
 
 

 

  
Abstract—The behaviour of the efficient frontier for CDOs of 

bespoke portfolios is investigated under one-factor copula 
marginal distributional assumptions. This approach has been 
thoroughly used in statistical literature.  The main feature of 
these models is that default events, conditional on some latent 
state variable, are independent. This eases the computation of 
the aggregate loss distribution, a crucial element in credit 
portfolio optimisation. Both Gaussian and Clayton copula 
models are applied to the default dependence structure. The 
Clayton copula model demonstrates superiority in capturing 
the default dependence inherent in credit portfolios. The 
portfolio optimisation problem set-up under the newly defined 
Copula Marginal Expected Tail Loss (abbreviated as CMETL) 
risk measure is convex and can be easily solved in terms of 
linear programming algorithms. Numerical analysis is 
conducted by creating a Bespoke CDO collateral portfolio using 
the iTraxx Europe IG Series 5 index constituents as an 
illustrative example. 
 

Index Terms—Bespoke CDOs, Copula Marginal Expected 
Tail Loss, Factor Copula Models, Heavy-tail distribution. 
 

I. INTRODUCTION 

The global structured credit landscape has been 
irrevocably changed with the innovation of Collateralized 
Debt Obligations (abbreviated as CDOs). As of 2006, the 
volume of synthetic CDO structures outstanding grew to over 
$1.9 trillion, making it the fastest growing investment vehicle 
in the financial markets, with Bespoke CDO deals making up 
21% of the total volume [1].  

Understanding the risk/return trade-off dynamics of 
Bespoke CDO collateral portfolios is crucial when 
maximising the utility provided by these instruments. Credit 
losses are characterized by small likelihoods of large losses 
coupled with large likelihoods of small losses and thus credit 
loss distributions are heavily skewed with long heavy tails.  

From an investor’s perspective, optimising the collateral 
portfolio should result in a maximum return for a given level 
of credit risk whereas, from a structurer’s perspective the 
 
Manuscript received December 19, 2007. 

Diresh Jewan is a Quantitative Credit Analyst at Rand Merchant Bank, 
Fixed Income, Currencies & Commodities, PO Box 786273, Sandton, 2146, 
South Africa. He is also a MSc. candidate at the Department of Statistical 
Sciences, University of Cape Town, Private Bag, Rhodes’ Gift, Rondebosch 
7701, Cape Town, South Africa.  (Phone: +27 11 282 1959;  fax: +27 11 282 
4516;  e-mail: diresh.jewan@rmb.co.za).  

Renkuan Guo is a Professor at the Department of Statistical Sciences, 
University of Cape Town (e-mail: Renkuan.Guo@uct.ac.za). 

Gareth Witten was a Quantitative Analyst at Rand Merchant Bank, Risk 
and Compliance,  and is now at Peregrine Quant, PO Box 44586, Claremont, 
Cape Town, 7735, South Africa (e-mail: gareth@santafe.edu ). 
The usual disclaimer applies. 

risk/return analysis is a starting point in an efficient capital 
allocation process.  

According to [2], there exist two types of risk measures: 
relevant and tractable. Relevant measures capture key 
properties of a credit loss distribution, while tractable 
measures can be optimised using computationally efficient 
methods. The following analysis uses a tractable, quantile 
based risk measure that has more attractive properties than 
that of the unexpected loss measure for investigating the 
behaviour of the efficient frontier. Efficient frontiers are 
defined by a collection of optimal risk/return portfolios. 

In this paper, we study the behaviour of the efficient 
frontier under Expected Tail Loss (abbreviated as ETL) as 
the risk measure for a collateral portfolio with the 
heavy-tailed distribution assumptions via copulas.  

ETL was initially introduced by [3], in the portfolio 
optimisation context. ETL has proved a more consistent risk 
measure, since it is sub-additive and convex [4]. Reference 
[3] has shown that the portfolio optimisation under this risk 
measure results in a linear programming problem. This 
measure has been shown in numerous studies across the 
different asset classes, to be a superior measure to derive 
empirical efficient frontiers that act as an useful 
approximation to the true efficient frontier [5]-[6].  

