# The Statistical Mixture Design of Rice Polishing Cylinder

Surapong Bangphan, Sukangkana Lee and Sermkiat Jomjunyong

*Abstract*—This study presents the application of the mixture design technique in generating the optimal mixture for the rice mill cylinder when using the new materials. The three new materials; Quartz were chosen from three different regions of Thailand in order to compare with the imported materials; Emery. Quartz used in this study are natural stone and found in Thoen district (Lampang province), Bophloi district (Kanchanaburi province) and from Wiang Pa Pao district (Chiangrai province) respectively.

Design of Experiment (DOE) was used as a tool in order to generate the suitable mixture. All 10 mixtures were generated by the Simplex Centroid Design technique with Special Cubic type. ANOVA and Regression was used for analysis. In this model, three control factors:  $x_1$ ,  $x_2$  and  $x_3$  represent Quartz no.16, no.18 and Reused Silicon carbide no.18, respectively. The process variables were the temperature  $(z_1)$  and the paddy moisture content  $(z_2)$ . The rice milling tests were conducted on kow dauk mali 105 rice. After milling, the percentage of good rice and the wear rate of polishing cylinder were calculated and analyzed using Regression analysis and Analysis of Variance (ANOVA). The response optimization was quartz from Thoen district. At a significant level  $\alpha = 0.05$ , the values of Regression coefficient,  $R^2_{(adj)}$  were 78.62 % And  $R^2_{(adj)}$  were 70.67 %. The Optimal mixture gave 92.136% good rice and the wear rate of 1.887 g/hr.

*Keywords*—Abrasive Materials, Rice Polishing Cylinder, Mixture Design, Design of Experiment

#### I. INTRODUCTION

The quality of milled rice are depends on many factors such as rice strain, the rate of feeding, clearance between a rubber and abrasive cylinder, paddy moisture content which usually are controlled not to be exceed 14% ect. But the most important factor is the type of the abrasives [1]-[2]. Furthermore, one of the major problems encountered is the wear of the polishing stone i.e. stones come off or chip from the cylinder and mix in the milled rice. This seems to be the common problem but for the farmer, wear of stone reduces the cylinder life and can increase milling cost. Also, the polishing cylinders are locally made and the qualities of the cylinder are often not consistent. Furthermore, the mixture of the abrasive cylinder is varied [2]. The major rice polishing technique in Thailand is the abrasive type. The major mixture of polishing cylinder consists of Emery grain, Silicon carbide, Calcined Magnesite and Magnesium chloride solution. The Emery stone is a major abrasive medium containing about 50 wt%. The Emery stones used in Thailand are imported from Europe are dark brown to black in color and have high hardness. However, it was found that the quality of this imported product is descending i.e. hardness values up on the pureness. In addition, good quality Emery stone is becoming rare resulting in progressively cost increasing. It was reported that the imported emery stone were more than 1.25 million US dollar per annual [3]. Therefore, there is an attempt in replacing Emery stone with other materials available in Thailand. Recently, Bangphan and Lee., reported that the Quartz has appropriate abrasive characteristics such as sharp edge, hardness, natural substance ect., therefore, it has a potential for rice polishing cylinder compared with the Emery grain [2]-[3].

The mixture design and analysis is an important methodology for development and optimization of food products [4]-[6]. Mixture designs are also among the most widely used tools for product formulation [7]-[11]. Therefore the purpose of this paper is to generate the suitable mixture from alternative domestic composite materials using Design of Experiment (DOE). This would lead to cost reduction and create more alternative choices for abrasive medium.

#### II. EXPERIMENTAL PROCEDURE

## A. Materials Preparation

Quartz is a natural mineral found in many areas in the Western and the Northern region of Thailand. The chemical formula of Quartz is SiO<sub>2</sub>. Quartz contains 46.7 wt %Si and 53.6 wt %O. The Mohr scale hardness of quartz is equal to 7. Quartz used in this experiment has white color. Samples were collected from Bo Phloi district in Kanchanaburi province, Thoen district in Lampang province and from Wiang Pa Pao district in Chiangrai province. Imported silicon carbide was replaced by reused silicon carbide obtained from the Alumina-Silicon carbide plate. Reused silicon carbide contains 50.0 wt %Si and 21.0 wt% C. All replaced materials were mechanically crushed and meshed to sizes. The binder paste or

Surapong Bangphan is Ph.D. Candidate Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University 85 Satholamark Road, Warin chamrap District, Ubon Ratchathani, Thailand, 34190 (corresponding author to provide phone:(+66)0-4535-3300; fax:(+66)0-4535-3333 ;e-mail : pong\_pang49@yahoo.com).

Sukangkana Lee ASST. PROF. Ph.D. Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, 85 Satholamark Road, Warin chamrap District, Ubon Ratchathani, Thailand, 34190 (e-mail: Sukangkana.lee@gmail.com).

Sermkiat Jomjunyong ASSCO .PROF. Ph.D. Dean of Engineering Faculty, Chiang Mai University, Chiang Mai , Thailand. 50300 (e-mail:sermkiat@chiangmai.ac.th).

magnesium oxychloride cement was a mixture of Calcined magnesite 250 mesh with the magnesium chloride solution 30 Baume [3].

## B. Mixture Design

The experimental design was created to determine the conditions when varying the composition of the materials according to a tree component mixture design and process variable. Results of this experimental design are then applied to evaluate the possibility of improving the performances of materials mixtures prepared by the selective quartzes with the binder fraction of the rice polishing cylinder.

The canonical form of a second-order mixture model (special cubic model) for tree components takes the form of the following "interaction model" [10–12]. The Scheff'e canonical in equation (1) and process variable equation (2) were used to model the experimental data, in order to fit a mathematical model for the description of the response variables as a function of process variables and mixture components. This approach assumes that measured parameters are additive and therefore departures from linearity can be detected. This assumption was also found in the work of N.Chantarat T. Theodore, and Nilgun. Ferhatosmanoglu., 2006 [12] and C.D. Wood , D.L. Romney, and A.H. Murray., 2000 [13].

$$y = \sum_{i=1}^{q} \beta_{i} x_{i} + \sum_{i < j} \sum_{j}^{q} \beta_{ij} x_{i} x_{j} + \sum_{i < j} \sum_{j < k}^{q} \beta_{ijk} x_{i} x_{j} x_{k}$$
(1)  
$$y(x_{1},...,x_{q},z_{1},...,z_{m}) = \sum_{i < j}^{q} \left[ \gamma_{i}^{0} + \sum_{j < i}^{m} \gamma_{i}^{j} z_{i} + \sum_{j < j}^{m} \gamma_{i}^{n} z_{j} z_{m} \right] x_{i}$$

$$\sum_{i=1}^{Q} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$$

where *y* is the studied response (percentage of Good Rice (GR) and Rate of Wear),  $\beta_{ij}$  are the regression parameters and  $x_1$ ,  $x_2$ and  $x_3$  are the factors of quartz and silicon carbide (reused) in the blends and  $z_1$ ,  $z_2$  are process variable respectively. This special cubic model can be used for obtaining the response surface to be analyzed in which *y* represents the response variable;  $\beta_0$  represents an overall average term;  $\beta_1$ ,  $\beta_2$ , and  $\beta_3$ represent regression coefficients of the tree factor interaction terms (i.e.,  $\beta_{12}$  represents the interaction coefficient between factors  $x_1$ , and  $x_2$ ) and  $\varepsilon$  represents the error term.

