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Abstract—Applications are given of a formula for

the exact probability density function of the maxi-

mum likelihood estimates of a statistical model, where

the data generating model is allowed to differ from

the estimation model. The main examples are sup-

ported by simulation experiments. Curved exponen-

tial families are investigated, for which an approach

is described that can be used in many practical situ-

ations. The distribution of a maximum likelihood es-

timator in exponential regression is developed. Non-

linear regression is then considered, with an example

of a model discrepancy situation arising in ELISA im-

munoassays and similar biochemical titrations. An in-

correct logistic model is specified for a titration curve

that is used for describing the reaction of a chemical

sample to applied substrate concentration. A method

is suggested to reduce the amount of bias in the esti-

mate of binding affinity. There is a discussion of other

possible uses for the technique.
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1 Introduction

A technique for estimator densities (TED) gives the exact
joint density of the maximum likelihood estimates (MLE)
from a specified statistical model, typically a nonlinear
regression model [8]. The method can be used where
the estimation model either agrees with or differs from
the model that has generated the data. Here, the appli-
cations to curved exponential families will be described
and two examples will be given. The first example is ex-
ponential regression, where the technique gives an easy
path to derive results that are already available in the
literature. The second example demonstrates nonlinear
regression modelling in the setting of biochemical titra-
tion exeriments, where alternative models are explored.

The use of a specific estimation model is widespread when
the data are presumed to be distributed in a certain way
according to a scientific hypothesis. Nevertheless the
modeller may accept that alternative hypotheses are pos-
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sible. TED considers a pair of models without exploring
specifically the question of discriminating between them.
The models are freely chosen and need not be nested.
The examples illustrate two situations.

1. Estimation model equivalent to data generating model.
Here TED is in competition with existing approximate
and exact analytic techniques. It is an addition to the sta-
tistical toolbox as a straightforward analytical approach
to derive the exact algebraic expression for the density of
the MLE.

2. Estimation model not equivalent to data generating
model. Here TED is the only exact analytic method that
is available for describing the density of the quasi max-
imum likelihood estimates. These will also be termed
MLE.

Since TED operates under both of these situations, it
can be used as a basis for assessing the robustness of an
estimation model against deviations from the presumed
data generating process. An exact criterion can be con-
structed that is based on Kullbach-Leibler information for
the comparison of a pair of alternative models as fitted to
a set of data [9]. TED is of most potential value for cases
where data samples are unique or expensive to replicate.
It can therefore be expected to be particularly useful in
areas such as epidemiology (e.g. [14]) and econometrics
(e.g. [3]), where bias can arise from functional differences
between models or by overfitting or underfitting models
to data.

2 TED applied to curved exponential
family estimation models

In the following, statistical models will be specified in
terms of the densities of data that are generated by them.

The n members of a sample are described as a (n×1)
vector w, g0(w) is the true density of w, and g1(w|θ) is the
presumed density with (p×1) parameter vector θ to be
estimated. The log likelihood corresponding to g1(w|θ)
is l(θ|w). The space of w is W , and the space of θ is Θ. A
(nx1) vector of independent variables z or a design matrix
can be introduced to cope with the regression situation.
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θ̂ is the MLE and is given as l′(θ, w)|
θ=θ̂

= 0, (where ′

indicates differentiation wrt θ).

Following [8], consider a (p×1) vector T .

T (θ, θ∗, w) = l′(θ∗, w) − l′(θ, w), (1)

where θ∗ is fixed at an arbitrary value. Under a simple set
of regularity conditions, the exact density for θ̂ is given
as follows.

g(θ̂) = Ew[|j(θ, w)||
θ=θ̂

] . g[T (θ̂,θ∗=θ̂,w)](0), (2)

where j(θ, w) = −l′′(θ, w) is the observed information,
and the second term represents the value of the density
g[T (θ̂,θ∗,w)](t), for which θ∗ = θ̂, and hence t = 0 by (1).

