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Abstract—Weighted voting games are ubiquitous
mathematical models which are used in economics,
political science, neuroscience, threshold logic, relia-
bility theory and distributed systems. They model
situations where agents with variable voting weight
vote in favour of or against a decision. A coalition
of agents is winning if and only if the sum of weights
of the coalition exceeds or equals a specified quota.
The Banzhaf index is a measure of voting power of
an agent in a weighted voting game. It depends on
the number of coalitions in which the agent is the dif-
ference in the coalition winning or losing. It is well
known that computing Banzhaf indices in a weighted
voting game is #P-complete. We give a comprehen-
sive characterization of weighted voting games which
can be solved in polynomial time. Among other re-
sults, we provide a polynomial (O(k(n

k
)k)) algorithm

to compute the Banzhaf indices in weighted vot-
ing games in which the number of weight values is
bounded by k.

Keywords: algorithms and complexity, Banzhaf in-

dices, voting power, weighted voting games.

1 Introduction

1.1 Motivation and Background

Weighted voting games (WVGs) are mathematical mod-
els which are used to analyze voting bodies in which the
voters have different number of votes. In WVGs, each
voter is assigned a non-negative weight and makes a vote
in favour of or against a decision. The decision is made
if and only if the total weight of those voting in favour of
the decision is greater than or equal to some fixed quota.
Since the weights of the players do not always exactly
reflect how critical a player is in decision making, vot-
ing power attempts to measure the ability of a player in
a WVG to determine the outcome of the vote. WVGs
are also encountered in threshold logic, reliability the-
ory, neuroscience and logical computing devices ([1], [2]).
Parhami [3] points out that voting has a long history
in reliability systems dating back to von Neumann [4].
For reliability systems, the weights of a WVG can repre-
sent the significance of the components whereas the quota
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can represent the threshold for the overall system to fail.
WVGs have been applied in various political and eco-
nomic organizations ([5]). Voting power is also used in
joint stock companies where each shareholder gets votes
in proportion to the ownership of a stock [6].

The Banzhaf index is considered the most suitable power
index by voting power theorists ([7] and [8]). The com-
putational complexity of computing Banzhaf indices in
WVGs is well studied. Prasad and Kelly [9] show that
the problem of computing the Banzhaf values of play-
ers is #P-complete. It is even NP-hard to identify a
player with zero voting power or two players with same
Banzhaf indices [10]. Klinz and Woeginger [11] devised
the fastest exact algorithm to compute Banzhaf indices
in a WVG. In the algorithm, they applied a partition-
ing approach that dates back to Horowitz and Sahni
[12]. However the complexity of the algorithm is still
O(n22

n
2 ). In this paper, we restrict our analysis to exact

computation of Banzhaf indices instead of examining ap-
proximate solutions. We show that although computing
Banzhaf indices of WVGs is a hard problem in general,
it is easy for various classes of WVGs, e.g., for WVGs
with a bounded number of weight values, an important
sub-class of WVGs.

1.2 Outline

Section 2 provides the preliminary definitions of terms
used in the paper. Section 3 characterizes WVGs in which
Banzhaf indices can be computed in constant time. In
Section 4, we examine WVGs with a bounded number
of weight values, and provide algorithms to compute the
Banzhaf indices. Section 6 examines WVGs with spe-
cial weight distributions. We conclude with some open
problems in the final section.

2 Preliminaries

2.1 Voting Games

We give definitions of key terms. The set of voters is
N = {1, ..., n}.
Definitions 2.1. A simple voting game is a pair (N, v)
with v : 2N → {0, 1} where v(∅) = 0, v(N) = 1 and
v(S) ≤ v(T ) whenever S ⊆ T . A coalition S ⊆ N is
winning if v(S) = 1 and losing if v(S) = 0. A simple
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voting game can alternatively be defined as (N,W ) where
W is the set of winning coalitions.

Definition 2.2. The simple voting game (N, v) where
W = {X ⊆ N,

∑
x∈X wx ≥ q} is called a weighted

voting game. A weighted voting game is denoted by
[q;w1, w2, ..., wn] where wi is the voting weight of player
i. Usually, wi ≥ wj if i < j.