These components are measured by their proportion (usually by weight, in this paper use materials and binder ratio,) and the response variables depend only on the component proportions that are present, not their absolute amounts [7]-[11]. Response surface methodology was used to study the simultaneous effect of the influent variables (factors). A mixture experiment is a special type or response surface experiment in which the factors are the components of a mixture and the response is a function of the proportions of each component [3]-[4].

# C. Statistical Methods and Software

The analysis and results of the experimental design were studied and interpreted by MINITAB RELEASE 14.00 (PA, USA licensed to Department of Industrial Engineering, Faculty of Engineering, Ubonratchathani University, Ubonratchathani, Thailand) statistical software to estimate the response of the dependent variable. The response curves and contour plots are also generated. After milling, the percentage of good rice and the wear rate of polishing cylinder were calculated and analyzed using Regression analysis and Analysis of Variance (ANOVA).

## **RESULTS AND DISCUSSION**

## A. Results

During milling of all mixtures, it was found that the longer the contact time between abrasive polishing cylinder and the rubber, the more abrasive efficiency. The analysis of variance are presented in Table I, II, III, IV, V and VI. The application of mixture design in this experiment was complicated and time consuming. Since all of the coefficients have to be interpreted under the restriction that a third factor is varied at the same time as the two which are actively used. The only significant contributions are from the product of  $x_1$  and  $x_3$  and from the product of  $x_2$  and the square of  $z_1$  and  $z_2$ . This can be concluded that the surface is nonlinear and there is an interaction between the process variable and three compositions.

# B. Discussion

Simplex centroid designs and special cubic models are saturated in the sense that the number of design points is equal to the number of terms in the model. In this case analytical solutions exist for the model coefficients in terms of the response values at the design points [14].

Simplex centroid for each combination of process variables design 80 points for quartz from Thoen district and 40 points for quartz from Bophloi district and Wiang Pa Pao district respectively were performed. In this case analytical solutions exist for the model coefficients in terms of the response values at the design points. As such each coefficient can be given a mechanical interpretation. The estimate of the variance due to pure error was possible. Hence, the adequacy of the fitted model could be checked by comparing the error component due to the model to that one due to experimental error. The test statistic was the F-ratio given by the estimate of the variance due to lack of fit  $(MS_{LOF})$  and the estimate of the variance due to pure error (MS<sub>PE</sub>). In general, lack of fit of the model is suspected when the computed value of F is significant. As shown in Tables I,II,III, IV,V and VI, the ingredients and process variable of the percentage of good rice  $(y_1)$  and the wear rate  $(y_2)$  are listed. The parameters of the combined model in Equation (2) were estimated by fitting the 21-term polynomial to the experimental data here reported. For the two variable responses, the estimated residual variance was  $MS_E = 212.46$  and  $MS_E = 2.023$  for  $y_1$  and  $y_2$ , respectively. Using the three replicates, the experimental error variance was estimated such as  $MS_{PE} = 71.76$  with 40 df for  $y_1$  and  $MS_{PE} =$ 0.606 with 40 df for  $y_2$  and MS<sub>E</sub> = 0.10 and 0.348 with 11 df for  $y_1$  and  $MS_E = 1.706$  and 4.7314 with 11 *df* for  $y_2$  (for quartz from Bophloi and Wiang Pa Pao) respectively. Having obtained the estimation of the variance due to lack of fit  $(MS_{LOF} = MS_E - MS_{PE})$ , based on the LOF test for response  $y_2$ , the combined model shown in Equation (2) was augmented with four terms of the special-cubic polynomial. In fact, the value of the F-statistic, for testing the presence of lack of fit of model in Equation (2) was F = 7.09 with a *P*-value of 0.000 for  $y_1$  and F = 8.26 with a *P*-value of 0.000 for  $y_2$  (for quartz from Thoen) respectively. And the estimation of the variance due to regression were F = 127.95 and 151.92 with a *P*-value P = 0.000, 0.000 for  $y_1$  and F = 6.40 and 3.15 with a *P*-value P = 0.000, 0.025 for  $y_2$  (for quartz from Bophloi and Wiang Pa Pao) respectively. This model was maintained. From the analysis of variance table, the  $R^2$  statistics for the two combined models were computed and their values were  $R^2$ =0.840, 0.997 and 0.997 with an  $R^2_{(adj)} = 0.786,0.989$  and 0.991 for  $y_1$  respectively , and  $R^2 = 0.781, 0.992$  and 0.889 with an  $R^2_{(adj)} = 0.707, 0.795$  and 0.607 for  $y_2$  respectively, (from Thoen district in Lampang province, BoPhloi district in Kanchanaburi province and from Wiang Pa Pao district in Chiangrai province) respectively. The coefficient of determination corrected for the number of terms in the equation should be always preferred to  $R^2$  as it gives a more stable measure to the model adequacy.