The loss distribution, a key element in credit portfolio 
optimisation procedures is generated through one-factor 
Copula Marginal models. Copulas represent a convenient 
way of describing the joint distribution, a crucial element in 
credit portfolio optimisation. De Finetti’s theorem for 
exchangeable sequence of binary random variables provides 
a theoretical background for the use of factor copula models 
in credit risk applications [7].  

The factor copula approach has been widely used in credit 
portfolio modelling [8]-[10]. The main feature of these 
models is that default events, conditional on some latent state 
variable are independent, simplifying the computation of the 
aggregate loss distribution [7]. This approach is well suited 
for large dimensional problems. Reference [11] relates the 
factor and copula approaches. 

For a comparative analysis, both the Gaussian and Clayton 
copula models were used to model the default dependence 
structure inherent in credit portfolios.  
 

II. BESPOKE CDO MECHANICS & EMPIRICAL  ANALYSIS 
A Bespoke CDO is a popular second-generation credit 

product. This standalone single-tranche transaction is 
referred to as a bespoke because it allows the investor to 
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customise the various deal characteristics such as the 
collateral composition, level of subordination, tranche 
thickness, and rating. Other features, such as substitution 
rights, may also play an important role [12]. 

Only a specific portion of the credit risk is transferred in 
these transactions, in contrast with the entire capital structure 
as in the case of standardized synthetic CDOs. Most of the 
transactions involve 100-200 liquid corporate credit default 
swaps. 

In a typical Bespoke CDO transaction, the main decision 
step for potential investors is to select the portfolio of credits, 
to which they want exposure. A short position can also be 
held on a subset of names to have overweight views on 
certain credits or sectors. The analysis will focus on the 
portfolio optimisation problem that exists within this step of 
the structuring process.  

The next step is to determine the level of subordination, 
and tranche thickness corresponding to the risk appetite of 
the investor. These deal parameters determine the degree of 
leverage and the required premium payments [12]. This step 
of the process adds a further two constraints to the transaction 
optimisation problem. The first is related to the tranche 
thickness, and the second is the credit rating assigned to the 
tranche. At this level of the problem, from an investor’s 
perspective, the cost of the transaction is minimised.  

The schematic below outline a typical Bespoke CDO 
transaction. In this transaction the investor goes long the 
credit risk in a mezzanine tranche. The challenge of issuing 
Bespoke CDOs is the ongoing need and expense of the risk 
management of the tranche position [13]. 

 

 
Figure 1. Placement of a Mezzanine Tranche in a Bespoke 

CDO transaction (Source: Lehman Brothers) 
 

The collateral test portfolio used in this study consists of 
114 constituents of the iTraxx Europe IG Series 5 Credit 
Default Swap (abbreviated as CDS) index. Eleven of the 
constituents were removed due to insufficient historical data. 
Five-year tenor CDS spread data for all constituents in the 
test portfolio were obtained from Bloomberg Financial 
Services for the 3-year period November-2004 to 
November-2007. The underlying CDS contracts are 
denominated in Euros. 

Recovery rates for all constituents are assumed constant 
and equal to 40% in the event of a default. The single factor 
model described in Section IV drives asset correlations. The 
following figure shows the evolution of the iTraxx Europe IG 
index over the observation period. 
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Figure 2. Evolution of iTraxx Europe IG Series 5 Index 

Spread Levels 
 

The analysis covers two very important credit market 
events. The first is the default correlation crises in May 2005, 
and the second is the recent credit crisis caused by high 
delinquency rates in the U.S. sub-prime sector of the credit 
market. 

Preliminary analysis on the CDS spread data shows the 
following empirical evidence: 
(1) The CDS spreads are intertemporally stationary. This is 

a crucial issue, since credit risk models implicitly assume 
that spreads follow stationary processes [14]. The 
following table displays this evidence using the 
Dickey-Fuller regression. 