Generally, 1
2

∑
1≤i≤n wi ≤ q ≤ ∑

1≤i≤n wi so that there
can be no two disjoint winning coalitions. Such weighted
voting games are termed proper.

2.2 Voting Power Indices

Definitions 2.3. A player i is critical in a coalition S
when S ∈W and (S \ i) /∈W . For each i ∈ N , we denote
the number of coalitions in which i is critical in game v by
ηi(v). The Banzhaf index of player i in weighted voting
game v is βi = ηi(v)∑

i∈N ηi(v) . The probabilistic Banzhaf

index, β
′
i of player i in game v is ηi(v)/2n−1. Coleman’s

power of the collectivity to act, A, is defined as the ratio
of the number of winning coalitions w to 2n: A = w/2n.

The problem of computing the Banzhaf indices of a WVG
can be defined formally as following:

Name: BI-WVG
Instance: WVG, v = [q;w1, ..., wn]
Question: What are the Banzhaf indices of the players?

2.3 Complexity

Definitions 2.4. A problem is in complexity class P if it
can be solved in time which is polynomial in the size of the
input. A problem is in complexity class NP if its solution
can be verified in time which is polynomial in the size
of the input of the problem. A problem is in complexity
class NP-hard if any problem in NP is polynomial time
reducible to that problem. NP-hard problems are as hard
as the hardest problems in NP. Informally, #P is the
complexity class which consists of the counting problems
associated with the decision problems in the set NP. A
problem is #P-complete if it is as hard as the hardest
problems in #P.

Any problem P can be defined in its corresponding
parametrized form where the parametrized problem is the
original problem P along with some parameter k.

Definition 2.5. A parametrized problem P with an in-
put instance n and parameter k is called fixed-parameter
tractable if there is an algorithm which can solve P in
O(f(k)nc) where c is an integer and f is a computable
function depending solely on k. The class of all fixed-
parameter tractable problems is called FPT.

3 Constant time

3.1 Equal Weights

If the WVG v is [q;u, u, . . . , u︸ ︷︷ ︸
n

], then the Banzhaf indices

β1, ... , βn are equal to 1/n. The Banzhaf indices can be
found in constant time, and the following theorem gives
the actual number of swings for each player.

Theorem 3.1. In a WVG with n equal weights, u, each
player is critical in

(
n−1

�q/u�−1

)
coalitions. Moreover, the

total number of winning coalitions, w is
∑n

i=�q/u�
(
n
i

)
.

Proof. The minimum number of players needed to form
a winning coalition is �q/u	. A player is critical in a
coalition if there are exactly �q/u	 − 1 other players in
the coalition. There are

(
n−1

�q/u�−1

)
such coalitions. There

are
(
n
i

)
coalitions of size i and such a coalition is winning

if i ≥ �q/u	.

The probabilistic Banzhaf index of each player is then(
n−1

�q/u�−1

)
/2n−1. We can also compute Coleman’s power

of the collectivity to act, A, which is equal to w
2n

3.2 Dictator

A dictator is a player who is present in every winning
coalition and absent from every losing coalition. This
means that the player 1 with the biggest weight is a dic-
tator if and only if w1 ≥ q and

∑
2≤i≤n wi < q. In that

case, β1 = 1 and βi = 0 for all i > 1.

3.3 Very small quota

If 0 < q ≤ wn then the only minimal winning coalitions
are all the singleton coalitions. So there are n minimal
winning coalitions and every player is critical in one coali-
tion. Thus, for all i, βi = 1/n and the Banzhaf indices
can be found in constant time (i.e., O(1)). Moreover,
β
′
i = 1/2n−1 for all i, and A = 2n−1

2n

3.4 Very big quota

If q ≥ ∑
1≤i≤n wi − wn, then the only minimal win-

ning coalition is {1, 2, . . . , n} and it becomes losing if any
player gets out of the coalition. Thus the weighted vot-
ing game acts like the unanimity game. Then for all i,
βi = 1/n. The Banzhaf indices can be found in constant
time (i.e., O(1)). Moreover, for all i, β

′
i = 1/2n−1 and

A = 1/2n.

