
 
 

  
Abstract— This paper presents a new approach to sensor 

based condition monitoring feature selection using a 
self-organizing map. Self-Organizing Maps perform 
classification in a non-supervised fashion performing vector 
quantization and therefore place similar vectors close together 
in the two dimensional output space. The unsupervised process 
leads to the self organization of modeling with no previous 
knowledge of what is being modeled and therefore it does not 
model a predetermined environment. Taking the above into 
account feature selection was performed by analyzing the 
contributions of different sensor based features towards tool 
wear classification. It was found that some of the features, not 
previously evaluated and justified, have a strong contribution 
towards tool wear classification. 
 

Index Terms— Self-Organizing Map, Condition Monitoring, 
Tool Wear, Feature Selection.  
 

I. INTRODUCTION 
The late 1990s and early 2000s have witnessed a change 

from the old practice of changing tools automatically, to the 
feasibility of instituting tool change procedures based on 
monitoring the amount of wear on the cutting tool-edges 
through the implementation of adaptive tool inspection 
mechanisms. Thus, an appropriate and timely decision for 
tool change is significantly required in the machining system. 
The traditional ability of the operator to determine the 
condition of the tool based on his/her experience and senses, 
i.e. vision and hearing, is now the expected role of the 
monitoring system. One important strategy to support this 
goal is sensor-based, real-time control of key characteristics 
of both machines and products, throughout the 
manufacturing process. 

 
Several factors have impeded advances in the development 

of TCMSs including inappropriate choice of sensor signals 
and their utilization. The random behavior can be attributed 
to the large-scale variation and non-homogeneities that exist 
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in the workpiece. Typically, most metal cutting processes can 
be classified as having one or more of the following 
characteristics, Warneche et al. [1]: Complex to chaotic 
behavior due to non-homogeneities in workpiece material, 
sensitivity of the process parameters to cutting conditions, 
and a non-linear relationship of the process parameters to tool 
wear. 

Wear monitoring has been performed using many different 
sensing techniques. These techniques include; temperature, 
motor current, acoustic emission (AE), audible emissions, 
vibration and force, [2]. Some of these have been 
successfully applied under laboratory conditions although 
industrial applications have been rather unsuccessful. Clearly, 
the quality of the sensor information is adequate to make 
judgments of the state of wear in idealized conditions but 
much work has to be performed in information processing 
and decision making in order to correctly classify the tool 
wear state from the available sensors. It is therefore the aim 
of this work to integrate some of the above mentioned 
sensors to extract the largest possible amount of information 
from the cutting process and provide an indication of the 
wear level. 

Previous work on the relationship between audible 
emissions and tool wear has established that audible 
emissions are capable of indicating the extent of the cutting 
edge wear, Weller et al.[3]. McNulty et al.[4] have also 
highlighted the use of noise spectra for tool life evaluation 
applied to several cutting processes and have found 
significant changes in certain frequency bands that appear to 
be characteristic of wear in certain cutting processes. Lee [5] 
found that, during turning the machine noise exhibited a wear 
related change of sound pressure level (SPL) at certain 
frequencies (4 - 6 kHz) for several materials. A drop in the 
SPL before the tertiary zone (third and last stage of wear) was 
suggested as an end of tool-life predictor. Experiments 
carried out by Ya et al. [6] using two different types of 
turning tool showed that both the tool angle and the cutting 
speed exerted no great influence on the average cutting noise. 

Vibration has also been used to recognize the wear state of 
a tool whilst turning [7] and the main advantage of this 
method is its ease of application. Taking into consideration 
previous research (e.g. Jiang et al. [8]) vibration has been 
chosen in this work as a secondary source of information 
because of the correlation between machine tool vibration 
and tool wear that have been demonstrated successfully in the 
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laboratory. The vibrations arising from the shearing action of 
the tool is transmitted to the base of the machine where they 
are transduced by the accelerometer. 