The term Ew[|j(θ, w)||
θ=θ̂

] describes a conditional expec-

tation, that is conditional on θ = θ̂ and is taken wrt w
over g1(w|θ).

Many useful estimation models can be be represented as
members of a curved exponential family. Following Dob-
son [2], let θ appear in a (n×1) canonical function b(θ, z)
and in a (p×1) functional c(θ, z), together with (n×1)
functionals of the data a(w) and d(w); all constrained to
describe a valid density for w.

g1(w|θ) = exp[a(w)T b(θ, z)+1(p×1)
T c(θ, z)+1(n×1)

T d(w)],
(3)

where T indicates transposition.

If f(θ, z) is the unconditional expectation of a(w), then

the (px1) vectors for l′(θ, w) and T (θ̂, θ∗, w) are given as
follows.

l′(θ, w) = b′(θ, z) . (a(w) − f(θ, z)) (4)

T (θ̂, θ∗, w) = b′(θ∗, z) . (a(w) − f(θ∗, z)) (5)

Equation (5) shows that T (θ̂, θ∗, w) is a linear transform
of a(w), and so g[T (θ̂,θ∗,w)](t) can often be found easily.

The conditional expectation Ew[|j(θ, w)||
θ=θ̂

] is obtained
from the observed information j(θ, w), which is a (pxp)
matrix that is calculated by differentiating l′(θ, w) again.

−j(θ, w) = l′′(θ, w) =

[b′′(θ, z) . (a(w) − f(θ, z))] − [f ′(θ, z) . (b′(θ, z)T ] (6)

Here b′′(θ, z) is a (pxpxn) matrix, while f ′(θ, z) and
b′(θ, z) are (pxn) matrices.

Examples of TED for curved exponential families are
given below and also in [8].

3 Exponential regression (Case 1, esti-
mation model equivalent to data gen-
erating model)

The prescriptive formula (2) will often be easier to use
than other suggested analytic methods. Consider for ex-
ample an equation for g(θ̂) that was introduced by Hillier

and Armstrong [4], and then applied to exponential re-
gression by Hillier and O’Brien [5]. Here, equivalents to
a subset of their results will be demonstrated using TED.

Data are distributed according to a negative exponen-
tial density, with the rate parameter itself given as an
exponential function of an underlying independent (nx1)
variate z. As above, the data set is of n values wi with
prespecified independent variables zi. A single scalar pa-
rameter θ0 is to be estimated in this example (p = 1).

g0(wi) = γ0i.exp[−wiγ0i],

wi > 0, γ0i = exp[−ziθ0] > 0 (7)

This can be written in vector forms for the equivalent
data generating model and estimation models.

g0(w) = exp
[

−θ0z
T 1 − wT .exp[−θ0zi]

]

(8)

g1(w|θ) = exp
[

−θzT .1 − wT exp[−θzi]
]

(9)

Here, 1 is an (nx1) vector of 1s. exp[−θ0zi] and exp[−θzi]
are (nx1) vectors that contain, respectively, the scalar
quantities exp[−ziθ0] and exp[−ziθ] taken over the n val-
ues of zi (i = 1, ..., n).

Density (9) is a member of the exponential family (3),
with

a(w) = w, b(θ, z) = −exp[−θzi],
1T c(θ, z) = −θzT 1, 1T d(w) = 0.

The unconditional expectation of a(w) is the (nx1) vector
f(θ, z) = exp[θzi]. So, from (5),

T (θ̂, θ∗, w) = (ziexp[−θ∗zi])
T . (w − exp[θ∗zi]), (10)

where ziexp[−θ∗zi] and exp[θ∗zi] are (nx1) vectors.

Also

−j(θ, w) = l′′(θ, w) = −(z2
i exp[−θzi])

T . w

Ew[|j(θ, w)||
θ=θ̂

] = Ew[|(z2
i exp[−θzi])

T . w|
θ=θ̂

] =

[|(z2
i exp[−θ̂zi])

T | . (Ew[w]|
θ=θ̂

) =

(z2
i exp[−θ̂zi])

T . (exp[θ̂zi]) = (z2
i )T .1, (11)

where z2
i exp[−θzi] and z2

i are (nx1) vectors.

