nodes of the design 
elements, new mesh generation can be carried out in FEA 
simulation packages. Changes in shape by the optimizer may 
cause topological or dimensional conflicts with other objects 
if the optimized object is part of a complex multi-object 
system. 

Evolutionary optimizers and genetic-algorithms [11] are 
also applied, [12], [13], [14], [15] in shape optimization, 
providing for efficient multi-objective shape design and 
Pareto-set generation. Some authors combine topological 
design and shape optimization in a single integrated process. 
Binary representation of elements of 2D shape with 
successive refinement and with subsequent smoothening is 
another option which is sometimes applied with GA. 

 
The purpose of parameterization of the geometry is to 
provide for compact representation and coding of shape, 
simple storage, interactive visualization, geometric 
transformations, animation of response and simulation of 
interaction with the environment, etc.  
Several approaches to shape parameterization have been 
proposed [6], [7], [8], [9]. They include simple sets of points 
along the boundary, design elements, parametric curves or 
surfaces, and superposition of component shapes (modes). 
 
 
 
 
 
 
   Fig. 2: Parameterization of 3D shape 
 
The CAD approaches use feature-based solid modeling to 
define shape, in other words parametric CAD capabilities are 
used [16], [17], [18], [19]. Standardized graphics exchange 
formats are used, however up to date they don't offer full 
provision for parametric and rule-based geometry. Other 
approaches also use the computer graphics operators to 
define shape [20], [21].  
 
Unfortunately, all these approaches to parameterization are 
still insufficiently mature for routine industrial usage. For 
example the CAD-based approach, in addition to not 
supplying sensitivity derivatives, lacks robustness since 
inconsistent (in terms of topology, geometry constraint rules, 
interference) geometries can be generated by the optimizer, 
making the grid generation in the FEA simulator impossible. 
None of the approaches provides fully for all the conflicting 
requests listed above, and there is no superior generic 
parameterization scheme that couples well and exchanges 

data with CAD and simulation packages (remeshing), 
provides sensitivity derivatives, provides faithful geometric 
modeling properties with local control, etc, and does all this 
with a compact dataset to constrain the dimensionality of the 
search space. 
 
A number of papers present specific cases of coupling the 
optimizer with CAD software [18], [19]. Optimization 
methods offer tools for creating the best designs for given 
criteria, subject to given constraints. Hence, combining the 
two, CAD and optimization, offers prospects for the classical 
'wishful thinking' of the practicing engineer: tools that 
automatically create the best shape for the specified design 
functionality, i.e. optimal synthesis.  
With the recent developments of the CAD software that 
include parametric design and feature-based geometry this 
coupling is becoming increasingly possible, where some of 
the parameters in the CAD database can be assigned to 
optimization variables. Feature-based parametric CAD 
provides the capability of automatically updating the designs 
based on new values of the parameters, while preserving the 
integrity and the design intent based on the rules and relations 
that the user has defined during the initial design process. The 
parameters linked to the shape optimization variables can be 
any of the feature-based CAD parameters such as properties 
of the basic solid modeling primitives, control points of 2D 
contours, control parameters of the operators evolving 2D 
contours into 3D shapes, locations of some elements, etc. 
There are many examples of parameterizations for shape 
optimization in recent literature, partial surveys of numerous 
papers can be found in [7]- [9]. They include curves for shape 
optimization of airfoils, where multi-point and multi-criteria 
optimization is typically applied for variable operating 
regimes. Other examples include shape design of structures, 
for example plates, bicycle frames, machine elements, 
vehicle components and body parts, aircraft components, etc. 
Applications of shape optimization also include die shape 
design in sheet metal forming, casting shape optimization, 
optimization of metal forming processes such as forging, 
shape optimization for fatigue behaviour, tool design 
optimization, etc. 