A mechanistic model derived from first principles is 
theoretically the most accurate model that can be developed 
for any system. Unfortunately, the resources required to 
develop such a model for even the simplest of systems tends 
to prohibit their use. Therefore, forecasting in complex 
systems that are poorly understood, noisy and often 
non-linear can be practically impossible when based on the 
traditional model predictive algorithms, Parlos et al. [9]. 
Consequently engineers tend to rely on system identification 
techniques to establish process models. As with linear 
models, Artificial Neural Networks (ANN) provide a 
description of the relationship between cause and effect 
variables. The benefit of ANNs over linear models is that 
they are capable of modeling non-linear relationships. In fact 
studies have shown them to be capable of modeling any 
non-linear function to arbitrary accuracy Cybenko [10] and 
Hornik et al. [11]. Also, artificial neural networks have found 
increasing favor in manufacturing systems research because 
of their ability to perform robustly in noisy environments, 
Balazinski et al. [12]. Abstraction of hardly accessible 
knowledge and generalization from distorted sensor signals 
are some of the most attractive features of neural networks 
when applied to sensor fusion and classification in tool wear 
monitoring. Nevertheless, although working in certain 
conditions, most of the previous applications of neural 
networks have some limitations, as reported by Lennox et al. 
[13] in a study of the application of artificial neural networks 
in the area of process monitoring and control. 

This article is subdivided into four main sections: an 
introduction to condition monitoring and its current state of 
the art; an introduction to spiking neuron networks and their 
feasibility for condition monitoring; and, finally, 
experimental work and simulation results. 

II. PRELIMINARY EXPERIMENTAL WORK 
Based on the above considerations experimental 

background work was conducted on the turning process to 
collect tool wear data. In this work a set of tool wear cutting 
data was acquired by machining a block of mild steel under 
realistic production conditions that consisted of a cutting 
speed of 350 m/min, a feed rate of 0.25 rev/min and a depth 
of cut of 1 mm, with a coated cemented carbide tip. The set of 
sensors used were: an accelerometer for measuring vertical 
vibration, a microphone for recording sound emission, a 
strain gauged tool holder for force measurement and a meter 
for the spindle current of the CNC machine. The turning 
operation was carried out on an MT 50 CNC Slant Bed 
Turning Centre. The analogue signals were sampled at 20 
kHz with tool wear and sensor data being acquired at 
intervals of 2 min, taking into account an expected tool life, 
for each insert, with a typical value of 15 min. Sample data 
were recorded for 6 inserts. The length of each sample was 
512 points, and these were acquired approximately in the 
middle of the bar. 

Each 512 point record was processed to generate the 
features used in the classification stage. A total of 12 features 
were extracted from the sound and vibration data: absolute 

deviation, average, kurtosis, skewness and the energy in the 
frequency bands (2.2-2.4 and 4.4-4.6 kHz) obtained from the 
spectra. Two additional features were presented from the 
means of the feed and tangential forces. Results have shown 
that tool wear classification is difficult in the presence of such 
noisy data and it is therefore required that classification is 
made by a method that can resolve the complex interrelation 
between features to produce a robust wear classification. 
Also the use of multiple sensors should prove to be of great 
value towards tool wear evaluation since the noisy character 
of each sensor alone would lead to certain failure of the 
monitoring system [14]. 
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Figure 1 - Feed Force versus tool wear 

 
As can be observed, e.g. Figure 1, both tangential and feed 

forces show an increase with tool wear which is consistent 
between tools. 
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Figure 2 - Kurtosis of Sound versus tool wear 

 
From Figure 3 it can be seen that the power spectrum of 

data obtained from the microphone data varied consistently 
with the wear level. The intervals which show this relation 
for the microphone, are: [3.5;5.5] kHz, [6.2;7.5] kHz and for 
the accelerometer, are: [3.6;5.2] kHz, [6.2;7.2] kHz. The 
results obtained from the statistical and frequency 
parameters, as well as forces and spindle current, are 
somewhat difficult to interpret considering them one at a time 
as some appear to correlate, whilst others appear to hold no 
correlation with tool wear. This can be overcome by taking 
into account the neural networks’ ability to extract 
information from apparently scattered information. 

The remaining features (absolute deviation, mean, kurtosis 
and skewness of both sound and vibration) exhibited little 
correlation with flank wear, e.g. Figure 2, data points 
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appearing to be randomly distributed through the entire 
space. Although the statistical parameters did not present any 
obvious relation to tool wear evolution, it is not possible at 
this stage to judge their importance for tool wear monitoring 
due to the complexity of the process. The remainder of this 
paper, however, shows that some of these data can still be 
used in monitoring the cutting process. Despite this it was 
decided to use them is training the NN’s as there may have 
been features corresponding to tool wear that a simple 
regression analysis would not show. 