TABLE I ANOVA FOR %GR (COMPONENT PROPORTIONS), SAMPLE SOURCE: THOEN

|                |    | THUEN   |         |       |       |
|----------------|----|---------|---------|-------|-------|
| Source         | DF | Seq SS  | MS      | F     | Р     |
| Regression     | 20 | 65983.9 | 3299.19 | 15.53 | 0.000 |
| Component Only |    |         |         |       |       |
| Linear         | 2  | 26559.7 | 9153.20 | 43.08 | 0.000 |
| Quadratic      | 3  | 31128.3 | 8635.39 | 40.64 | 0.000 |
| Special Cubic  | 1  | 6806.3  | 6806.26 | 32.03 | 0.000 |
| Component*     |    |         |         |       |       |
| TEMP           |    |         |         |       |       |
| Linear         | 3  | 541.0   | 249.93  | 1.18  | 0.326 |
| Quadratic      | 3  | 282.4   | 83.09   | 0.39  | 0.760 |
| Special Cubic  | 1  | 3.5     | 3.54    | 0.02  | 0.898 |
| Component*     |    |         |         |       |       |
| MOIS           |    |         |         |       |       |
| Linear         | 3  | 398.9   | 220.33  | 1.04  | 0.383 |
| Quadratic      | 3  | 262.9   | 72.40   | 0.34  | 0.796 |
| Special Cubic  | 1  | 0.9     | 0.93    | 0.00  | 0.948 |
| Residual Error | 59 | 12535.4 | 212.46  |       |       |
| Lack-of-Fit    | 19 | 9664.9  | 508.68  | 7.09  | 0.000 |
| Pure Error     | 40 | 2870.5  | 71.76   |       |       |
| Total          | 79 | 78519.2 |         |       |       |
|                |    |         |         |       |       |

The final model was chosen selecting only those coefficients. This lead to the elimination of the  $x_3z_1$  and  $x_1x_3z_1z_2$  terms from the model. The final model for quartz from Thoen, Bophloi and Wiang Pa Pao district are given by

$$\begin{split} \hat{Y} &= 1.21(SiO_2(\#16)) + 7.01(SiO_2(\#18)) + 7.12(SiO_2(\#18)) + (-13.4)(SiO_2(\#16) * (SiO_2(\#18)) \\ &(-9.11)(SiO_1(\#16) * (Sic_(\#18)) + (-11.84)(SiO_2(\#18)) * Sic_(\#18)) + 125.61(SiO_2(\#16)) \\ &* (SiO_2(\#18)) + (-0.60)(SiO_2(\#16)) (*temp) ) + 0.27(SiO_2(\#18)) * (temp) + (-0.21)(Sic_(\#18)) \\ &+ 0.85(SiO_2(\#16)) + (SiO_2(\#18)) * (temp) ) + 2.33(SiO_2(\#16)) + (Sic_(\#18)) * (temp) \\ &+ (SiO_2(\#18)) * (Sic_(\#18)) * (temp) + (-5.36)(SiO_2(\#16)) * (SiO_2(\#18)) * (Sic_(\#18)) * (temp) \\ &+ 0.63(SiO_2(\#16)) * (Sic_(\#18)) * (temp) + (-5.36)(SiO_2(\#16)) * (Sic_2(\#18)) * (Sic_(\#18)) * (temp) \\ &+ 0.63(SiO_2(\#16)) * (SiO_2(\#18)) * (SiO_2(\#18)) * (moist) + (-0.50)(Sic_(\#18)) * (moist) + (-1.65) \\ (SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-0.48)(SiO_2(\#16)) * (Sic_(\#18)) * (moist) + 1.16(SiO_2(\#18)) \\ &+ (Sic_(\#18)) * (moist) + 0.74(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) ) \\ \end{split}$$

(4)

$$\begin{split} \hat{Y} &= 82.1(SiO_2(\#6)) + 87.6(SiO_2(\#8)) + 86.8(Sic(\#8))) + (-1.7)(SiO_2(\#6)) * (SiO_2(\#8)) \\ &+ 0.2(SiO_2(\#6)) * (Sic(\#8)) + (-18.7)(SiO_2(\#6)) * (SiO_2(\#8)) + (1.7)(SiO_2(\#6)) * (SiO_2(\#8)) \\ &* (-98.8)(SiO_2(\#6)) * (Sic(\#18)) * (-342.9)(SiO_2(\#6)) * (SiO_2(\#6)) + (SiO_2(\#8)) \\ &* (Sic(\#8)) + 150.9(SiO_2(\#6)) * (SiO_2(\#8)) * (2) + (-0.1)(SiO_2(\#6)) * (SiO_2(\#8)) * (moist) + (-0.0) \\ &(SiO_2 \#8)) * (moist) + (-0.4)(Sic(\#18)) * (moist) + 0.5(SiO_2(\#6)) * (SiO_2(\#8)) * (moist) \\ &+ 1.2(SiO_2(\#8)) * (Sic(\#8)) * (moist) + 1.1(SiO_2(\#8)) * (Sic(\#8)) * (moist) + 2.6(SiO_2(\#6)) \\ &* (SiO_2(\#8)) * (moist) + 7.9(SiO_2(\#6)) * (Sic(\#18)) * (moist) + (-32.2)(SiO_2(\#6)) \\ &* (SiO_2(\#6)) * (SiO_2(\#8)) * (Sic(\#8)) * (moist) + 0.9(SiO_2(\#6)) * (SiO_2(\#18)) * (moist) \\ &+ (-0.0)(SiO_2(\#6)) * (temp) + 0.2(SiO_2(\#8)) * (temp) + 0.2(Sic(\#18)) * (temp) - 0.1(SiO_2(\#18)) \\ &(SiC_2(\#16)) * (SiO_2(\#8)) * (temp) + (-1.2)(SiO_2(\#6)) * (Sic(\#18)) * (temp) + (-0.3)(SiO_2(\#16)) \\ &(SiC_4(\#8)) * (temp) + (-1.5)(SiO_2(\#6)) * (SiO_2(\#8)) * (sic(\#18)) * (temp) + (-0.3)(SiO_2(\#16)) \\ &* (Sic(\#18)) * (temp) + 0.9(SiO_2(\#6)) * (SiO_2(\#6)) * (SiC_2(\#18)) * (temp) + (-0.3)(SiO_2(\#16)) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#6)) * (SiO_2(\#6)) * (SiC_4(\#8)) * (temp) + (-0.9)(SiO_2(\#16)) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &= (Sic(\#18)) * (temp) + 0.9(SiO_2$$