 
Table 1. Unit Root test results for credit spreads of the iTraxx 

Europe IG Index, and several portfolio constituents 
Corporate entity t-statistic 

 Level First Difference 
iTraxx Europe IG Index -0.6243 -38.7868 
BAE Systems PLC -1.6559 -31.3635 
Unilever NV -2.2556 -32.4789 
Continental AG -2.2823 -31.6315 
Peugeot SA -2.3278 -14.6058 
Commerzbank AG -0.8791 -13.6451 

 
Following [15], continuously compounded percentage 
changes in spreads between successive trading days 
were computed as first differences in the logarithm of 
spread levels. 

(2) The empirical distributions of the spread changes for all 
portfolio constituents and the iTraxx Europe CDS index 
are highly leptokurtotic. Figure 3 support this fact.  

 

 
Figure 3a. Estimated probability density functions 

using both the Gaussian and Stable Paretian 
assumptions for the iTraxx Europe IG index. 
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Figure 3b. The natural logarithm of the estimated 

probability densities 
 
We observe that the Stable Paretian fit is able to match the 

frequency for both small and intermediate spread changes; 
however, both fits are not perfect in the tails. The Gaussian 
model would badly underestimate the likelihood of the tail 
events. Stable Paretian distributions are a better model for the 
credit risk application. 

 

III. RISK MEASURES AND ETL 
The focus now is placed on the optimisation of credit 

portfolios using the method initially proposed by [3]. Many 
credit risk measures were used in portfolio optimization 
applications; for example, standard deviation (denoted σ ), 
semi standard deviation, Unexpected Losses (analogous to 
Value at Risk), Expected Tail Loss, Beta, etc. However, in 
recent years, Coherent risk measures like ETL have found 
useful applications in portfolio optimisation [2], [3], [5], and 
[6].  

The main advantage of using coherent risk measures is that 
it results in the portfolio optimisation problem becoming 
convex, which can be easily solved using standard 
optimisation techniques. 

A. Coherent Risk Measures 
Coherent risk measures are functional on a space of 

bounded random variables on a probability space ( ), ,PΩ A  

with the following properties: 
• If 0X ≥  then ( ) 0.Xρ ≤  

• 1 2 1 2( ) ( ) ( )X X X Xρ ρ ρ+ ≤ +  

• For 0λ ≥ , ( ) ( ).X Xρ λ λρ=  
• For every constant function a , 
•  ( ) ( ) .a X X aρ ρ+ = −  

Coherence is important in credit portfolio management 
because it supports the benefits of diversification. This means 
that the credit risk of the portfolio decreases as the number of 
instruments that make up the investment increases, allowing 
portfolio risk managers to reap the rewards of diversification.  

B.  Expected Tail Loss 
The coherent risk measure engaged in this paper is ETL, 

which is essentially the expected loss conditional on losses 
exceeding the unexpected loss. Mathematically, ETL is 
defines as: 
 

( ) [ |  UL ( )],p p p pETL E L Lβ β= >                             (1) 

 
where pL denotes the loss for portfolio p  and pUL , the 

unexpected losses at the confidence level β . Portfolio 
optimisation with ETL as objective function will result in a 
smooth, convex problem with a unique solution [3]. 

C. Portfolio Optimisation under ETL 
ETL optimal portfolio techniques, combined with copula 

marginal distribution modelling of the portfolio risk factors 
can lead to significant improvements in risk-adjusted returns. 

A Copula Marginal Expected Tail Loss (abbreviated as 
CMETL) is one that minimizes credit portfolio ETL subject to 
a constraint of achieving expected portfolio returns at least as 
large as an investor defined level, along with other typical 
constraints on weights, where both quantities are evaluated in 
the CMETL framework. The CMETL measure is similar to 
that of Stable (Distribution) Expected Total Loss 
(abbreviated as SETL) measure proposed by [5]. 

