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Abstract—A Kalman filter (KF) estimator has been 
formulated using a sequence of reduced-order models 
representing a whole batch behavior for providing the 
estimates of dynamic composition in a ternary batch 
distillation process operated in an optimal-reflux policy. A set 
of full-order models is firstly obtained by linearizing around 
different pseudo-steady state operating conditions along batch 
optimal profiles. They are further reduced their orders to 
achieve their observability and controllability individually by 
using a model reduction method. The performances of the 
reduced-estimator have been investigated and compared with 
those of a conventional nonlinear estimator. Simulation results 
have demonstrated that the performances of the proposed 
estimator are reasonably good and almost identical to the 
conventional one in all cases. 
 

Index Terms—Batch distillation, Kalman filter (KF), 
Inferential estimation, Model reduction.  

 

I. INTRODUCTION 
Batch distillation is an important unit operation widely 

used in fine chemistry, pharmaceutical, biochemical and 
food industries to process small amounts of materials with 
high added value. The main reason is its operational 
flexibility that a single column can separate all components 
of a multi-component mixture into several products within a 
single operation. So as to meet product specification, the 
batch column needs to be operated as precisely as possible. 

If instant compositions are known, an automatic closed-
loop control scheme can be implemented correctly to drive 
the process to the desired operating strategy. However, an 
online composition analyzer is not economical. 
Furthermore, it usually introduces a large time-delay into the 
control loop. Otherwise real-time composition concentration 
can be estimated from available temperature measurements 
using an inferential composition estimator.  
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The use of the estimator has long been suggested to assist 
monitoring and control of a continuous distillation [1] – [3]. 
Conversely to the batch column, the issue has received little 
attention. An Extended Luenberger Observer (ELO) was 
primarily applied to a multi-component batch system 
through the use of the tray temperature measurements [4], 
[5]. As the observer was based on a deterministic model and 
its gains were obtained in off-line fashion, its performance 
was degraded rapidly when the measurements were affected 
by noise.  

Therefore, use of a stochastic estimator like a Kalman 
Filter (KF) was recommended if large amount of noise is 
expected [6]. Afterward a discrete Extended Kalman Filter 
(EKF) for the conventional batch distillation was developed 
to handle the effect of noise by [7]. Recently, [8], [9] have 
applied the EKF scheme for the composition estimation in a 
batch reactive distillation.  

Even though the EKF is much more robust to mismatch 
and noise than the ELO, but it is rather difficult to initialize 
all states and requires considerable computational effort for 
online use due to model complexity. Furthermore its 
performance heavily depends on the thermodynamic 
modeling of vapor-liquid equilibria.  

In practical point of view, this work develops a linear-
version of the KF estimator using multiple reduced-models 
sequentially, and implements to the conventional ternary 
batch column for estimating the product composition 
profiles. 

II. A TERNARY BATCH DISTILLATION 
In a conventional batch distillation, a liquid mixture is 

charged into a vessel and heat is added to produce vapor fed 
into a rectifying column. A concentration of the lightest 
component increases in the upper trays sequentially in the 
column and a concentration of a subsequent heavy 
component increases in a still pot. As the concentration of 
the lightest component in the distillate reaches its specified 
purity level or the unit in total reflux operation is taken to a 
steady state, the distillate product withdrawal is then begun.  

The equations describing the process are given below. 
More detailed description of the operation and modeling of 
the batch column are referred to [10], [11]. 
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where, CN rLL = . Change rates of molar holdup and liquid 
enthalpy are approximated by using a first order euler 
integrating approach. Reboiler holdup at any time is 
calculated from the following algebraic combination,  
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Antoine’s equations are used in a bubble-point calculation, 
and both liquid and vapor enthalpies are obtained from 
experimental correlations [12], [13]. The variation of liquid 
density is described by using a modified Rackett equation. 
Column specification used in this study is given in Table I. 
 

III. EXTENDED KALMAN FILTER (EKF) 

A. Algorithm of the estimator 
A nonlinear process can be described by following 

differential and measurement equations: 
 

( ) wu,xfx +=&   
( ) vxhy +=      (10) 

 
where w and v are vectors of process and measurement 
noises respectively with covariance Q and R respectively. 