4 Bounded number of weight values

In this section we estimate the time complexity of several
algorithms. Here, we will suppose that arithmetic op-
erations on O(n)-digit numbers can be done in constant
time.
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4.1 All weights except one are equal

Theorem 4.1. Let v be a WVG, [q;wa, wb, ..., wb], where
there is wa and m weights of value wb, where wb < q.
Let x be � q−wa

wb
	 and y = �q/wb	. Then the total number

of coalitions in which a player with weight wb is criti-
cal is

(
m−1
y−1

)
+

(
m−1

x

)
. Moreover, the number of coali-

tions in which the player with weight wa is critical is∑Min(y−1,m)
i=x

(
m
i

)
.

Proof. A player with weight wb is critical in 2 cases:

1. It makes a winning coalition with other players with
weight wb only. Let y be the minimum number of
players with weight wb which form a winning coali-
tion by themselves. Thus y = �q/wb	. The number
of such coalitions in which a player with weight wb

can be critical is
(
m−1
y−1

)
.

2. It makes a winning coalition with the player with
weight wa and none or some players with weight wb.
Let x be the minimum number of players with weight
wb which can form a winning coalition with the inclu-
sion of the player with weight wa. Thus x = � q−wa

wb
	

Then, the number of such coalitions in which a player
with weight wb can be critical is

(
m−1

x

)
.

The total number of swings for a player with weight wb

is thus
(
m−1
y−1

)
+

(
m−1

x

)
.

The player with weight wa is critical if it forms a winning
a coalition with some players with weight wb but the
coalition becomes losing with its exclusion. The player
with weight wa can prove critical in coalition with vary-
ing number of players with weight wb. The maximum
number of players with weight wb with which it forms
a winning coalition and is also critical is y − 1 in case
y ≤ m and m in case y > m. Therefore the total number
of coalitions in which the player with weight wa is critical
is

∑Min(y−1,m)
i=x

(
m
i

)
.

4.2 Only two different weight values

Theorem 4.2. For a WVG with n players and only two
weight values, the Banzhaf indices and numbers of swings
can be computed in O(n2) time.

Proof. We look at a WVG, v = [q;wa, ...wa, wb, ...wb],
where there are na players with weight wa and nb play-
ers with weight wb. We analyse the situation when a
player with weight wa proves to be critical in a coali-
tion which has i other players with weight wb and the
rest with weight wa. Then the minimum number of play-
ers with weight wb required is � q−(i+1)wa

wb
	. Moreover

the maximum number of players with wb is � q−iwa

wb
	 − 1.

Therefore j, the number of players with weight wb, sat-
isfies the following inequality: x1(i) = � q−(i+1)wa

wb
	 ≤

j ≤ Min(� q−iwa

wb
	 − 1, nb) = x2(i). Let Ai =

(
na−1

i

)
,

and let Bi =
∑x2(i)

j=x1(i)

(
nb

j

)
. We define, the maximum

possible number of extra players with weight a, to be
maxa = Min(�q/wa	 − 1, na − 1). Then the total num-
ber of swings of the player with weight wa is

∑maxa
i=0 AiBi.

The total number of swings for a player with weight wb

can be computed by a symmetric method.

We can devise an algorithm(Algorithm 2) from the
method outlined in the proof.

Algorithm 1 SwingsFor2ValueWVG
Input: v = [q; (na, wa), (nb, wb)].
Output: Total swings of a player with weight wa.
1: swingsa ← 0
2: maxa ← Min(�q/wa	 − 1, na − 1)
3: for i = 0 to maxa do
4: x1(i) ← � q−(i+1)wa

wb
	

5: x2(i) ← Min(� q−i(wa)
wb

	 − 1, nb)
6: Ai ←

(
na−1

i

)
7: if x1(i) > nb then
8: Bi ← 0
9: else if x2(i) < 0 then

10: Bi ← 0
11: else
12: Bi ← 0
13: for j = x1(i) to x2(i) do
14: Bi ← Bi +

(
nb

j

)
15: end for
16: end if
17: swingsa = swingsa + AiBi

18: end for
19: return swingsa

Algorithm 2 BIsFor2ValueWVG
Input: v = [q; (na, wa), (nb, wb)].
Output: Banzhaf indices, β = (βa, βb).
1: swingsa = SwingsFor2ValueWVG(v)
2: v′ = [q; (nb, wb), (na, wa)]
3: swingsb = SwingsFor2ValueWVG(v′)
4: totalswings = naswingsa + nbswingsb