 

 
Figure 3 Waterfall plot of frequency spectrum of sound 

emissions (Insert 1) 
 
In the present study 14 inputs (average, absolute deviation, 

skewness and kurtosis for sound and vibration; tangential and 
feed force; 2 spectrum bands from both the sound and 
vibration) have been used although speed would not be 
compromised by a higher number of inputs. The number of 
frequency bands was selected in order not to compromise 
data reliability due to misuse of certain frequencies subject to 
changes which are not due to tool wear (e.g. machine 
environment). Therefore, two bands were selected from the 
power spectrum for the audible emissions and two for the 
machine vibration. 

 

III. THE SELF-ORGANIZING MAP (SOM) 
Unlike other neural network approaches, the SOM 

network performs unsupervised training; that is, during the 
learning process the processing units in the network adjust 
their weights primarily based on the lateral feedback 
connections. The more common approach to neural networks 
required supervised training of the network (i.e., the network 
is fed with a set of training cases and the generated output is 
compared with the known correct output). Deviations from 
the correct output result in adjustment of the processing 
units’ weights. On the other hand, unsupervised learning 
does not require the knowledge of target values. The nodes in 
the network converge to form clusters to represent groups of 
entities with similar properties. The number and composition 
of clusters can be visually determined based on the output 
distribution generated by the training process. 

Cluster analysis is a technique for grouping subjects into 
clusters of similar elements. In cluster analysis, we try to 
identify similar elements by their attributes. We form groups, 
or clusters, that are homogeneous and different from other 
groups. SOM networks combine competitive learning with 
dimensionality reduction by smoothing the clusters with 
respect to an a priori grid and provide a powerful tool for data 

visualization. 
The success of applying neural networks to a problem 

depends upon the type of problem domain and the 
representativeness of the data sets that are used to train the 
neural network. The SOM was coded based on the theory 
developed by Kohonen [15]. The present network consists of 
two layers of neurons. The first is the sensory or input layer, 
consisting in this case of 15 neurons, one for each feature 
obtained from the sensors plus one that provides the bias. The 
computation is carried out in the second layer, called the map, 
that also acts as the output layer and this was 10×10 neurons. 
The learning procedure consists of two stages. In the first, the 
map unfolds until a global ordering of the neurons is reached. 
Every neuron tunes to a pattern or class of patterns, and 
neighbor neurons tune to similar inputs. In the second stage, 
the statistical distribution of the synaptic weights approaches 
that of the input variables. A set of experiments was carried 
out using the SOM. The results achieved demonstrate the 
ability of this Neural Network to classify sets of data into. 

The SOM network typically has two layers of nodes, the 
input layer and the Kohonen layer. The input layer is fully 
connected to a two-dimensional Kohonen layer. During the 
training process, input data are fed to the network through the 
processing elements (nodes) in the input layer. An input 
pattern is denoted by a vector of order equal to the number of 
features. As the training process proceeds, the nodes adjust 
their weight values according to the topological relations in 
the input data. The node with the minimum distance is the 
winner and adjusts its weights to be closer to the value of the 
input pattern.  

Taking into account the previous considerations and 
combining it with learning paradigms of unsupervised 
artificial neural networks, all weights are updated according 
to, 

( )ijiijij wfw −=Δ λη.      (1) 

 
Where λij is the neighborhood function, Wij the weight to 

output neuron ij and η the learning rate. 
In order to extend this formulation of competitive learning 

to a realization of self-organization it is required the 
formulation of a neighborhood function that describes the 
inhibitory behavior of nearby neurons on the output map. 
This function allows neurons which are topologically close 
together initially to have strong excitatory lateral connections 
whereas remote neurons have strong inhibitory connections. 
This means that the winner neuron drives the neurons in the 
neighborhood thus increasing the values they encode. The 
response of remote neurons is inhibited by the lateral 
connections. The following neighborhood function was used 
for the above purpose: 

maxd

vv

ij

ijwinner

e
−

−

=λ         (2) 

where |vwinner-vij| describes the Euclidean distance between 
the winner neuron, vwinner, and some other neuron, vij, in the 
neighborhood, and dmax the maximum distance between 
neurons in the topological output map.  

