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Numerical Simulation of a Pulsatory Flow
Moving Through Flexible Walls Using
Smoothed Particle Hydrodynamics

Mehrdad H. Farahani, Nima Amanifard, Gholamhosein Pouryoussefi

Abstract— This contribution develops a new numerical
method to analyze fluid-structure interaction (FSI), based on
smoothed particle hydrodynamics (SPH). In this way, fluid and
elastic structure continua are coupled using a monolithic but
explicit numerical scheme. The proposed method is similar to
so-called SPH projection method and consists of two steps. The
first step plays the role of prediction, whereas in the second step
incompressibility constraint is satisfied. Problem of imposing
no-slip boundary condition on deformable walls is investigated.
The proposed method is employed to simulate a pulsatory flow
moving through flexible walls which mimics unsteady blood
flow in arteries.

Index Terms— Smoothed particle hydrodynamics (SPH),
Fluid-structure interaction (FSI), Meshfree method,
Lagrangian method, no-slip boundary condition

I. INTRODUCTION

Numerical analysis can significantly reduce time and cost by
replacing many expensive and elaborate experiments with virtual
simulations. In the bioengineering area, dealing with the living
organism in vivo not only is associated with many technical
difficulties, but also provokes ethical and moral problems. From the
other point of view, large parts of human body consist of fluids,
which are interacting with flexible organism. Study of body fluids in
human is called Hemodynamics. However, in the numerical fields
these problems, in which fluid and structures interact with each
other, are called fluid-structure interaction (FSI).

All other past-proposed methods for the numerical simulation of FST
are based on discretization of computational domain using mesh.
Mesh generation is a delicate technique, which is highly important
when dealing with complex geometries. Generally, there are two
classes of mesh-based methods namely fixed-grid methods and
deforming-grid methods [1]. Deforming-grid methods usually need
remeshing, particularly when large deformation is of great interest,
however remeshing strategy can be a difficult and time consuming
task [1,2]. On the other hand, fixed-grid methods usually require an
interpolation to the immersed boundary, which result in inaccurate
computations in vicinity of these boundaries [2].

Smoothed particle hydrodynamics (SPH) is a meshfree and
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Lagrangian method by which problems associated with mesh can be
treated. Ability of SPH to simulate each of fluid dynamic problems
as well as elastic plastic deformation of solids has been
demonstrated. Recently some researches have been devoted to
utilize SPH to simulate FSI problems [3,4]. Hence, by using SPH,
we can couple fluid and structure using a monolithic approach.
Antoci et al. [3] were the first who used standard SPH to simulate
FSI problems. On the other hand, Hosseini et al. [4] developed a
three-step SPH-projection method, which had already been
proposed by Hosseini et al. [5], to simulate FSI problems. Their
proposed method included a new SPH algorithm for simulation of
elastic deformations of solids. A comparison with experiments
illustrates that the results which were reported by Hosseini et al. [4],
in deformation simulation of an elastic gate subjected to water
pressure, were more accurate than the results which were reported
by Antoci et al. [3].

Indeed, neither Hosseini et al. [4] nor Antoci et al. [3] considered
the no-slip boundary conditions in their simulations. In the current
work, the problem of imposing the no-slip boundary condition on
moving walls is studied. In this way, the three-step algorithm of
Hosseini et al. [4,5] is modified according to the viscosity term
which was proposed by Moriss et al. [6]. The modified algorithm is
used to simulate an internal pulsatory flow moving through flexible
walls, which mimics blood flows in arteries.

II. GOVERNING EQUATIONS

A. Fluid domain

The fluid is assumed to be isothermal and incompressible
and the governing equations within the fluid domain in
absence of body forces, are given by
Dp ou’

—=—p— (1)
Dt ox-

Du' 1977 1 0P
Dt pox’ pox’
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where 0 , 1, u’, p, and T Y denotes the density, time,
velocity, pressure, and shear stress tensor respectively.

Moreover, X is the jth component of position vector.