Examining (10), T (θ̂, θ∗, w) is a weighted sum of expo-
nentials with an offset. Let

V = (ziexp[−θ∗zi])
T . w =

n
∑

i=1

wizi.exp[−ziθ
∗] (12)

Then

T (θ̂, θ∗, w) = V − (ziexp[−θ∗zi])
T . (exp[θ∗zi]) = V − zT1

(13)
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The density of T can be obtained by first finding the
density of V and then applying a transformation. Let vi

be a standard exponential variable (g(vi) = exp[−vi]).
Then, from (12), V =

∑n
i=1 Φivi, where, in terms of

scalar quantities,

Φi = ziexp[−ziθ
∗] . exp[ziθ0] = ziexp[zi(θ0 − θ∗)] (14)

As a weighted sum of independent standard exponential
variables, V has a general Erlang distribution [12].

g(V ) =

n
∑

i=1





∏

i6=k

(Φi − Φk)−1



 .Φn−2
i .

(

exp

[

−V

Φi

])

, V ≥ 0

(15)

The analytic formula for g(θ̂) is now developed, without
loss of generality, for the case n = 2. Re-expressing (15)
using (14),

g(V ) =
1

(z1exp[(θ0 − θ∗)] − z2exp[(θ0 − θ∗)])
.

(

exp
[

−V
z1exp[z1(θ0−θ∗)]

]

− exp
[

−V
z2exp[z2(θ0−θ∗)]

])

,

V≥ 0 (16)

Now, from (13), g[T (θ̂,θ∗,w)](t) = g[V ](t +
∑

zi), and

g[T (θ̂,θ̂,w)](0) = g[V ](
∑

zi). Applying equation (2) to (11)

and (16), when V =
∑

zi,

g(θ̂) = (z2
1 + z2

2).
1

(z1exp[(θ0 − θ̂)] − z2exp[(θ0 − θ̂)])
.

(

exp
[

−(z1+z2)

z1exp[z1(θ0−θ̂)]

]

− exp
[

−(z1+z2)

z2exp[z2(θ0−θ̂)]

])

, θ̂ ≥ 0

A program was written to calculate this density and also
to construct a simulated probability histogram by deriv-
ing samples using a sequence of independent standard
exponential random numbers. The MLE θ̂ can be cal-
culated for each simulated data set without difficulty as
an analytical formula. For this experiment, θ0 = 0.8,
z1 = 0.75 and z2 = 1.5. 100,000 simulated sets of data
were used. Fig. 1 shows the comparison of the densities
derived by the analytic method and by simulation. By
inspection, the simulated probability histogram can be
seen to agree well with the analytic density. The analytic
density also agrees well with Fig. 3.1 of [5].

4 Nonlinear regression models

Consider a nonlinear regression model with normal er-
rors, MNw(µ(z); Σ), where µ(z) is the (n×1) vector of
mean responses and Σ is the known (n × n) covariance
matrix. Assume that the data generating model g0(w|z)
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Figure 1:
Exponential regression. Empirical probability density

function based on a histogram of estimates from 100,000

simulations, with analytic distribution g(θ̂). (X-axis label

Theta is θ̂).

has µ(z) = f0(z), and the estimation model g1(w|θ, z)
has µ(z) = f(θ, z), where f(θ, z) can be nonlinear wrt
θ. The estimation model can be restructured in the form
(3), with

a(w) = w, b(θ, z) = Σ−1f(θ, z),
1T c(θ, z) = − 1

2f(θ, z)T Σ−1f(θ, z),
1T d(w) = − 1

2 [nlog(2π) + log|Σ| + wT Σ−1w]

For the simple iid case Σ = σ2I, where I is the (n × n)

identity matrix, the density g(θ̂) can be obtained from
(2) as follows.