5: βa = swingsa

totalswings

6: βb = swingsb

totalswings

7: return (βa, βb)

4.3 k weight values

Theorem 4.3. The problem of computing Banzhaf in-
dices of a WVG with k possible values of the weights is
solvable in O(nk).

Proof. We can represent a WVG v with k weight classes
as following: [q; (n1, w1), (n2, w1), ..., (nk, wk)] where ni
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is the number of players with weights wi for i = 1, . . . k.
Here, we extend the Algorithm 2 to Algorithm 4 for two
weight classes to k weight classes.

We can write v′ as [q; (1, w0), (n1 − 1, w1), ..., (nk, wk)]
where w0 = w1. This makes it simpler to use a re-
cursive function to compute the number of swings of
player with weight w0. Let Ai1,i2,...,im be the number
of swings for w0 where there are ij players with weight
wj in the coalition for 1 ≤ j ≤ m. We write Aε where

Ai1,i2,...,im−1 =
{ ∑Um

Lm
Ai1,i2,...,im

if m− 1 < k,
fm if m− 1 = k,

where

Lm = lm(i1, . . . im−1)

=

⌈
q − w0 −

∑m−1
j=1 ijwj

wm

⌉
,

Um = um(i1, . . . im−1)

= Min(

⌈
q −∑m−1

j=1 ijwj

wm

⌉
− 1, nm)

and

fm =

⎧⎨
⎩

0 if Lm > nm,
0 if Um < 0,(
nm

im

)
otherwise.

Algorithm 3 SwingsFor-k-ValueWVG
Input: v = [q; (n1, w1), (n1, w1), . . . , (nk, wk)].
Output: Total number of swings, swings0, of a player
with weight w1.
1: w0 = w1

2: v′ = [q; (1, w0), (n− 1, w1), ..., (nk, wk)]
3: L1 = 0
4: U1 = Min(�q/w1	 − 1, n1)
5: swings0 = Aε

6: return swings0

Algorithm 4 BIsFor-k-ValueWVG
Input: v = [q; (n1, w1), (n1, w1), . . . , (nk, wk)].
Output: Banzhaf indices, β = (β1, . . . βk).
1: swings1 = SwingsForWVG(v)
2: totalswings ← 0
3: for i = 2 to k do
4: v = Swap(v, (n1, w1)(ni, wi))
5: swingsi = SwingsForWVG(v)
6: totalswings ← totalswings + niswingsi

7: end for
8: for i = 1 to k do
9: βi = swingsi

totalswings
10: end for
11: return (β1, . . . βk)

We note that the exact computational complexity of BI-
WVG for a WVG with k weight values is O(k(n

k )k). None
of the algorithms presented for WVGs with bounded
weight values extends naturally for multiple weighted vot-
ing games.

5 Distribution of weights

5.1 Geometric sequence of weights, and un-
balanced weights

Definition 5.1. An r-geometric WVG [q;w1, ..., wn] is
a WVG where wi ≥ rwi+1 for i = 1, ..., n− 1.

We observe that in a 2-geometric WVG (such as
[q; 2n, 2n−1, ..., ]), for any target sum of a coalition, we
can use a greedy approach, trying to put bigger weights
first, to come as close to the target as possible. This
greedy approach was first identified by [13] for a broader
category of weighted voting games in which weights are
unbalanced :

Definition 5.2. An unbalanced WVG is a WVG such
that, for 1 ≤ j ≤ n, wj > wj+1 + wj+2... + wn.