(5)

$$\begin{split} \hat{Y} &= 11.5(SiO_2(\#16)) + 12.1(SiO_2(\#18)) + 9.6(Sic(\#18)) + 11.0(SiO_2(\#16)) * (SiO_2(\#18)) \\ &+ 3.4(SiO_2(\#16)) * (Sic(\#18)) + 7.1(SiO_2(\#18)) * (Sic(\#18)) + (-96.6)(SiO_2(\#16)) \\ &* (SiO_2(\#18)) * (-) + 48.1(SiO_2(\#16)) * (Sic(\#18)) * 368.8(SiO_2(\#16)) * (SiO_2(\#16)) \\ &* (SiO_2(\#18)) * (Sic(\#18)) + (-248.5)(SiO_2(\#16)) * (SiO_2(\#18)) * (2) + 0.6(SiO_2(\#16)) \\ &* (moist) + 0.0(SiO_2(\#18)) * (moist) + 0.2(Sic(\#18)) * (moist) + 3.3(SiO_2(\#16)) * (SiO_2(\#18)) \\ &* (moist) + (-4.0)(SiO_2(\#16)) * (SiC(\#18)) * (moist) + 0.1(SiO_2(\#18)) * (Sic(\#18)) * (moist) \\ &+ 5.5(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (Sic(\#18)) * (moist) + 3.5(SiO_2(\#16)) \\ &+ 28.4(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#16)) * (SiC_2(\#18)) \\ &* (SiO_2(\#18)) * (2) * (moist) + 0.9(SiO_2(\#16)) * (SiC_2(\#18)) * (moist) + 5.5(SiO_2(\#16)) \\ &* (SiO_2(\#18)) * (2) * (moist) + 0.9(SiO_2(\#16)) * (SiC_2(\#18)) * (moist) + 5.5(SiO_2(\#16)) \\ &* (SiO_2(\#18)) * (2) * (moist) + 0.9(SiO_2(\#16)) * (SiC_2(\#18)) * (moist) + (-0.7)(SiO_2(\#16)) \\ &* (SiO_2(\#18)) * (SiC_2(\#18)) * (temp) + (-12.9)(SiO_2(\#16)) * (SiO_2(\#18)) \\ &* (temp) + 1.3(SiO_2(\#18)) * (temp) + 8.0(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) + 8.0(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) + 8.0(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) + 8.0(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) + 8.0(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (Sic(\#18)) \\ &+ (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) + 8.0(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) + 8.0(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) + 8.0(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (temp) \\ &+ 0.5(SiO_2(\#16)) * (Sic(\#18)) * (te$$

(6)

(7)

Equations (3) and (4) are the coefficient of the percentage

 $<sup>\</sup>begin{split} \widehat{Y} &= 17.1(SiO_2(\#16)) + 76.8(SiO_2(\#18)) + 68.2(Sic(\#18)) + (-155.5)(SiO_2(\#16)) * (SiO_2(\#18)) \\ &+ 198(SiO_2(\#16)) * (Sic(\#18)) + (-16.9)(SiO_2)(\#18)) * (Sic(\#18)) + 935.7(SiO_2(\#16)) * (SiO_2(\#18)) \\ &* (Sic(\#18)) + (-9.1)(SiO_2(\#16)) * (temp) + (-2.2)(SiO_2(\#18)) * (temp)) + (-1.2)(Sic(\#18)) \\ &* (temp) + 22.6(SiO_2(\#16)) * (SiO_2(\#18)) * (temp) + 16.8(SiO_2(\#16)) * (Sic(\#18)) \\ &* (temp) + (-1.5)(SiO_2(\#18)) * (Sic(\#18)) * (temp) + 10.2(SiO_2(\#16)) + (SiO_2(\#18)) \\ &+ (Sic(\#18)) * (temp) + 8.8(SiO_2(\#16)) * (moist) + 0.2(SiO_2(\#16)) * (moist) + 0.0(Sic(\#18)) \\ &* (moist) + (-19.7)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-17.6)(SiO_2(\#16)) * (Sic(\#18)) \\ &* (moist) + (-19.7)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-16.6)(SiO_2(\#16)) * (SiC(\#18)) \\ &* (moist) + (-19.7)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-16.6)(SiO_2(\#16)) * (SiC(\#18)) \\ &* (moist) + (-19.7)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-16.6)(SiO_2(\#16)) * (SiC(\#18)) \\ &* (moist) + (-19.7)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-16.6)(SiO_2(\#16)) * (SiC(\#18)) \\ &* (moist) + (-19.7)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-16.6)(SiO_2(\#16)) * (SiC(\#18)) \\ &* (moist) + (-19.7)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-16.6)(SiO_2(\#16)) * (SiC(\#18)) \\ &* (moist) + (-19.7)(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) \\ &* (Min) + ($ 

<sup>\* (</sup>moist) + 1.1(SiO<sub>2</sub> (#18)) \* (Sic(#18)) \* (moist) + 10.9(SiO<sub>2</sub> (#16)) \* (SiO<sub>2</sub> (#18)) \* (Sic(#18)) \* (moist)

 $<sup>\</sup>begin{split} \hat{Y} &= 70.0(SiO_2(\#16)) + 78.3(SiO_2(\#18)) + 78.0(SiC_1(\#18)) + 47.0(SiO_2(\#16)) * (SiO_2(\#18)) \\ &+ 38.0(SiO_2(\#16)) * (SiC_4(\#18)) + (-49.2)(SiO_2(\#18)) * (SiC_4(\#18)) + 15.6(SiO_2(\#16)) \\ &* (SiO_2(\#18)) * (-122.5)(SiO_2(\#16)) * (-554.4)(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) \\ &* (SiC_4(\#18)) + 179.2(SiO_2(\#16)) * (SiO_2(\#18)) * (2) + 0.0(SiO_2(\#16)) \\ &* (moist) + (-0.8)(SiO_2(\#18)) * (moist) + (-0.7)(SiC_4(\#18)) * (moist) + 1.6.4(SiO_2(\#16)) \\ &* (SiO_{12}(\#18)) * (moist) + 0.6(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + 1.2(SiO_2(\#18)) * \\ &(SiC_4(\#18)) * (moist) + 4.7(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-10.4)(SiO_2(\#16)) \\ &* (SiC_4(\#18)) * (moist) + (-22.6)(SiO_2(\#16)) * (SiO_2(\#18)) * (SiO_2(\#18)) * (SiO_2(\#18)) * \\ &(SiC_4(\#18)) * (moist) + (-22.6)(SiO_2(\#16)) * (SiO_2(\#18)) * (SiO_2(\#16)) * (SiO_2(\#18)) \\ &* (moist) + 6.8(SiO_2(\#16)) * (SiO_2(\#18)) * (2) * (moist) + (-0.2)(SiO_2(\#16)) * (SiO_2(\#18)) * \\ &(temp) + 1.6(SiO_2(\#16)) * (SiO_2(\#18)) * (temp) + 1.7(SiO_2(\#16)) * (SiO_2(\#18)) * \\ &(temp) + 1.6(SiO_2(\#18)) * (temp) + (-8.9)(SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (SiO_4(\#18)) * (SiC_4(\#18)) * (temp) \\ &+ 13.6(SiO_2$ 