II. PARAMETERIZATION USING CHAINED BEZIER CURVES 
AND SURFACES 

In shape optimization using parametric curves, Bezier 
curves, B-splines and NURBS are typically employed 
because of their favorable properties [20], [21]. They act as 
approximation curves defined by corresponding control 
points, which is different to cases where interpolation curves 
(such as cubic splines) pass through interpolation points. For 
reasons mentioned above, Bezier curves (Fig. 3) can 
conveniently be used for 2D shape parameterization due to 
the following reasons: 

- they pass through initial and final control points 
- the tangent in the initial point is defined by the 

initial two control points, the tangent in the final 
point is defined by the final two control points,  

- the n-th derivative of the curve in the initial and final 
point is defined by the (n+1) initial and final control 
points respectively 

These characteristics of Bezier curves are convenient in 
providing for inter-segment continuity when chained Bezier 
curves are applied. 

X= [p1 p2 ... pn]

x2 x1 

x3 
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  Fig. 3: Bezier curve of degree 3 
 
The equation of the Bezier curve of n-th degree for (n+1) 
control points follows using Bernstein polinomials B 
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points-nodes. Introducing multiple coincident control points 
has the effect of pulling the curve closer towards the control 
points. Bezier curves possess the convex hull property. A 
closed Bezier curve is obtained by specifying coincident 
initial and final control point. Bezier curves are invariant 
under affine transformations and they are transformed by 
transforming their control points. The degree of the curve is 
directly linked to the number of control points. For example, 
for  n=3 as used here: 
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The derivatives are obtained as [16]: 
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A Bezier curve does not posses the property of locality 

since a change in a single control point changes the entire 
curve. As a consequence, if a higher number of control points 
are needed for satisfactory description of a certain shape, a 
high-degree Bezier curve is generated. In addition to not 
possessing the property of locality, high-degree Bezier 
curves can also oscillate between control points as they are 
based on high-degree polinomials. 

 
Bezier curves can be extended to 3D Bezier surfaces with 
corresponding properties, [16]: 
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 where Pi,j  are control points- nodes of the control 
polihedron.  
 
 
 
 
 
 
 
 
 
 
  
Fig. 4: Control polyhedron for Bezier surface of degree 3 
 
The degree of the surface is determined by the respective 
numbers of control points in the respective directions, like 

with Bezier curves. The Bezier surface is essentially obtained 
by blending Bezier curves; Bezier control points of a Bezier 
curve are replaced by Bezier curves in the orthogonal 
direction. 
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III. PROPOSED PARAMETERIZATION PROCEDURE 
The objective is to develop an automatic procedure that 
adaptively determines the necessary number of control 
parameters (as compact as possible for given requirements 
for accuracy of representation) and splits the domain into 
patches with sufficient continuity. This procedure could also 
act as an interface that can accept some given dense 
points-cloud as input, and reduce the necessary number of 
control points to a minimum for requested accuracy (‘data-set 
compression’). These control parameters will subsequently 
be used as a compact set of shape optimization variables. The 
whole process would resemble reverse engineering. 
The approach in this paper is limited in its objectives to 
proposing a compact optimization-oriented 2D and 3D 
parameterization by automatically chaining low-order Bezier 
curves and surfaces into complex shapes, which will provide 
numerical simplicity, good geometric modeling capabilities 
with localized control, and compact dimensionality of the 
resulting search space. It can also be seen as a lossy data-set 
compression technique where the trade-off between data-set 
compression and representation accuracy is adjustable and 
controllable. Since the numerical effort is strongly correlated 
with the number of variables (design space) and the number 
of objective function evaluations in the search space, a 
reduction of the dimensionality of the search space can be 
critically important for the efficiency of the optimization 
process. 
 
The parameterization procedure developed here is based on a 
simple method of chaining Bezier curves with C1 continuity, 
while it can also be extended to C2 and higher-order 
continuity (C0= continuity of function value, C1= continuity 
of slope, C2= continuity of curvature) 
 

 
  Fig. 5: Chained Bezier curves, three curves of degree 3 
 

The simple procedure for parameterization developed here 
is based on automatic generation of additional control points 
in segments where neighboring Bezier curves join, such that 
it does not increase the number of optimization variables. 
Since the additional control points are automatically 
generated from existing ones, the number of optimization 
variables (original control points) is not increased while 
continuity is fully provided for. 
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Similar computational procedures are developed for the 
representation of complex 3D surfaces, based on chaining 
individual Bezier surfaces as patches in both directions. 
Arrays of additional control points are generated along the 
segments where individual patches join, as shown with 
dashed lines on Fig. 6. 