In order to define the above CMETL precisely we use the 
following quantities:  

p
R : the random return of portfolio p ,  

pCMER : the expected return of portfolio p  with respect     
to the copula marginal distribution, and  
β : tail loss probability. 
The following assumptions are imposed by [5] for the 

CMETL investor: 
• the universe of assets is Q (the set of mandate 

admissible portfolios); 
• the investor may borrow or deposit at the risk-free 

rate fr  without restriction; 

• the investor seeks an expected return of at least µ . 
The CMETL investor’s optimal portfolio is then given by 

the following: 
 

( ) ( ){ }| argmin ,

s.t.

1,

,   

c pq Q

r
r

r

X CMETL

x

l x u

µ β β
∈

=

=

≤ ≤ ∨

∑
 r,    

.
p

CMER µ≥

                         (2) 

 
where cX , denotes the resulting portfolios weights. The 
subscript c indicates that the problem is defined under the 
copula framework. The constraints, in the order written 
above, require that: 
i. the sum of the portfolio weights should equal to one, 

ii. the position weights should lie within the trading limits l 
and u to avoid unrealistic long and short positions , and 

iii. the expected return on the portfolio in the absence of 
rating transitions should be at least equal to some 
investor defined level µ. 

As the required return µ increases, so does the minimum 
amount of risk. Together, these optimal risk/return trade-offs 
define the efficient frontier.  
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IV. COPULA MARGINAL EFFICIENT FRONTIERS FOR CDOS 
The primary objective of portfolio credit risk modelling is 

the quantification of credit risk inherent in the portfolio. 
Application of this tool to the CDO optimisation problem 
creates efficient bespoke portfolios that have minimum credit 
risk for an investor defined level of return. 

Monte Carlo simulation is most useful in generating the 
portfolio loss distribution, since it provides a simple mode of 
tracking the defaulted assets in a portfolio under a given 
scenario, which allows efficient implementation of the 
optimisation algorithm. 

The analysis is performed in a one-period, default-only 
mode structural framework. Consider a portfolio composed 
of n credit instruments. The exposure in each instrument is 
denoted by iN . Under the binomial setting, the loss of 
counterparty i  for scenario k  is given by the following: 
 

 , 1,..., , 1,..., ,k k
i i iL N V for i n k s= − = =  (3) 

 
where k

iV is the value of exposure i at the given horizon in 
scenario k . In particular:  
 

 
,

, ,

,
k i i
i

i

N R default state
V

N otherwise

⎧⎪⎪= ⎨⎪⎪⎩
 (4)  

 
where iR  is the recovery rate for reference entity i . 

The portfolio loss function in scenario k, 1k nL : ,+ →   
over the chosen time horizon is given by the following: 
 

                       ( )
1

n
k

k i i
i

L x L x
=

=∑ ,                                            (5)                                      

 
where 1 2

T
nx x x x( , , , )=  is the vector of positions held in 

the portfolio. We use the factor copula approach in order to 
generate scenarios for the credits states of each reference 
entity. This approach can be understood as a combination of 
the one-parameter copula and Firm-value approach.  

In the firm-value approach a company will default when its 
'default-like’ stochastic process, 1n

iA
+ →: ,  falls 

below a barrier. This latent variable is defined by the 
following: 

 

 ( )1 2 1i n i i i iA x x x Mε ρ ρ ε= + − ,, , ..., , :  (6) 

 
where M and iε  are independent standard normal variants in 
the case of a Gaussian copula model, and 

0k l for all k lε εcov( , ) , .≠ ≠  iA  can be interpreted as the 

value of the assets of the company, and M , the general state 
of the economy.  