 $<sup>\</sup>begin{split} \hat{Y} &= 15.22(SiO_2(\#16)) + 9.20(SiO_2(\#18)) + 15.72(Sicc(\#18)) + (-2.20)(SiO_2(\#16)) * (SiO_2(\#18)) \\ &+ (-30.52)(SiO_2(\#16)) * (Sicc(\#18)) + (-9.72)(SiO_2(\#18)) * (Sicc(\#18)) + (-16.55)(SiO_2(\#16)) \\ &* (SiO_2(\#18)) * (-0.14)(SiO_2(\#16)) * (Sicc(\#18)) * 387.52(SiO_2(\#16)) * (SiO_2(\#16)) \\ &* (SiO_2(\#18)) * (Sicc(\#18)) + 61.77(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (moist) \\ &+ 2.60(SiO_2(\#18)) * (moist) + 3.74(Sicc(\#18)) * (moist) + (-5.13)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) \\ &+ (-5.48)(SiO_2(\#16)) * (Sicc(\#18)) * (moist) + (-12.88)(SiO_2(\#16)) * (SiO_2(\#18)) * (moist) + (-36.25) \\ (SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) * (Sicc(\#18)) * (moist) + (-38.02) \\ (SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#16)) * (Sicc(\#18)) * (moist) + (-6.772)(SiO_2(\#16)) * (SiO_2(\#18)) \\ &* (temp) + 3.52(SiO_2(\#16)) * (temp) + (-0.66)(SiO_2(\#16)) * (temp) + 2.0 \\ (SiO_2(\#18)) * (Sicc(\#18)) * (temp) + (-6.50)(SiO_2(\#16)) * (temp) + 2.0 \\ (SiO_2(\#18)) * (Sicc(\#18)) * (temp) + (-5.50)(SiO_2(\#16)) * (Sic_2(\#18)) * (temp) + 2.0 \\ (SiO_2(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiO_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#18)) * (SiC(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16)) * (SiO_2(\#16)) * (SiC_2(\#18)) * (temp) + 2.0 \\ (SiC(\#18)) * (temp) + 9.84(SiO_2(\#16))$ 

<sup>(8)</sup> 

Proceedings of the World Congress on Engineering 2008 Vol II WCE 2008, July 2 - 4, 2008, London, U.K.

of good rice and wear rate of quartz from Thoen district ,respectively. Equations (5) and (6) are the coefficient of the percentage of good rice and wear rate of quartz from Bophloi district, respectively and Equations (7) and (8) are the coefficient of the percentage of good rice and wear rate of quartz from Wiang Pa Pao district, respectively.

TABLE II ANOVA FOR WEAR (COMPONENT PROPORTIONS), SAMPLE SOURCE: THOEN

|                | 3  | OURCE. III | ULIN    |       |       |
|----------------|----|------------|---------|-------|-------|
| Source         | DF | Seq SS     | MS      | F     | Р     |
| Regression     | 20 | 425.458    | 21.273  | 10.52 | 0.000 |
| Component Only |    |            |         |       |       |
| Linear         | 2  | 270.273    | 100.60  | 49.74 | 0.000 |
|                |    |            |         |       |       |
| Quadratic      | 3  | 20.267     | 34.313  | 16.96 | 0.000 |
| Special Cubic  | 1  | 122.636    | 122.63  | 60.63 | 0.000 |
| Component* T   |    |            |         |       |       |
| Linear         | 3  | 4.043      | 1 3 8 / | 0.68  | 0 565 |
| Our duration   | 2  | 4.043      | 0.792   | 0.08  | 0.505 |
| Quadratic      | 3  | 2.339      | 0.782   | 0.39  | 0.763 |
| Special Cubic  | 1  | 0.223      | 0.223   | 0.11  | 0.741 |
| Component*     |    |            |         |       |       |
| MOISTURE       |    |            |         |       |       |
| Linear         | 3  | 3.958      | 1.882   | 0.93  | 0.432 |
| Quadratic      | 3  | 1.714      | 0.567   | 0.28  | 0.839 |
| Special Cubic  | 1  | 0.004      | 0.004   | 0.00  | 0.964 |
| Residual Error | 59 | 119.341    | 2.023   |       |       |
| Lack-of-Fit    | 19 | 95.091     | 5.005   | 8.26  | 0.000 |
| Pure Error     | 40 | 24.249     | 0.606   |       |       |
| Total          | 79 | 544.79     |         |       |       |

TABLE III ANOVA FOR % GR (COMPONENT PROPOTIONS ) , SAMPLE SOURCE: BOPHLOL

| SOURCE. DOI ILLOI |    |         |        |        |       |  |  |
|-------------------|----|---------|--------|--------|-------|--|--|
| Source            | DF | Seq SS  | MS     | F      | Р     |  |  |
| Regression        | 28 | 358.290 | 12.796 | 127.95 | 0.000 |  |  |
| Component Only    |    |         |        |        |       |  |  |
| Linear            | 2  | 101.496 | 35.259 | 352.58 | 0.000 |  |  |
| Quadratic         | 3  | 88.870  | 20.020 | 200.20 | 0.000 |  |  |
| Full Cubic        | 2  | 89.110  | 44.618 | 446.16 | 0.000 |  |  |
| Special Quart     | 1  | 17.433  | 43.987 | 439.85 | 0.000 |  |  |
| Full Quartic1     | 1  | 56.407  | 56.406 | 564.04 | 0.000 |  |  |
| Component*        |    |         |        |        |       |  |  |
| MOISTURE          |    |         |        |        |       |  |  |
| Linear            | 3  | 1.519   | 0.276  | 2.76   | 0.092 |  |  |
| Quadratic         | 3  | 0.072   | 0.123  | 1.23   | 0.344 |  |  |
| Full Cubic        | 2  | 0.930   | 0.596  | 5.96   | 0.018 |  |  |
| Special Quart     | 1  | 0.430   | 0.390  | 3.90   | 0.074 |  |  |
| Full Quartic1     | 1  | 0.002   | 0.002  | 0.02   | 0.901 |  |  |
| Component*T       |    |         |        |        |       |  |  |
| Linear            | 3  | 0.951   | 0.121  | 1.21   | 0.351 |  |  |
| Quadratic         | 3  | 1.030   | 0.250  | 2.49   | 0.114 |  |  |
| Full Cubic        | 2  | 0.041   | 0.017  | 0.17   | 0.843 |  |  |
| Special Quart     | 1  | 0.000   | 0.000  | 0.00   | 0.953 |  |  |
| Residual Error    | 11 | 1.100   | 0.100  |        |       |  |  |
| Total             | 39 | 359.390 |        |        |       |  |  |