 
   Fig. 6: Control polyhedron for a chained Bezier surface 
with generated additional points at segments where 
individual surfaces join (dashed lines) 
 
The computational procedure is shown in Fig. 7: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  Fig. 7: Flowchart of the process 
 
The procedure interpolates a number of additional Bezier 
points in addition to the original control points, hence, it does 
not increase the number of optimization variables. On the 
other hand it provides full flexibility in automatic splitting of 
complex surfaces into low-order Bezier surfaces with C1 
continuity without the need for user interventions. 
 
The procedure in Fig. 7 can itself be part of an optimization 
process. It can serve in determining the optimal subdivision 
of some given complex surface (or a given points cloud) into 
patches by optimizing the parameters listed as inputs in Fig. 
8:  number of patches in x and y directions and number of 

control points in x and y directions (degree of Bezier curves). 
This optimization of the respective parameterization of the 
chained surface patches is performed using the minimum 
offset from original surface or points cloud as the objective 
and possibly expressing the permissible total offset as a 
constraint. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 8.  Determining the values of parameters for optimal 
subdivision of a complex surface or points cloud into Bezier 
patches   

IV. RESULTS 
In the first example, the data compression aspect of the 
developed parameterization is demonstrated on the example 
of the airfoil NACA 4413. A 'complete' data set consisting of 
82 points defining the shape is imported, and some of those 
points (with some arbitrarily chosen increment) are selected 
to be the initial control points (design variables), which is 
shown as ‘initial parameterization in Figs. 9-11. The values 
of these variables are then optimized to yield a curve with a 
minimum offset from the given complete data-set (Figs. 
9-11), using non-gradient (Nelder-Mead), gradient (BFGS), 
and evolutionary (GA) unconstrained optimization. All three 
optimizers are found to converge properly, BFGS naturally 
needing far less iterations. The ‘offset’ is evaluated as the 
cumulative distance between the points on the given airfoil 
and corresponding ones on the parameterized curve. 
It is shown that a significant reduction of the number of 
control points can be achieved with acceptable values of the 
total offset. It illustrates that by applying this procedure 
before shape optimization a significant decrease in 
optimization computer time due to reduced dimensionality of 
the search space can be achieved. It also leads to 
simplification in the data exchange between the optimizer, 
the CAD software and the FE analysis software and 
accelerated data mining. 
 
For the cases in Figs. 9-11, the following applies:    
Number of points defining NACA 4413 contour =82 
Objective function:  minimum offset between the given set of 
points on the contour of the NACA airfoil and the chained 
Bezier approximation 
Optimizers:  BFGS, Nelder – Mead, GA, [22] and in-house 
development 

The cases in Figs. 9-11 present different combinations of 
number of chained curves, their degree related to respective 
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numbers of control points and positions of Bezier control 
points. Both original control points corresponding to 
optimization variables and interpolated additional control 
points are shown. The values of control points and total 
offsets are listed below. 

 
Case 1: 
Degree of individual chained Bezier curves =3 
Number of design variables defining the chained Bezier curves =12 
Expanded number of control points for chained Bezier curves =16 
Number of chained Bezier curves =5 
Optimized values of Bezier points (x / y):  
 2.999    2.902    2.703    2.232    2.083    1.973    1.986    2.357    2.589    
2.896   2.951    3.028 
 0.000    0.030    0.086    0.129    0.082   -0.002   -0.047   -0.036   
-0.021   -0.005   -0.002   -0.000 
Total offset:  2.3751e-006 
 

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

82->Points step= 8  Bez degree= 3  No. of curves= 5   >>> No. of parameters= 12

 optimization X & Y BezPts
-.- initial parameterization
___ optimized parameterization