Corrected estimates are computed as a linear combination 
of priori estimates and a weighted difference between actual 
and predicted measurements: 
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For a prediction step, the estimates for the next time step 
are predicted based the current estimates in which the 
discrete prediction equations are employed: 

 
 

Table I: Column specification 
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B. Application to a batch distillation 
As the nonlinear estimator based rigorous mathematical 

model of an actual plant is rather complex, a simplified 
model integrated with a bubble-point calculation is easier to 
be employed in practices. The simplified equations are given 
by: 

( ) ( )i1i1
1

i1i2
1

i1 xy
H
Vxx

H
rV

dt

dx
−−−=  (15) 

( ) ( )jii,1j

j

jii,1j

j

ji xx
H
rVyy

H
V

dt

dx
−+−= +−   (16) 

( )Nii,1N
N

Ni xy
H
V

dt

dx
−= −    (17) 

 
At each integration step in an EKF scheme, a reboiler 

holdup prediction is obtained as,  
 

( ) k,aNj0k,1 HHH2NBH −−×−−=  
 

where ( )[ ]Vr1tHH 1k,ak,a −×Δ+= −  . In this case, a state 

vector is [ ]T
2N22121N2111 x,...,x,x,x,...,x,x  in which 

only first two components are considered.  
 

The heaviest component can be obtained by subtracting 
the summation of the first two components from one. The 
measurement equations are derived from Antoine’s 
equations. From (15) – (17), the knowledge of jH , NH and 
V are required.  
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In the work of [7], the instant vapor flow rate is estimated 
by the knowledge of vaporization heat and heating power. 
Nevertheless the exact calculation of the heat of 
vaporization is difficult then the assumption of the constant 
vapor load along the batch is made here. The constant values 
of the parameters Nj H,H , and V are obtained in an 
optimal manner as 0.0052 kmol, 0.0427 kmol and 1.4195 
kmol/hr respectively.   

 

IV. INFERENTIAL MODEL DEVELOPMENT 
However, the use of the nonlinear estimator for 

estimating product compositions presents two main 
difficulties: 
• The precise estimates of all column-compositions (states) 

are required. This introduces a difficulty of estimator 
tuning and poor estimation performance due to un-
satisfaction of state-observability.  

• Commonly the batch distillation is a large system 
according to the number of components and plates. 
Relative computation effort is then required for 
estimating the states due to complexity and enormous size 
of the model.  
To overcome those, building inferential model for a 

kalman filter (KF) design using a model reduction approach 
is presented next.   

A. Reducing models through a model reduction 
A linear version of (10) can be obtained by linearizing the 

equations around the reference predefined trajectories as 
following, 

 
BuAxx +=&      (18a) 
xCy mm =      (18b) 

xCy umum =                   (18c) 
 

where, nxx ℜ∈  , nuu ℜ∈  denote system states and 
manipulated input vectors, and nymmy ℜ∈  and 

nyumumy ℜ∈  are vectors of  (secondary) measurable  and 
(primary) un-measurable outputs.  

In most cases, a full-local model contains additional 
unobservable and/or uncontrollable states. However, only 
observable and controllable states are needed for a 
monitoring and control. In this study, a reduced-model is 
obtained by applying the following steps: (I) system 
diagonalization, (II) stable-unstable decomposition, (III) 
gramian balance, (IV) balanced-state truncation, and (V) 
stable-unstable combination [14].  

By applying those steps to the observable system (18a,b), 
the  equations in the reduced-state domain ( nrrx ℜ∈ ) can 
be formulated as, 
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in which, the matrices in a stable part are 
 

 ( ) nxsnxs11s AA ×−−− ℜ∈ϑ⋅ς⋅⋅ς⋅ϑ=

 ( ) nunxs1s BB ×−− ℜ∈⋅ς⋅ϑ=

 ( ) nxsnym1mms CC ×−−
ℜ∈ϑ⋅ς⋅=  

 
and the matrices in an unstable part are 
 

 ( ) nxunxu1u AA ×+− ℜ∈ς⋅⋅ς=  

 ( ) nunxu1u BB ×+− ℜ∈⋅ς=  

 ( ) nxunymmmu CC ×+
ℜ∈ς⋅=   

 
Similar diagonal system is firstly determined by 

multiplying with a transform matrix ς  (or eigenvector of 
the corresponding matrix A ) for simply identifying the 
stable and unstable parts of the system. It is noted that the 
matrix ( )ς⋅⋅ς − A1  is diagonal, in which its elements are 

eigenvalues of the matrix A . The symbols ( ) ( )−+ .,.  
denote positive (unstable part) and negative (stable part) 
eigenvalues respectively. 