g(θ̂) = Ew[|j(θ, w)||
θ=θ̂

] . |
2π

σ2
f ′(θ̂, z)(f ′(θ̂, z))T |−

1

2 .

exp ( − 1
2σ2 [f(θ̂, z) − f0(z)]T [f ′(θ̂, z)]T

[f’(θ̂, z)(f ′(θ̂, z))T ]−1[f ′(θ̂, z)][f(θ̂, z) − f0(z)] )

(17)

Further explanation is given by Hingley [8], where there
is a recipe to evaluate Ew[|j(θ, w)||

θ=θ̂
], in particular

demonstrating the setup for a two parameter nonlinear
model. An example of this is given in Section 5 below.

For the method as developed here, a complete descrip-
tion of the data generating model is assumed known, in-
cluding specification of σ2. However, in an experimental
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situation, error variance is usually estimated from the
residual sum of squares after fitting the model to data,
giving an MLE σ̂2 that is biased (an unbiased estimate is

n
(n−p) σ̂

2). Now the form of equation (17) shows that g(θ̂)

depends on σ2 but does not depend on σ̂2. An exten-
sion of the density, to include σ̂2 with θ̂ in a joint density
g(σ̂2, θ̂), requires multiplication of g(θ̂) by g(σ̂2|

θ̂
).

In the case where the data generating model is a linear
model, with a (nxp) design matrix X0 and a (px1) pa-
rameter vector B0, then f(θ0, z) = X0B0. The density

g(σ̂2|
θ̂
) is that of a multiple of a central chi-square variate

if the estimation model agrees with the data generating
model. This distribution does not depend on f(θ̂, z) or θ̂,

so g(σ̂2|
θ̂
) = g(σ̂2) and g(σ̂2, θ̂) = g(θ̂).g(σ̂2). In the case

of equivalent nonlinear models, the density g(σ̂2|
θ̂
) is also

that of a multiple of a variable with a central chi-square
distribution. But for either linear or nonlinear models, if
there is a distinction between the data generating model
and the estimation model, then g(σ̂2|

θ̂
) will be related

to a noncentral chi-square density [13], with a noncen-

trality parameter depending on f(θ̂, z)− f0(z) as well as
σ2 and other terms. An effective dependence is created
between g(θ̂) and g(σ̂2), in the sense that both depend

on θ̂ and f0(z). However g(σ̂2, θ̂) = g(θ̂).g(σ̂2|
θ̂
) can still

be calculated if required, and in all cases g(θ̂) can be de-
termined from knowledge of σ2 without needing to worry
about the distribution of σ̂2. These statements only apply
to the simplest possible formulation of the error process
(Σ = σ2I) and should be revisited when using models
with more intricate error structures.

5 Biochemical titration using a lo-
gistic curve (Case 2, estimation
model not equivalent to data generat-
ing model)

This example involves a practical problem that exists in
biochemical assays, based on principles of physical chem-
istry. The assays are titrations and come in various types
- such as enzyme-linked immunosorbent assays (ELISA,
e.g. [17]), determinations of enzyme kinetics (e.g. [16]) or
other binding assays (e.g. [19]). They also relate to meth-
ods for total adsorption of substrate onto a heterogenous
surface [20], [18]. The measured reaction is an indirect
indicator of the way that two or more chemical entities in-
teract. A scientist may postulate several different models
for the nature of the interaction, so this is an area where
TED can be useful.

In titration experiments, the reactivity of an unknown
amount of a component in a chemical preparation is as-
sessed by applying various known concentrations of an-
other substrate substance. It will be seen that the math-
ematical form of the function that relates the extent of
reaction to the substrate concentration is difficult to fit

to data directly. A simpler function can be used for es-
timation. In the presence of errors in the measured ex-
perimental data from the chemical titration experiment,
a problem exists of assessing the robustness of estimation
of the parameters under the resulting misspecified model.
This situation for ELISA estimations of antibody levels
in serum is discussed in [17].