 
Fig. 9. Chained Bezier curves for NACA 4413 airfoil 
parameterization, case 1  
 
Case 2: 
Degree of individual chained Bezier curves =4 
Number of design variables defining the chained Bezier curves =11 
Expanded number of control points for chained Bezier curves =13 
Number of chained Bezier curves =3 
Optimized values of Bezier points (x / y):  
2.9393    3.1383    2.1923    2.1863    1.9700    1.9544    2.0122    
3.2130    2.8483    2.9443 
3.0190    0.0002    0.0417    0.1254    0.1291   -0.0002   -0.0426   
-0.0242   -0.0066   -0.0002   -0.0001   -0.0003 
Total offset:    0.0018 
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Fig. 10. Chained Bezier curves for NACA 4413 airfoil 
parameterization, case 2  

 
Case 3: 

Degree of individual chained Bezier curves =5 
Number of design variables defining the chained Bezier curves =14 
Expanded number of control points for chained Bezier curves =16 
Number of chained Bezier curves =3 
Optimized values of Bezier points (x / y):  
2.899    3.153    2.453    2.431    2.165    1.935    2.090    1.771    2.611    
2.907     2.857    2.931    2.928    3.071 
0.000    0.009    0.114   0.149    0.113   -0.002    -0.043   -0.062   
-0.022   -0.004   -0.002    0.000   -0.001   -0.001 
Total offset:  1.2705e-004 
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Fig. 11. Chained Bezier curves for NACA 4413 airfoil 
parameterization, case 3 

 
 

In the second example shown in Figs. 12-14, the proposed 
parameterization is applied to wind turbine blades with a 
complex 3D geometry. A similar approach can be applied to 
describing a general 3D geometry. In the following case, a 
wind turbine blade based on NACA 4413 airfoils is the object 
to be described using a reduced number of control points. The 
objective is to apply low-order Bezier patches and have C0 
and C1 continuity in both directions.  
 
The initial description of the blade is given by the NACA 
4413 contour points (as in example 1) and the following 
control data which describe the scaling and rotation of the 
airfoils along the radial axis: 
Radii =  [0.344 0.472 0.600 0.728 0.856 0.984 1.112 1.240 1.368 
1.496 1.505 1.510 ];  
Length = [0.177 0.168 0.160 0.151 0.143 0.134 0.126 0.117 0.109 
0.100  0.08  0 ];  
Angle = [11.0 9.4 8.0 6.7 5.6 4.6 3.8 3.1 2.5 2.1 2.1 2.1]; 

which gives a total of  82 * 12 points on the 3D surface. In 
the case shown below, 6 different radii are selected with 10 
airfoil control points. The following figures show the 
resulting control points (Fig.12) and the corresponding 3D 
visualization (Figs.13, 14) obtained with chained Bezier 
surfaces of degree 3 in both directions: 
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Fig. 12.  Control points for chained Bezier patches for NACA 
4413 based wind turbine blades (both original points- design 
variables and generated additional points)  
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Fig. 13.  NACA 4413 based wind turbine parameterized 
using chained Bezier patches 

 
 

 
Fig. 14.  NACA 4413 based wind turbine parameterized 
using chained Bezier patches, alternative view (complex 3D 
shape due to different aerodynamic conditions along the 
blade) 

V. CONCLUSION  
This paper presents an approach to parameterization of 
complex 2D and 3D shapes based on adaptive chaining of 
Bezier curves and surfaces. The continuity is imposed by 
automatically interpolating auxiliary control points in 
segments where neighbor surfaces join. In general terms, the 
representation of a complex 3D shape (or points cloud) can 
be reduced to a compact set of design variables, and the 
procedure proposed optimizes the necessary number of 
Bezier patches, their degree and positions of control points 
for given requirements of accuracy. The procedure leads to 
efficient shape optimization due to resulting low 
dimensionality of the search space. The procedure developed 

can serve as a geometric data-set compression utility and as 
an interface between the geometric model and the 
evolutionary optimization procedure.  
The procedure is illustrated on 2D NACA 4413 airfoils and 
3D wind turbine blades based on the same airfoil. 
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