The implementation consists of three major components; 
input vector normalization, training, and test data 
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interpretation. Upon training, the weights start to stabilize 
until there is no significant change in their value. 
Interpretation of the output results is achieved by visual 
analyzes of the output map classification results.  

In real-time, the only available information concerning a 
configuration’s success will reside in its training 
performance. The ideal policy will recommend employing a 
neural network exhibiting “good” sample set classification. 
The testing to be performed will assess the validity of such a 
policy for competitive learning, i.e. it will observe its 
generalization ability. In addition, testing will identify the 
configurations which typically yield good results, and mark 
them as good candidates for the application. Two policies 
exist for training pertaining to weight update. In this work the 
policy dictating that weights freeze after “sufficient” training 
is followed because this provides better control over test 
classification. 

Self organization of topologically close neurons is realized 
taking into account that initial neurons that are topologically 
close together have strong excitatory lateral connections 
whereas remote neurons have strong inhibitory connections. 

 

IV. SIMULATION AND RESULT ANALYSIS 
Simulation was performed with an artificial neuron 

network algorithm, similar to the above description, using 15 
input neurons (one for each feature extracted from 
experimental data plus a bias neuron) and a 10 by 10 grid of 
neurons. Training was performed on experimental data from 
6 cutting inserts representing several wear stages in a total of 
33 feature vector sets.  The learning procedure consists of 
two stages. In the first, the map unfolds until a global 
ordering of the neurons is reached. Every neuron tunes to a 
pattern or class of patterns, and neighbor neurons tune to 
similar inputs. In the second stage, the statistical distribution 
of the synaptic weights approaches that of the input variables. 

When the number of clusters desired is different from the 
number of nodes on the SOM output map, additional steps 
are required to analyze and group the points on the output 
map into the desired number of clusters. Currently, this 
process is done manually and is usually assessed by visual 
inspection. Sometimes it is hard to visually group the output 
from SOM especially when the map is highly populated. 
Hence, a more scienti6c approach that can help the user to 
group the output from SOM network based on certain 
objective criterion is needed. On the other hand, assessing the 
performance of the map is not always a straightforward task 
and usually takes into account one’s ability to visually 
evaluate it’s performance. To overcome this limitation, we 
have employed a variogram analysis to introduce a more 
scientific approach to SOM map distribution evaluation.  

The variogram is a quantitative descriptive statistic that 
can be graphically represented in a manner which 
characterizes the spatial continuity (i.e. roughness) of a data 
set. It is not surprising that the common descriptive statistics 
and the histograms fail to identify, let alone quantify, the 
textural difference between two data sets. Common 
descriptive statistics and histograms do not incorporate the 
spatial locations of data into their defining computations. 
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Figure 4 – Contour map of tool wear state classification 

after 400 epochs trainings with full feature vector 
 
 
Figure 4 presents the classification results performed using 

the self-organizing map upon training with the 33 feature 
vectors and results presented in a 10 x 10 output grid. From 
the contour maps it can be seen that several distinct areas 
were created, the shaded areas correspond to the area 
allocated for the stage of tool wear. This network shows good 
performance although the interpretation of results is rather 
difficult, that is it does not provide a direct measure of wear. 
Visual inspection of the contour map shows the darker areas 
of the map represent clustering of worn data sets and it is 
shown that classification of the different tool wear states 
represented by a star(*) are placed in contiguous areas and 
therefore it is shown that clustering occurs. A further analysis 
of the map leads us to conclude that the roughness of the map, 
presented by the sharpness of the contour lines, might be due 
to randomness introduced by information predominantly 
related to the cutting noise. Since the self-organizing 
algorithm performs classification without any previous 
knowledge of what is being classified it is probable that 
interference might be caused by weak features that are mainly 
machine related.  