Here, the the simplest kind of two component chemical
reaction is assumed. The reversible reaction of two sub-
strates can be described by the Law of mass action [22].
Let s and y be the separate chemical components, while
s.y is the product of reaction in what is assumed to be a
reversible process.

s + y ⇀↽ s.y

Suppose that a biochemical assay is to be carried out
to assess a chemical sample by reacting it with varying
concentrations of substrate. From now on, let the terms
indicate the concentrations of the reacting components.
y0 and sapp are the applied concentrations of the chemi-
cal sample and substrate respectively, while s.y, s, y are
the concentrations respectively of bound chemical sam-
ple, unbound chemical sample and substrate that remain
at equilibrium.

The affinity of the components for each other can be ex-
pressed as an equilibrium constant.

K =
s.y

sy
=

s.y

(sapp − s.y)(y0 − s.y)
(18)

The magnitude of K represents the propensity of the
components to react with each other. If they have a high
affinity, then the concentration of product at equilibrium
will be high and hence K will have a high value.

The concentration y0 is fixed but unknown, while the con-
centration sapp is known and allowed to vary. The aim
of the exercise is to estimate K and, if possible, y0 as
well. At chemical equilibrium, the fraction of the chemi-
cal sample that is bound by substrate is given by a logistic
function.

f =
s.y

y + s.y
=

Ksy

y + Ksy
=

Ks

1 + Ks
(19)

It is straightforward to fit this model to data by using an
iterative nonlinear estimation routine (E.G. [7]). But (19)
is specified wrt s, the substrate concentration at equilib-
rium, rather than the applied concentration of substrate
sapp. In the usual setup of a titration experiment, a series
of readings are taken at different sapp values.

Meinert and McHugh [15] give an expression from which
the fraction of substrate bound can be found in terms of
sapp. In the following, the variables from (18) are repa-
rameterised as γ0 = logK, z = log[sapp].
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f0(z) =
1

2y0

[

ez + e−γ0 + y0 −

√

(ez + e−γ0 + y0)2 − 4ezy0

]

(20)

Physical constraints on the variables require that the neg-
ative square root is taken in this expression.

Assume that a two parameter logistic model is fitted (in-
correctly) to applied substrate log concentration z, in the
presence of independent homoscedastic normal errors on
the assay measurements. The setup can be written using
the formulation that was given in Section 4.

w = f(θ, z) + ǫ,

where ǫ is distributed as N(0, σ2I), and σ2 is assumed
known.

The function f0(z) is given by (20) and will now be writ-
ten as f0(θ0, z), with θ0 = [γ0, y0]

T .

The logistic estimation model (19) will be recast as fol-
lows.

f(θL, z) =
eaL(γL+z)

1 + eaL(γL+z)
, (21)

where θL = [γL, aL]T . Comparison of equation (21) with
(19) shows that aL has been introduced, with γL =
1

aL

logK. The parameter aL allows some flexibility in
the slope of the fitted function, since the data generat-
ing model (20) will be sigmoidal when f(θ0, z) is plotted
against z, but can not be expected to agree in form with
(21). The aim is to estimate γ0, and aL will be consid-
ered as a nuisance parameter in terms of the chemical re-
action. But in some contexts aL has a physical meaning.
In immunoassays for example, where y represents a het-
erogenous set of antibody molecules of differing affinity,
aL determines the distribution of affinity [1], [6]. Consid-
eration of equation (20) shows that, as y0 → 0, the curve
f0(z) tends towards the logistic f(θL, z), with aL = 1
and γ0 = γL. Nevertheless, in an assay that contains any
chemical sample at all, y0 will be positive and located
away from zero.