Example 5.3. The game [22; 18, 9, 4, 2, 1] is an example
of an unbalanced WVG where each weight is greater than
the sum of the subsequent weights.

Chakravarty, Goel and Sastry [13] showed that the greedy
approach for unbalanced WVG with integer weights can
help to compute all Banzhaf indices in O(n). We notice
that the same algorithm can be used for an unbalanced
WVG with real weights without any modification. In
fact it is this property of ‘geometric weights’ being un-
balanced which is the reason that we can find suitable
coalitions for target sums so efficiently. We characterise
those geometric sequences which give unbalanced WVGs:

Theorem 5.4. If r ≥ 2 then every r-geometric WVG is
unbalanced.

Proof. Let v be an r-geometric WVG. We prove by in-
duction that wj > wj+1+ . . .+wn. This is true for j = n.
Suppose it is true for all i, j + 1 ≤ i ≤ n. Since v is r-
geometric, wj ≥ 2wj+1. But, 2wj+1 = wj+1 + wj+1 >
wj+1 + wj+2 + . . . + wn. Therefore v is unbalanced.

Corollary 5.5. For an r-geometric WVG v where r ≥ 2,
the Banzhaf indices of players in v can be computed in
O(n) time.

Proof. Since the condition of r ≥ 2 makes v an unbal-
anced WVG, then we can use the greedy algorithm from
[13] which computes the Banzhaf indices in O(n).

Definition 5.6. A WVG is k-unbalanced if, for 1 ≤
j ≤ n, wj > wj+k + · · ·+ wn. So an unbalanced WVG is
‘1-unbalanced’.
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Note that an r-geometric WVG is 2-unbalanced when
r ≥ 1+

√
5

2 ≈ 1.61803... = ϕ, the golden ratio, since then

1
r2

+
1
r3

+· · · < 1
r(r − 1)

≤ 1 since r(r−1) ≥ ϕ(ϕ−1) = 1.

We check whether 2-unbalanced WVGs have properties
similar to those of unbalanced WVGs.

Example 5.7. Consider a WVG v with 2m players and
weights 1, 1, 3, 3, . . . , 3j , 3j , . . . , 3m−1, 3m−1. It is easy to
see that

∑j−1
i=0 2 · 3i < 3j, so the game is 2-unbalanced.

In the unbalanced game, for each target coalition sum,
there is either one corresponding coalition or none. This
does not hold for 2-unbalanced WVGs. In Example 5.7
with target total 1 + 3 + · · · + 3m−1 = 1

2 (3m − 1), there
are exactly 2m coalitions which give this target, namely
those coalitions with exactly one player out of each equal
pair.

We prove that even for the class of 2-unbalanced (instead
of simply unbalanced) WVGs the problem of computing
Banzhaf indices becomes NP-hard.

Theorem 5.8. BI-WVG is NP-hard for the class of 2-
unbalanced WVGs .

Proof. We will use a reduction from the following NP-
hard problem:
Subset Sum:
Instance: z1, . . . , zm, T ∈ N.
Question: Are there xjs in {0, 1} so that

∑m
j=1 xjzj = T?

For the reduction from Subset Sum, we scale and modify
the weights from the WVG v of Example 5.7. For any
instance I = {z1, . . . , zm, T}, we will define a game vI

with 2m + 1 players. Let Z = 1 +
∑m

j=1 zj , and we may
assume that T < Z. Whereas v had pairs of weights 3j , 3j

for 0 ≤ j ≤ m − 1, in vI there is one “unit player” with
weight 1 and 2m pairs of players with weights 3jZ, 3jZ +
zj for 0 ≤ j ≤ m− 1. The quota for vI is 1

2 (3m − 1)Z +
T + 1. The unit player has nonzero Banzhaf index if and
only if there exists a coalition among the other 2m players
with weight exactly 1

2 (3m − 1)Z + T . We will show that
to determine this is equivalent to answering the Subset
Sum instance I, and so even this special case of BI-WVG
is NP-hard.