The default dependence come from the factor M. 
Unconditionally, the stochastic processes are correlated but 
conditionally they are independent. The default probability of 

an entity i , denoted by iF , can be observed from market 
prices of credit default swaps, and defined by the following: 
 

 ( )
0

1 exp ( ) ,

t

i iF t h u du

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∫  (7) 

 
where ( )ih u  represents the hazard rate for reference entity i. 
For simplicity, we assume that the CDS spread term structure 
is flat, and calibration of the hazard rates for all reference 
entities is straightforward. 

The default barrier ( )iB t  is defined 

as: ( ) ( )( )1 ,i iB t G F t−=  where G  defines the inverse 

distribution function. In the case of a Gaussian copula, this 
would be the inverse cumulative Gaussian distribution 
function. 

A second type of copula model considered comes from the 
Archimedean family. In this family we consider the Clayton 
copula. In this setting, the stochastic process Ai is defined by 
the following: 
 

 
1

1

ln( ) ln( )
: 1 ,i i
iA M M

θ

θ

ε ε
ϕ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜= − = − +⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠
 (8) 

 
where ϕ(.) is the Laplace transform of the Gamma(1/θ) 
distribution, εi is a uniform random variable and M is a 
Gamma(1/θ)  distributed random variable. Using the credit 
models presented above, the loss distribution for the test 
portfolio can easily be derived. 
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Figure 4. Credit loss distributions for homogenous test 

portfolio at 5-year horizon under different default 
dependence assumptions 

 
The portfolio optimisation is examined under both the 

Gaussian and Clayton copula assumptions for the default 
dependence. The five-year portfolio loss distribution is 
generated by Monte Carlo simulation. 50,000 scenarios of 
joint credit states of reference entities and related losses were 
generated. The sensitivity study with respect to the number of 
scenarios indicates that 50,000 scenarios were sufficient to 
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estimate unexpected losses and CMETL with precision. Prior 
to the simulation both, the  single factor Clayton and 
Gaussian copulas were calibrated to the market data by a 
statistical regression technique. The sum of quadratic 
deviation in the two models was minimized to obtain the least 
squares fit copula parameters. 

The following table displays the parameters of the two 
models for few of the iTraxx Europe IG index constituents. 
 

Table 2. Calibrated copula parameters  
Corporate entity Copula Parameter 

 ρ (Gaussian) θ  (Clayton) 
BAE Systems PLC 0.9008 0.6861 
Unilever NV 0.7130 0.4444 
Continental AG 0.9123 0.9364 
Peugeot SA 0.9130 0.7821 
Commerzbank AG 0.7208 0.4189 

 
The coefficients in the copula regression analysis, for all 

constituents in the bespoke test portfolio were significant at a 
95% confidence level. 

The following table summarizes the expected loss, 
unexpected loss, and CMETL at the 99.9% confidence level. 

 
Table 3. Risk Measure differences for initial homogenous 

test portfolio under both Gaussian & Clayton copulas 
assumptions. 

Risk Measure Gaussian 
Copula 

Clayton 
Copula 

Expected Loss 3.7248% 3.6952% 
Unexpected Loss @ 99.9% 20.349% 20.328% 
CMETL @ 99.9% 25.534% 27.292% 
Maximum Loss 30.447% 33.434% 

 
Although the Gaussian copula predicts a slightly higher 

expected loss than that of the Clayton copula, there is a 
1.758% absolute difference in the CMETL, and a 3% 
difference in the maximum loss between the Clayton and 
Gaussian copula models. 

We optimise all positions and solve the linear 
programming problem represented by (2). Three scenarios 
are considered 
iv. An examination of the efficient frontiers for a 

well-diversified portfolio under both Gaussian and 
Clayton copula assumptions. Only long positions in the 
underlying credit default swaps are allowed. The upper 
trading limit is set to 5%. 

v. An investigation of the behaviour of the efficient 
frontiers under the Clayton copula assumption when the 
upper trading limit is increased, consequently 
introducing concentration risk. 

vi. The comparison of efficient frontiers under the Clayton 
copula assumption when both long and short positions 
are permitted.  