This exercise is supported by a set of simulated data us-
ing γ0 = −3, y0 = 100, and σ2 = 0.008787 (comparable
to [8], Example 3.4). 16 z values were taken in 8 replicate
pairs, that were equally spaced from 2.8 to 4.9. This de-
sign is chosen to emulate a typical experimental ELISA
setup. Fig. 2 shows f0(z) using these parameter values.
A function f(θL, z) is also shown that is equivalent to
f0(z) in a sense that will be described below. It is strik-
ing that both plots look similar, even though the physical
processes that are assumed to be generating them differ.
A significance test to discriminate between the models in
the presence of experimental error might have difficulty
doing so. The data generating model is slightly asym-
metric, with a flattening towards the top of the curve,
while the logistic curve is symmetric.
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Figure 2:
Fractional saturation curves for biochemical reactions.

Triangles: Data generating model f0(θ0, z) according to

equation (20); γ0 = −3, y0 = 100. Circles: Logistic curve

f(θ̂L, z) according to equation (21), with θ̂L generated using

equations (22) and (23), after substituting θ̂0 = θ0.

An attempt was made to fit the data generating model
(20) separately to each simulated data set. The data sets
were made and analysed by an S-Plus program, with the
standard iterative nonlinear routine nls used to estimate
the parameters. The default algorithm did not specify
derivatives and the starting values each time were γ0 and
y0. After successfuly fitting five simulated sets of data,
the iterative algorithm did not converge for the sixth set
and caused a process interruption. The data set that
failed was rather flat compared to the expected values
from which it had been generated. It might have been
possible to force a fit by using another algorithm or by
tailoring the control parameters, but this was not investi-
gated further. It seems that it is difficult to fit the model
(20) directly to data.

The TED expression g(θ̂L) was calculated from (21), us-
ing the method described in [8] for a nonlinear regression
model that is based on equation (17), with two estimable
parameters and homoscedastic independent normal er-
rors. The fit of (21) was assessed on a series of simulated
data sets that were generated by (20) in the same way
as described above, using as starting values for the fit-
ting algorithm γL = −3, aL = 1.5. This time, 1,000
sets of simulated data were fitted without apparent diffi-
culty, although experiments with much larger numbers of
simulations again suggested that there can be occasional
occurences of non convergence.
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Figure 3:
Distributions of estimates from biochemical titration tests.

A probability density function (pdf) surface g(θ̂) according

to equation (17). (X-axis label aL is âL. Y-axis label

GammaL is γ̂L.)
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Figure 4:
Distributions of estimates from biochemical titration tests.

Empirical probability density function (pdf) based on a

histogram of estimates from 1,000 simulation experiments.

(X-axis label aL is âL. Y-axis label GammaL is γ̂L.)

Fig.s 3 and 4 show a comparison of g(θ̂L) with an empir-
ical density plot of the 1,000 results from the simulated
data sets. Visual inspection indicates agreement of the
simulated data with the analytic density. Bias can ex-
ist in any situation where the data generating model or
the estimation model are asymmetric and the experimen-
tal design does not centre around the mid point of the
model. Here, both the analytic density and the simula-
tions demonstrate that γ̂L is indeed a biased estimator
of γ0. The distribution is centred at about γ̂L = −4.22
(compared to γ0 = −3), âL = 1.45, with positive correla-
tion between the estimates.

How should the experimenter proceed to estimate γ0 af-
ter fitting a logistic curve to a single set of data? No
perfect solution will be offered here, but a suggestion can
be made for a correction that reduces the bias of the es-
timate to some extent. A reparameterisation of the esti-
mates can be made from θ̂L = [γ̂L, âL]T to θ̂0 = [γ̂0, ŷ0]

T ,
by using an ad hoc method to pick an equivalent curve
f0(θ̂0, z) to the fitted curve f(θ̂L, z). Let z0.5 be the

value of z at half saturation. Set γ̂0 to give f0(θ̂0, z) with
the same half saturation value z0.5 and slope δf

δz
|z=z0.5

.
This is chosen because the algebra is simple and because
a well designed experiment will centre measurements
roughly around z0.5. Equation (21) gives γL = −z0.5, and
δf(θL,z)

δz

∣

∣

z=z0.5
= aL

4 , leading to the following suggestions
for corrections.