TABLE IV ANOVA FOR WEAR (COMPONENT PROPORTIONS), SAMPLE

| SOURCE: B.P.   |    |         |        |       |       |  |  |
|----------------|----|---------|--------|-------|-------|--|--|
| Source         | DF | Seq SS  | MS     | F     | Р     |  |  |
| Regression     | 28 | 305.777 | 10.921 | 6.40  | 0.001 |  |  |
| Component      |    |         |        |       |       |  |  |
| Only           |    |         |        |       |       |  |  |
| Linear         | 2  | 44.715  | 7.154  | 4.19  | 0.044 |  |  |
| Quadratic      | 3  | 51.965  | 8.332  | 4.89  | 0.021 |  |  |
| Full Cubic     | 2  | 38.281  | 49.635 | 29.10 | 0.000 |  |  |
| Special Quart  | 1  | 9.653   | 50.878 | 29.83 | 0.000 |  |  |
| Full Quartic1  | 1  | 134.544 | 134.54 | 78.89 | 0.000 |  |  |
| Component*     |    |         |        |       |       |  |  |
| MOISTURE       |    |         |        |       |       |  |  |
| Linear         | 3  | 6.841   | 0.508  | 0.30  | 0.826 |  |  |
| Quadratic      | 3  | 5.212   | 1.777  | 1.04  | 0.412 |  |  |
| Full Cubic     | 2  | 0.650   | 0.170  | 0.10  | 0.906 |  |  |
| Special Quart  | 1  | 0.476   | 0.301  | 0.18  | 0.682 |  |  |
| Full Quartic1  | 1  | 0.065   | 0.065  | 0.04  | 0.848 |  |  |
| Component*     |    |         |        |       |       |  |  |
| TEMP           |    |         |        |       |       |  |  |
| Linear         | 3  | 0.507   | 1.084  | 0.64  | 0.607 |  |  |
| Quadratic      | 3  | 9.911   | 2.972  | 1.74  | 0.216 |  |  |
| Full Cubic     | 2  | 2.928   | 1.271  | 0.74  | 0.497 |  |  |
| Special Quart  | 1  | 0.028   | 0.028  | 0.02  | 0.901 |  |  |
| Residual Error | 11 | 18.761  | 1.706  |       |       |  |  |
| Total          | 39 | 324.538 |        |       |       |  |  |

| TABLE V                                      |
|----------------------------------------------|
| ANOVA FOR %GOOD RICE (COMPONENT PROPORTIONS) |
| CAMDLE SOUDCE, WDD                           |

| SAMPLE SOURCE: W.P.P. |    |         |        |        |       |  |  |  |
|-----------------------|----|---------|--------|--------|-------|--|--|--|
| Source                | DF | Seq SS  | MS     | F      | Р     |  |  |  |
| Regression            | 28 | 1480.37 | 52.870 | 151.92 | 0.000 |  |  |  |
| Component             |    |         |        |        |       |  |  |  |
| Only                  |    |         |        |        |       |  |  |  |
| Linear                | 2  | 13.03   | 87.652 | 251.87 | 0.000 |  |  |  |
| Quadratic             | 3  | 1010.37 | 394.06 | 1132.4 | 0.000 |  |  |  |
| Full Cubic            | 2  | 303.06  | 82.549 | 237.21 | 0.000 |  |  |  |
| Special Quart         | 1  | 67.82   | 114.99 | 330.44 | 0.000 |  |  |  |
| Full Quartic1         | 1  | 69.96   | 69.958 | 201.02 | 0.000 |  |  |  |
| Component*            |    |         |        |        |       |  |  |  |
| moisture              |    |         |        |        |       |  |  |  |
| Linear                | 3  | 3.08    | 1.529  | 4.39   | 0.029 |  |  |  |
| Quadratic             | 3  | 7.14    | 2.294  | 6.59   | 0.008 |  |  |  |
| Full Cubic            | 2  | 1.44    | 0.488  | 1.40   | 0.287 |  |  |  |
| Special Quart         | 1  | 0.12    | 0.191  | 0.55   | 0.474 |  |  |  |
| Full Quartic1         | 1  | 0.10    | 0.101  | 0.29   | 0.600 |  |  |  |
| Component*            |    |         |        |        |       |  |  |  |
| temp                  |    |         |        |        |       |  |  |  |
| Linear                | 3  | 0.74    | 0.668  | 1.92   | 0.185 |  |  |  |
| Quadratic             | 3  | 2.37    | 0.366  | 1.05   | 0.409 |  |  |  |
| Full Cubic            | 2  | 1.06    | 0.569  | 1.63   | 0.239 |  |  |  |
| Special Quart         | 1  | 0.08    | 0.079  | 0.23   | 0.642 |  |  |  |
| Residual Error        | 11 | 3.83    | 0.348  |        |       |  |  |  |
| Total                 | 39 | 1484.2  |        |        |       |  |  |  |

TABLE VI ANOVA FOR WEAR (COMPONENT PROPORTIONS), SAMPLE SOURCE: W.P.P.

|                 |    | SOURCE. V | v.I.I. |       |       |
|-----------------|----|-----------|--------|-------|-------|
| Source          | DF | Seq SS    | MS     | F     | Р     |
| Regression      | 28 | 417.06    | 14.895 | 3.15  | 0.025 |
| Component Only  |    |           |        |       |       |
| Linear          | 2  | 55.627    | 52.686 | 11.14 | 0.002 |
| Quadratic       | 3  | 106.44    | 53.693 | 11.35 | 0.001 |
|                 |    | 7         |        |       |       |
| Full Cubic      | 2  | 31.667    | 2.029  | 0.43  | 0.662 |
| Special Quart   | 1  | 84.375    | 56.180 | 11.87 | 0.005 |
| Full Quartic1   | 1  | 8.313     | 8.3131 | 1.76  | 0.212 |
| Component*      |    |           |        |       |       |
| moisture        |    |           |        |       |       |
| Linear          | 3  | 29.061    | 27.876 | 5.89  | 0.012 |
| Quadratic       | 3  | 53.372    | 10.224 | 2.16  | 0.150 |
| Full Cubic      | 2  | 9.120     | 9.203  | 1.95  | 0.189 |
| Special Quart   | 1  | 0.204     | 0.541  | 0.11  | 0.742 |
| Full Quartic1   | 1  | 9.991     | 9.991  | 2.11  | 0.174 |
| Component* temp |    |           |        |       |       |
| Linear          | 3  | 7.193     | 1.051  | 0.22  | 0.879 |
| Quadratic       | 3  | 14.243    | 4.249  | 0.90  | 0.473 |
| Full Cubic      | 2  | 3.892     | 0.445  | 0.09  | 0.911 |
| Special Quart   | 1  | 3.563     | 3.563  | 0.75  | 0.404 |
| Residual Error  | 11 | 52.046    | 4.731  |       |       |
| Total           | 39 | 469.11    |        |       |       |

Table VII and Table VIII contains the results and summarize of regression of ANOVA and coefficients for the percentage of good rice and wear rate. The regression coefficients from multiple regression analysis of the sample data in Table I-VI showed that component proportions had significant ( $P \le 0.05$ ) special cubic effect on forming while effect of other process variables (Temperature and moisture) were not significant ( $P \ge 0.05$ ) an all quartz of minerals in Thailand.