In the first case lower and upper trading limit of 0.5% and 
5% are set respectively. This is to ensure that no reference 
asset is excluded from the portfolio. This also maintains the 
well-diversified features of the iTraxx Europe IG portfolio 
within the bespoke structure. The following figure presents 
the efficient frontiers under the two default dependence 
assumptions.  
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Figure 5. Comparison of efficient frontiers under Gaussian 

and Clayton copula assumptions 
 

The above figure shows the difference in efficient frontiers 
between the Gaussian and Clayton copula assumptions. For a 
given level of risk, a higher return should be expected if the 
portfolio composition is based on the Clayton copula 
assumption rather then the Gaussian copula. The deviation of 
the expected returns between the two assumptions is an 
increasing function of CMETL.  

The above figure also indicates the inefficient risk/return 
levels for the original portfolio under both the Gaussian and 
Clayton copula assumptions. It is interesting to compare the 
risk profile of the original portfolio, with that of the optimal 
portfolio having the same return. Under the Clayton copula 
assumption, the same level of return is achieved with less 
than one-fifth of the original risk.  

In the second case, the upper trading limit is increased 
from 10% to 100%. The effect of concentration risk on the 
efficient frontiers is investigated.  
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Figure 6. Behaviour of efficient frontiers under increasing 
concentration risk 

 
The figure displays the expected variation in the second 

order polynomial fittings of the efficient frontiers when the 
upper trading limit is slowly relaxed. Under these 
circumstances, concentration risk is introduced into the 
portfolio. Investors demand a higher premium for taking on 
this risk. For a 20% level of risk, investors demand an extra 
25 bps premium for holding a more concentrated portfolio. 
At these levels, the concentrated portfolio only holds 
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positions in 49 of the 114 names, with the largest position 
size being 19.5%. 

In the final case, the effect on the efficient frontier for 
allowing short positions is examined. Under this scenario, 
only the well-diversified portfolio case is considered. The 
lower and upper trading limits are set at -5% and 5% 
respectively. 
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Figure 7. Effect of short positions on the efficient frontier 
 

The figure displays an important result: allowing short 
positions on credits in the portfolio, provides the investor 
with superior returns to those in the long only case. At a 20% 
level of risk, investors can earn an extra 30 bps premium for 
taking on overweight views on certain credits in the portfolio.  
This indicates why hedge fund strategies involving Bespoke 
CDO structures have become increasingly popular. 

The results for all efficient frontier second order 
polynomial regressions were significant at a 95% confidence 
level. The resulting R2 coefficients were all above 90%. 

 

V. CONCLUDING REMARKS 
In this paper, we propose a new model, referred to as the 

CMETL model, for analyzing the behaviour of efficient 
frontier structures of CDOs of bespoke portfolios. Although 
our analysis only considers a specific CDS portfolio, the 
CMETL model extends naturally to other credit sensitive 
instruments and trading constraints of a more general nature.  

Using the CMETL optimisation framework, we 
simultaneously adjusted two closely related risk measures: 
ETL and Unexpected Losses. The Gaussian copula asset 
allocation is proved sub-optimal. Clayton copula efficient 
frontiers provided a higher return for a given level of risk. A 
closer examination of the original risk profile shows that the 
risk can be reduced to one-fifth of the original amount, under 
the Clayton asset allocation method. 

The permission of short positions in the bespoke CDO 
portfolio allows investors to increase returns beyond a 
specific risk tolerance level. In the case study considered, a 
maximum increase of 37.5% in investor-defined return is 
achieved by allowing overweight positions in certain credits.  

The above analysis provides Bespoke CDO investors with 
a starting point for choosing optimal collateral portfolios. 
The return earned on the single tranche position will be 
higher than the pre-specified collateral portfolio returns.  

Future work on Bespoke CDO cost minimisation is 
required to provide a complete depiction of the optimisation 

problem that lies within these credit structures. This will 
require an investigation into the different Bespoke CDO 
pricing methodologies. 
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