This study is targeted to the evaluation of feature strength 
and will be conducted based on the analysis of the weight 
connection resultant from the use of the full feature vector 
presented earlier. Given that the winner, or most 
representative, neuron is achieved through the sum of 
weighted contributions of each of the features we intend to 
show, by analyzing each set of weights associated with each 
feature, that feature selection can be performed in a 
systematic fashion. 
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Feed Force – Feature Map (a) 
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Feed Force – Feature Map Variogram (b) 
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Sound Kurtosis – Feature Map (c) 
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Sound Kurtosis – Feature Map Variogram (d) 
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Vibration Frequency Band 1 – Feature Map (e) 
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Vibration Frequency Band 1 – Feature Map Variogram (f) 

 
Figure 5 – Contour maps of feature strength for different 
features and the corresponding feature map variogram 

 
Figure 5 presents the mapping of individual weights 

contribution considering isolated features. Since the 
self-organizing map performs a sort of vector quantization 
the weight value indicates the amount of contribution 
individual features have in the final value and therefore being 
constant or small little influence have on the final results. 
Having this in consideration we have used a variogram 
analysis to, in a more scientific approach, evaluate each 
feature weight related contribution towards the final 
classification. Figure 5 shows the plot for some of feature 
related weights and the corresponding variogram analysis 
and corresponding linear fit. The slope of this linear fit gives 
us an indication of variation of weights throughout the map 
and therefore the indication of fitness or adequacy. It is 
shown that the variation in weights for kurtosis, Figure 5(d), 
has a smaller slope than the other two presented in Figure 5 
and is related to the fact that little change occurs in the 
weights, which in result represents that similar contributions 
of this feature are give to the full map. The data sets are 
significantly different in ways that are not captured by the 
common descriptive statistics and histograms. 

Table 1 presents the resulting linear fit slope for all the 
features that resulted from the variogram analysis. It can be 
seen that some of the features present a higher slope value 
which correspond to the stronger features. As expected the 
stronger features are related to the frequency change at the 
given frequency bands and also at naked eye show a strong 
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correlation with the tool ear evolution. 
 

Table 1 - Linear fit slope for all features 
Feature Linear Fit’s Slope 
Feed Force 0.00304 
Tangential Force 0.00308 
Sound Average 0.00281* 
Sound Standard Deviation 0.00172* 
Skewness Sound 0.00353 
Sound Kurtosis 0.00348 
Sound Frequency Band 1 0.00304 
Sound Frequency Band 2 0.00322 
Vibration Average 0.00264* 
Vibration Standard Deviation 0.00179* 
Vibration Skewness 0.00395 
Vibration Kurtosis 0.00407 
Vibration Frequency Band 1 0.00615 
Vibration Frequency Band 2 0.00651 
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Figure 6 – Contour map of tool wear state classification 
after 400 epochs trainings with reduced feature vector 

 
In Figure 6 we present the results of the self-organizing 

map training using a reduced feature vector. The selection of 
features was performed taking into account the previous 
analysis and consisted in eliminating the features with the 
smaller variogram slope value, identified in Table 1 with a 
star (*). This map shows a smother displacement of 
classification feature vectors acknowledging the fact that 
some of the features are weak contributions to tool wear 
classification. The output map shows that clustering is 
performed in a smother fashion and self-organization takes 
place. 

 

V. CONCLUSION 
This paper described the implementation of a prototype 

decision support system for tool wear monitoring feature 
selection based on the self-organizing map. It was shown that 
the modeling technique proposed is highly effective for the 
classification of wear levels of tool inserts using apparently 
weak features.  

The results obtained from the statistical and frequency 
parameters, as well as forces, are somewhat difficult to 

interpret considering them one at a time as some appear to 
correlate, whilst others appear to hold no correlation with 
tool wear. This can be overcome by taking into account the 
neural networks’ ability to extract information from 
apparently scattered information. The use of a Self 
Organizing Map (SOM) structure has shown that 
classification was performed quite efficiently although the 
interpretation of results was not that easy, due to the 
complexity of the output structure.  

The results show that the self-organizing map neural 
network is a powerful tool for feature selection and validation 
as it performs vector quantization and hence feature 
contribution towards final classification can be analyzed in a 
straightforward manner. Tests presented show a case study 
where this has been applied with success.  

This work has illustrated the potential of Neural Networks 
when applied to tool wear monitoring. Further, it has 
enhanced the potential of neural networks, and in particular 
the self-organizing map, to perform tasks other than 
classification providing a insight view of feature value and 
potential towards data modeling. 
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