γ̂0 = γ̂L + log

(

4 − âL

âL

)

(22)

ŷ0 = 4e−γ̂L(1 −
âL

2
) (23)

Constraints on âL are suggested by empirical equation
(22) as 0 < âL < 4, and by empirical equation (23) as
âL < 2, implying 0 < âL < 2. However, in the simula-
tions a few âL values are above 2, which demonstrates
that this is indeed an approximate argument (âL: mean
= 1.45, min.= 0.85, max. = 2.25; γ̂L: mean = -4.22, min.
= -4.49, max. = -4.01).

Fig. 5 shows an empirical density of the same 1,000
simulation results that were described in Fig. 4, after
transformation of the parameter estimates from each set
of simulated data from θ̂L to θ̂0. The reparameterisa-
tion has reduced the bias in estimation of γ0 (-3), and
now also gives information about the useful parameter
y0 (100) (ŷ0: mean = 75.5, min.= -29.3, max. = 184;
γ̂0: mean = -3.65, min. = -4.40, max. = -2.92). The
distribution of ŷ0 is diffuse - although it covers y0 (100),
it also reaches below 0 which has no physical meaning in
terms of applied concentrations for the chemical reaction.
Recall that equation (20) showed that γ0 is a measure of
the reactivity of the substance under assay, while y0 in-
dicates the total amount of the substance. The plateau
of the titration curve in some assays is not unity but is
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Figure 5:
Distributions of estimates from biochemical titration tests.

Empirical probability density function (pdf) based on a

histogram of estimates from 1,000 simulation experiments,

after reparameterisation using the bias reducing transfor-

mation according to equations (22) and (23). (X-axis label

Yo is ŷ0. Y-axis label Gamma0 is γ̂0.)

proportional to the amount of substance under test [10].
The plateau thus gives additional information on y0 that
could be combined with the estimate ŷ0 from the two
parameter logistic estimation. The model will not be ex-
tended in this way here.

The density of the corrected estimates, and other poten-
tial corrections, could also be investigated using TED by
obtaining the density of the transformed variables after
multiplication by a Jacobian.

g(θ̂0) = |dθ̂L/dθ̂0|.g(θ̂L)

6 Discussion

TED is a framework approach for determining the den-
sity of the MLE, where the functional forms of both the
data generating model and the estimation model are dis-
tinctly specified. When models are the same, alternative
analytic approximate and exact methods are available [9].
But apparently no other analytic techniques exist when
the models differ. Tractability can be achieved as long
as the density g[T (θ̂,θ∗,w)](t) can be determined and, for
the case of exponential family models, this involves the
determination of the density of the linear transformation
(5) of a functional of the data. There may be cases where
it is hard or impossible to do this. Then approximations
to g[T (θ̂,θ∗,w)](t) can be tried and incorporated into the
framework. The accuracy of such approximations should

be assessed.

Model uncertainty can be countered by using distribution
free techniques and by robust estimation methods. Data
contamination, systematic error and various other forms
of heteroscedasticity are all facts of life that can also be
considered by using TED. A fairly obvious application is
to look at the density g(θ̂) for an MLE that assumes no
contamination when in fact some degree of prespecified
contamination does occur in the data generating model.
One way to assess robustness properties is via the influ-
ence function [11], to which the analytic function g(θ̂)
should be able to give some support. A formal relation-
ship between these two functions might exist.

Extensions to TED can be considered to other types of es-
timators than MLE, for example to minimum contrast es-
timators to complement the approach of Skovgaard [21].
Similar derivations to that of equation (2) can be applied
to some such estimators.

The exposition in this paper has been given with a view to
assist with practical modelling problems. The two spe-
cific examples can be extended. Regression techniques
are used in most practical statistical modelling studies
and the possibilities for further applications of TED are
therefore almost unlimited.
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