 TABLE VII

 THE REGRESSION OF ANOVA AND COEFFICIENTS FOR % GR

 Source of
 % GR

| materials    | Regress<br>ANO | ion of<br>VA | Estimated Regression<br>Coefficients |                        |  |
|--------------|----------------|--------------|--------------------------------------|------------------------|--|
|              | F              | Р            | $\mathbf{R}^2$                       | $\mathbf{R}^{2}_{adj}$ |  |
| Bophloi      | 127.95         | 0.000        | 99.69                                | 98.91                  |  |
| Wiang Pa Pao | 151.92         | 0.000        | 99.74                                | 99.09                  |  |
| Thoen        | 15.53          | 0.000        | 84.04                                | 78.62                  |  |
|              |                |              |                                      |                        |  |

|                       | TABLE VIII                   |
|-----------------------|------------------------------|
| THE REGRESSION OF ANO | VA AND COEFFICIENTS FOR WEAR |
| 0 0                   | W D (                        |

| Source of    |         | We      | ear Rate             |               |  |
|--------------|---------|---------|----------------------|---------------|--|
| materials    | Regress | sion of | Estimated Regression |               |  |
|              | ANO     | VA      | Coefficients         |               |  |
|              | F       | Р       | $\mathbb{R}^2$       | $R^{2}_{adj}$ |  |
| Bophloi      | 6.40    | 0.000   | 94.22                | 79.50         |  |
| Wiang Pa Pao | 3.15    | 0.000   | 88.91                | 60.66         |  |
| Thoen        | 10.52   | 0.000   | 78.09                | 70.67         |  |

Overlaid contour plot for %GR and Wear (component amounts)



Fig. 1 Overlaid contour plot for %GR and Wear from Thoen District



Fig.2 Overlaid contour plot for %GR and Wear from Bophloi District



Fig.3 Overlaid contour plot for %GR and Wear from W.P.P. District

Fig.1 to Fig.3 show the overlaid contour plots of the responses, variables for %GR, and WEAR of quartz from Bo Phloi district in Kanchanaburi province, from Thoen district in Lampang province and from Wiang Pa Pao district in Chiangrai province, respectively. The feasible white area shown in each parts of the figure is the region where all response objectives will be satisfied. Furthermore, there is a region for which both the percentage of good rice, and wear rate responses can be simultaneously optimized. Therefore, it is possible to combine both the percentage of good rice and wear rate processes into a rice mills process, one of the original process development objectives. The predicted mean value of each response and the associated standard error of prediction at several points in the triangle. To assess the magnitude of prediction error, and also computed 95% confidence limits on the mean response.

Table IX to Table XI show the response optimization of three new materials. It is shown that the Quartz from Thoen with composition of  $0.5wt\%SiO_2(16):0.5wt\%Sic(18)$  give highest %GR of 92.136% coupled with the lowest were rate of only 1.887 g/hr.

TABLE IX RESPONSE OPTIMIZATION FROM THOEN

| Parameter | s                    |        |     |          |                 |            |        |
|-----------|----------------------|--------|-----|----------|-----------------|------------|--------|
|           | Goal                 | Lower  |     | Target   | Upper           | Weight     | Import |
|           |                      |        |     |          |                 |            |        |
| %GR       | Max                  | 75     |     | 100      | 100             | 1.0        | 10     |
| WEAR      | Min                  | 0      |     | 0        | 5               | 0.5        | 1      |
| Componen  | nts                  |        |     |          |                 |            |        |
| -         | $SiO_2(1)$           | 6) =   | 0.5 |          |                 |            |        |
|           | SiO <sub>2</sub> (1) | 8) =   | 0.0 |          |                 |            |        |
|           | Sic (18              | ) =    | 0.5 |          |                 |            |        |
| Process V | ariables             | ·      |     |          |                 |            |        |
|           | TEMP                 |        |     | = 27.5   |                 |            |        |
|           | MOIST                | TURE   |     | = 13.0   |                 |            |        |
| Predicted | Respons              | es     |     |          |                 |            |        |
|           | %GR                  |        |     | = 92.136 | 5. desirabili   | tv = 0.685 | 5      |
|           | WEAR                 |        |     | = 1.887  | 7 desirabili    | fv = 0.789 | 9      |
| Composite | e Desiral            | oility |     | = 0.694  | , aconacin<br>1 | cj 01/02   |        |
| I         |                      | 5      |     |          |                 |            |        |

TABLE X RESPONSE OPTIMIZATION SAMPLE SOURCE: BOPHLOI

| REDI       | ONDE        | 01 1101 |       | 11  | 57 11011 | EE DO    | onor   | J. D | 01111 | 201    |
|------------|-------------|---------|-------|-----|----------|----------|--------|------|-------|--------|
| Parameter  | s           |         |       |     |          |          |        |      |       |        |
|            | Goal        | Lower   |       | Tar | get      | Upper    | V      | Neig | ght   | Import |
|            |             |         |       |     |          |          |        |      |       |        |
| %GR        | Max         | 79      |       | 90  |          | 90       | 1      | 0.1  |       | 10     |
| WEAR       | Min         | 0       |       | 0   |          | 15       | (      | ).5  |       | 1      |
| Componei   | ıts         |         |       |     |          |          |        |      |       |        |
|            | $SiO_2(1)$  | 6) =    | 0.215 |     |          |          |        |      |       |        |
|            | $SiO_2(13)$ | 8) =    | 0.187 |     |          |          |        |      |       |        |
|            | Sic (18     | ) =     | 0.598 |     |          |          |        |      |       |        |
| Process Va | ariables    |         |       |     |          |          |        |      |       |        |
|            | TEMP        |         |       | =   | 30.06    | 5        |        |      |       |        |
|            | MOIST       | TURE    |       | =   | 12.99    | )        |        |      |       |        |
| Predicted  | Respons     | es      |       |     |          |          |        |      |       |        |
|            | %GR         |         |       | =   | 86.990   | , desira | bility | -    | = 0.7 | 27     |
|            | WEAR        |         |       | =   | 11.533   | , desira | bility | :    | = 0.9 | 32     |
| Composite  | e Desiral   | oility  |       | =   | 0.744    |          |        |      |       |        |
| •          |             |         |       |     |          |          |        |      |       |        |