Afterward the stable part of the similar diagonal system is 
reduced its dimension by using the balance truncation 
approach. Observability and controllability grammians are 
balanced by multiplying a transform matrix ϑ . Less 
observable and controllable states are further truncated, in 
which the symbol, nrsnrs. × , denotes the matrix that only first 
(nrs) rows and (nrs) columns are considered.  

Lastly the reduced stable and unstable parts are composed 
to preserve the major characteristic of the system. The 
reduced-order (nr) is then a combination of a reduced-order 
of the stable part (nrs) and a diagonalized-state number of 
the unstable part (nxu). 

B. Composition prediction equation  
The main objective of the inferential control design is to 

track the reference profiles of the primary variables. As a 
result, the equation describing the dynamics of un-
measureable outputs is needed. Similarly to (19b), from 
(18c) the prediction equation for un-measurable outputs can 
be obtained in rx  domain as following,  

rumrum xCy =      (19c) 
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nrsnyum

umsumr CCC . The matrices in 

the stable and unstable parts are, 
 

 ( ) nxsnyum1umums CC ×−−
ℜ∈ϑ⋅ς⋅=  

 ( ) nxunyumumumu CC ×+
ℜ∈ς⋅=   

C. Describing a batch using a sequence of models 
As state-controllability and -observability is commonly 

varied along a batch operation, and it is rarely possible to 
describe its behavior by using a single local-model due to 
non-stationary and large changes of process dynamics 
during the batch. A set of the reduced-models derived 
around different parts along the reference batch trajectories 
is developed individually, and employed sequentially for 
representing whole batch behavior.  

A discrete version of the system (19) of model j is written 
in incremental changes of the variables as following to avoid 
effect of model bias, which has nonzero value in a case of 
the batch. 
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where, ( ) r
jj AtI Δ+=φ  and ( ) r

jj BtΔ=γ . Δ  represents the 
incremental change in the variable with respect to a discrete 
time index k, for example 1kkk uuu −−=Δ .  
 

V. KALMAN FILTER (KF) 

A. Conventional Algorithm  
From (20), considering a dynamic system, 
 

kkk1k wBuAxx ++=+          

kkk vCxy +=      (21) 
The Kalman Filter (KF) is computed in two steps. The 

first is a prediction step, which is used to extrapolate the 
previous best estimates, and the second is a correction step 
by which the updated estimates are formed.  

The estimate value or the expected value can be obtained 
using linear prediction equation as following, 

 
kkkk1k Bux̂Ax̂ +=+                   (22) 

QAA T
kkk1k +Σ=Σ +             (23) 

Once measurements are available, the model states and 
outputs are updated and predicted for the next step by using 
the corresponding model equations.  
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where, ( ) 1T
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T
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++ +ΣΣ=  is estimator 
gain.  

B. KF using a sequence of reduced-models 
At a model connection, a state covariance matrix Σ  is 

transformed by multiplying a matrix jK  for estimation 
consistency and continuity as following, 

T
jj,kkj1j,kk KK Σ=Σ +     (26) 

Although the models are in different reduced-state 
domains, and may obtain different model-orders, process 
inputs and outputs are identical,  
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The transform matrix jK  can be simply derived from the 

above equation, 
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Figure 1: Reduced-orders of 35 models set 
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VI. SIMULATION RESULTS 
In this system, acetone and toluene are separated as 

distillate products and phenol is separated as a residual 
product in a still pot. Optimal profiles are pre-determined by 
minimizing a total batch time to yield desired product 
quantity and purity. The optimal solution is obtained with 
two main-cuts and one off-cut. In this case, the optimal 
batch time is 2.58 hr with the first off-cut started collecting 
at time 1.17 hr and stopped at 1.62 hr. 