In Example 5.7, it was necessary (and sufficient) for
achieving the target total of 1

2 (3m − 1) to take exactly
one player from each pair. In game vI , since

∑m
1 zm < Z,

this is still a necessary condition for achieving the total
of 1

2 (3m − 1)Z + T , and whether or not there is such a
selection achieving the total is exactly the condition of
whether there is a subset of the zjs which sums to T .

5.2 Sequential weights

Definition 5.9. The set of weights {w1, w2, ..., wn} is
sequential if wn|wn−1|wn−2...|w1.

Example 5.10. [32; 20, 10, 10, 5, 1, 1, 1] is an example of
a WVG with sequential weights.

Chakravarty, Goel and Sastry [13] show that Banzhaf in-
dices can be computed in O(n2) time if the weights are
sequential and they satisfy an additional dominance con-
dition:

Definition 5.11. Let d1 > d2 > · · · > dr be the distinct
values of weights w1, . . . , wn of a sequential set. Then
dk = mkdk+1 where mk > 1, ∀k, 1 ≤ k ≤ r. Let
Nk = {i | wi = dk} and nk = |Nk|. Then the domi-
nance condition holds if mk > nk+1 ∀k, 1 ≤ k < r.

We provide an alternative dominance condition for
weights which are not necessarily sequential.

Definition 5.12. Let d1 > d2 > · · · > dr be the dis-
tinct values of weights w1, . . . , wn of a sequential set. Let
Nk = {i|wi = dk} and nk = |Nk|. Then the alterna-
tive dominance condition holds if ∀j ∈ Nk, 1 ≤ k < r,
wj >

∑{wp | p ∈ Ni, i > k}.
Proposition 5.13. Suppose a WVG v satisfies the alter-
native dominance condition. Then for v, BI-WVG has
time complexity O(n2).

Proof. This follows from Theorem 10 in [13] where the
proof is for a sequential WVG which obeys the dominance
condition. However we notice that since the argument in
the proof can be made for any WVG which satisfies the
alternative dominance condition, the proposition holds
for v.

6 Integer weights

6.1 Moderate sized integer weights

Matsui and Matsui [10] prove that a dynamic program-
ming approach provides a psuedo-polynomial algorithm
to compute Banzhaf indices of all players with time com-
plexity O(n2q). Since q is less than

∑
i∈N wi, the Banzhaf

indices can be computed in polynomial time if the weight
sizes are moderate.

6.2 Polynomial number of coefficients in the
generating function of the WVG

Bilbao et al. [14] observe, for a WVG v = [q;w1, . . . , wn],
that if the number of coalitions in which a player is crit-
ical is bi = |{S ⊂ N : v(S) = 0, v(S ∪ {i}) = 1}|
=

∑q−1
k=q−wi

bi
k, where bi

k is the number of coalitions which
do not include i and with total weight k, then the gener-
ating functions of the numbers {bi

k} are given by Bi(x) =
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∏n
j=1,j �=i(1+xwj ) = 1+ bi

1x+ bi
2x

2 + · · ·+ bi
W−wi

xW−wi .
This was first pointed out by Brams and Affuso [15].

Bilbao et al. [14] prove that the computational complex-
ity of computing Banzhaf indices by generating functions
is O(n2C) where C is the number of non-zero coefficients
in

∏
1≤i≤n(1 + xwj ). We note that C can be bounded by

the sum of the weights but the bound is not tight. C can
be relatively small even if the weight values are exponen-
tial in n. Therefore if a WV G has a generating function
in which the number of non-zero terms is polynomial in
n, then the computational complexity of computing the
Banzhaf indices is in P .

7 Open problems & conclusion

In this paper we have characterized WVGs for which
Banzhaf indices can be computed in polynomial time. It
would be interesting to identify further important classes
of WVGs which do not have exponential time complex-
ity. The extensive literature on the subset-sum prob-
lem should offer guidance here. It appears an interesting
question to analyse the expected number of terms in the
generating function for sequential WVGs. Another chal-
lenging open problem is to devise an algorithm to com-
pute exactly the Banzhaf indices of a general WVG in
time complexity which is less than O(n22

n
2 ).
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