| TABLE XI              |                       |  |  |  |  |  |  |
|-----------------------|-----------------------|--|--|--|--|--|--|
| RESPONSE OPTIMIZATION | SAMPLE SOURCE: W.P.P. |  |  |  |  |  |  |

| Parameters             |           |       |                                |                                  |       |       |        |        |  |
|------------------------|-----------|-------|--------------------------------|----------------------------------|-------|-------|--------|--------|--|
|                        | Goal      | Lower |                                | Targ                             | get   | Upper | Weight | Import |  |
|                        |           |       |                                |                                  |       |       |        |        |  |
| %GR                    | Max       | 71    |                                | 90                               |       | 90    | 1.0    | 10     |  |
| WEAR                   | Min       | 5     |                                | 5                                |       | 12    | 0.5    | 1      |  |
| Components             |           |       |                                |                                  |       |       |        |        |  |
|                        | $SiO_2(1$ | 6) =  | 0.50                           |                                  |       |       |        |        |  |
|                        | $SiO_2(1$ | 8) =  | 0.50                           |                                  |       |       |        |        |  |
|                        | Sic (18   | () =  | 0.00                           |                                  |       |       |        |        |  |
| Process Variables      |           |       |                                |                                  |       |       |        |        |  |
|                        | TEMP      |       |                                | =                                | 30.00 | )     |        |        |  |
|                        | MOIST     | ΓURE  |                                | =                                | 13.00 | )     |        |        |  |
| Predicted Responses    |           |       |                                |                                  |       |       |        |        |  |
| %GR                    |           |       | = 85.904, desirability = 0.784 |                                  |       |       |        |        |  |
| WEAR                   |           |       | = 1                            | = 11.658, desirability $= 0.739$ |       |       |        |        |  |
| Composite Desirability |           |       | =                              | 0.780                            |       |       |        |        |  |

## III. CONCLUSION

The mixture experimental design in the study of the effects of the components on some physical properties of a rice polishing cylinder formulation. The combining mixture composition and process variables using experimental design has proved to be appropriate and effective, in particular, in finding processing conditions and subregion yielding blend

formulations leading to a product with the characteristics required. Applicability of binder combines calcined magnesite and MgCl<sub>2</sub>.6H<sub>2</sub>O containing quartz and reused silicon carbide in equal proportion for abrasive rice mills. Under optimal values of process parameters, complete rice mills was found for both the abrasive using binder combines calcined magnesite and MgCl<sub>2</sub>.6H<sub>2</sub>O. This study clearly showed that mixture design was one of the suitable methods to optimize the best operating conditions to maximize the abrasive removing. Graphical response surface and contour plot were used to locate the optimum point. The statistical fitted models and the contour plot of responses, can be used to predict values of responses at any point inside the experimental space and can be successfully used to optimize the rice polishing cylinder.

#### ACKNOWLEDGMENT

Financial support from RMUTL: Rajamangala University of Technology Lanna and NRCT : National Research Council of Thailand is gratefully acknowledged.

#### REFERENCES

- S. Bangphan, S. Lee, "Modeling Material Mixtures to Replace of Rice Polishing Cylinder,"Proceeding of the Conference of Industrial Engineering, IE NETWORK CONFERENCE, 17-19 December 2006.
- S. Bangphan, S. Lee and S. Jomjunyong, "Development of the Alternative Composite Material for Rice Polishing Cylinder," APIEMS & CIIE 2007, Dec.2007, Proceeding 8<sup>th</sup> Conference. Industrial Engineeris Taiwan, 2007,p.146.
- [3] Department of Primary Industries and Mines. online. Available URL:http://www.dmr.go.th/04\_News/min\_stat/min\_stat.htm,June, 2007.
- [4] A.I. Khuri, J.A. Cornell (Eds.), "Response Surfaces : Designs and Analysis,"M.Dekker, New York, 1996.
- [5] J.A. Cornell(Ed.), "Experiments with Mixtures," Wiley, New York, 1981, 1-19, 26-27, 139-227 and 315-325.
- [6] J.A. Cornell (Ed.), "How to Run Mixture Experiments for Product Quality," vol.5, American Society for Quality Control, Wiscosin, 1983, pp.23-5.
- [7] R.H. Myers, D.C. Montgomery (Eds.), "Response Surface Methodology : Process and Product Optimization Using Designed Experiments," Wiley, New York, 1995, 535-562 and 570-604.
- [8] J.A. Cornell, "Experiments with Mixtures," 2<sup>nd</sup> ed. New York Wiley, 1990.
- [9] D.C., "Montgomery, Design and Analysis of Experiments," 3<sup>rd</sup> ed. New York Willey,1991.
- [10] G.E.P.Box, W.G, "Hunter, and J.S. Hunter, Statistics for Experiments," New York Willey, 1978.
- [11] H.Scheffé ,"Experiments with mixtures," Journal of the Royal Statistical Society. Series B (Methodological), Vol. 20, No. 2, pp.344– 360,1978.
- [12] N.Chantarat, T. Theodore, and Nilgun. Ferhatosmanoglu., "A combined array approach to minimize expected prediction errors in experimentation involving mixture and process variables," Int. J. Industrial and Systems Engineering, Vol. 1, Nos. 1/2, pp.129–147,2006.
- [13] C.D. Wood, D.L. Romney, and A.H. Murray, "The use of in vitro gas Production to investigate feed interaction in the digestibility of supplemented low quality forage-based diets," In: Proceedings of an EAAP Satellite Symposium on the Gas Production Fermentation Wageningen, The Netherlands, 18–19 August 2000, pp. 105–106.
- [14] N. Cleber, E. Roy. Borgesa, R. Brunsa, and S. Scarminiob, "Mixturemixture design for the fingerprint optimization of chromatographic mobile phases and extraction solutions for Camellia sinensis," available, at www.sciencedirect.com,journalhomepage: www.elsevier.com/locate/ aca,Accepted 27 February 2007.