The actual process dynamics have been simulated by 
solving the rigorous model (1) – (9) using Backward 
Differentiation Formula (BDF) or Gear’s type method. 
However an approximation of the differential equations used 
in the estimators is achieved by using an Euler integration 
method. All simulation studied are carried out based on 
Window XPpro 2002 (Pentium M 1500MHz) by using 
MATLAB program version 6.5.  

A series of 35 models are developed separately, and 
employed to represent a whole batch operation involving 16 
models for the first main-cut, 6 models for off-cut and 13 
models for the second main-cut. The full-models contain 14 
full-states (no. total plates 27 ×  components) including 
additional unobservable states. For good monitoring, the 
models are further reduced their order individually using a 
balanced truncation method. It is assumed that all tray 
temperatures are measurable in all cases.  

The reduced-orders are plotted with time as shown in Fig. 
1. It is noted that by applying the model reduction the 
original full-states can be computed as a linear combination 
of the new reduced-states. In the off-cut operation, the 
highest reduced-orders are obtained because composition 
changes of the both components are significant. Afterwards 
the model-order decreases continuously in the production of 
toluene. Since the acetone amount in the column is 
completely exhausted and removed from the column, only 
seven new states are required for the last model. 

Inferential composition estimation for a ternary batch 
column operated in an optimal operation has been further 
studied. For the EKF, the diagonal elements of both 0Σ  and 
Q are selected as 10-6. The diagonal elements of R for all the 
cases of measurements are defined as 100. For the proposed 
KF, a set of Q and R matrices are predefined, and scheduled 
according to the corresponding model equations. However, 
the matrix 0Σ  is constant at 10-5.  

It has been found that as instant distillate compositions 
remarkably change at time 5 minutes during the operation 
period, the estimators are activated. Both estimators have 
been tested with respect to the guess values of the initial-
states. For the EKF estimator, the initial guess values are 
[0.4, 0.8, 0.9, 1, 1, 1, 1] and [0.4, 0.2, 0.1, 0, 0, 0, 0] for the 
first and second components respectively. For the linear 
estimator, the reduced-states are in the incremental changes 
then they are initialized by zero for the both productions. In 
addition, the initial guess of the distillate and reboiler 
compositions are chosen as [1, 0] and [0.3, 0.43] 
respectively. 

 
 
 

 
(a) Distillate composition  

 

 
(b) Reboiler composition  

 
Figure 2: Estimation profiles with noise 1± K 

 
As available measurements usually involve statistical 

error therefore the sensors are corrupted by a Gaussian white 
noise with a zero mean and a certain standard deviation. As 
shown in Fig, 2, both nonlinear and linear estimators still 
give reasonable estimates of all products with the noise of 
the standard deviation of 1± Kelvin. The proposed estimator 
requires the computation effort only 56% of the one needed 
for the nonlinear estimator.  However, it has been found that 
the linear estimator is rather sensitive to the high 
measurement noise 3±  Kelvin (Fig. 3). 

 

VII. CONCLUSION 
In this work, both discrete nonlinear- and linear-versions 

of a Kalman estimator are developed for inferential 
composition estimation of a ternary batch distillation. For an 
EKF, simplified dynamic equations coupled with a bubble-
point calculation are employed for the estimator design. 
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Vapor flow rate and holdups of tray and drum are constant 
for a whole batch operation, in which the values of the 
parameters are pre-determined in an optimal manner. For a 
linear KF, a set of reduced-order models is developed 
individually and employed sequentially to predict the whole 
batch behavior.  

Simulation results have shown that both estimators give 
comparative estimation performances even in case of initial 
guessed conditions and measurement noise. However the 
state estimates obtained by the EKF will only converge to 
the actual values if accurate thermodynamic model is 
available. Although the proposed estimator performs rather 
sensitive to the effect of high measurement noise, however 
computation time is much lower than the ones required for 
the EKF. Moreover the knowledge of the thermodynamic is 
not required and the augmented states can be initialized 
easily by using zero values. 
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(a) Distillate composition  

 

 
(b) Reboiler composition  

 
Figure 3: Estimation profiles with noise 3± K 
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