B. Solid domain

The momentum equation for an elastic body in absence of
body forces is

Du' 1 oo’ 3
Dt p ox/’
where " is the stress tensor which can be written as
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o' =-P&" + 857, )
where SY is the deviatoric stress tensor. The deviatoric

stress can be presented by assuming linear elastic theory and
considering Hook’s law as [7]

DSY
Dt

= 2({&5’7 —%5%”} S“o" +"S".  5)

where G is the shear modulus. The strain rate tensor £”,

and rotation tensor @" are defined as

g1 ou'  Ju’
EY=— — + — |, (6)
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Substituting (4) into (3) yields
Du' 1987 1 0P
(8)
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III. METHODOLOGY

The foundation of SPH is based on interpolation theory.
According to the aforementioned theory, any field variable
A can be defined over a domain of interest in terms of its
values at a set of discrete disordered points (so-called SPH
particles) by suitable definition of an interpolation kernel.
These particles carry the material properties such as density,
velocity, pressure, stress etc. The exact integral
representation of A is

Alr)= jA(r') Sr—r")dr’, )
Q

where 5(1‘—1") is the Dirac delta function and € is the
computational domain. Equation (9) can be represented by
integral interpolation of the quantity A as

Alr)= IA(r') W(r—r",h) ar’, (10)
Q

where & is smoothing length proper to kernel function W
which represents the effective width of the kernel. The
kernel has the following properties [8]

IW(r —1’,h) dr’ =1
v ) (11)
lhirrolW(r —r’,h)=0(r-1")

There are many possible choices of kernel function. A
quintic kernel is used in the following simulation [6]

(B—s5) —62—s5)’ +151-5)°, 0<s<l;
Wirh)=—"— 1 3-9° ~62-9)" 1<5<2(12)
AT8T | 3_gy, 2<5<3
0, 8§23,
where § = H The dominant error term in the integral
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interpolant is O(h2 )

If A(l") is known only at a discrete set of N point
I,,I,,....,I, then the interpolation of quantity A can be
approximated by a summation interpolant as follows [8]

N mb ’
Ah(r)z szl_Ab W(r—r’,h),
Py
where the summation index b denotes a particle label and

13)

particle b carries a mass 11, at the position I, . The value of

A at b — th particle is shown by A, .
Derivative of A with respect to X is given by [9]

A 1 P, oW,
A L Pea A ) D
(axja <I>a;m” p,,( v A ox

where @ is any differentiable function.

(14)

IV. SOLUTION ALGORITHM

In this section, the fully explicit three-step algorithm of
Hosseini et al. [4] will be modified to consider no-slip
boundary condition on moving walls. The first two steps of
the aforementioned algorithm play the rule of prediction part
of pressure projection methods (e.g. see [10]) and the third
one is a correction. Since in the first step only body forces
should be taken into account, in absence of body forces, it can
be neglected. Hence, the algorithm is reduced to two
following consecutive steps.

A. First step (Prediction)

Solid: In this step for solids, divergence of deviatoric stress
tensor is calculated. In this way first, the deviatoric stress
tensor is calculated according to constitutive equation (5),

then the divergence of deviatoric stress tensor T is given
by

[ 10S8Y sy S/
Tl:(_ ] =D my| —5 |-V W(r,,,h).(15)
J 2 2 a a
pox’) 5 P,

b

where r,, =T, —I,and

VWi, )= 1 (7).
r

(16)

dr

ab | ab

Fluid: In this step for fluids, divergence of shear stress
tensor should be calculated. Hosseini et al. [4], [5] calculated
the shear stress tensor using the second principal invariant of
the shear strain rate tensor, nevertheless, it can be simply
investigated that the resulted velocity profile for the
Poiseuille problem is inaccurate near the boundaries.
Morris et al. [6] suggested another form of the viscous term

- (10987 + 1)’ ,
Tl = (_ J J = Zmb[ (ﬂ“ ILZlb) ab2 j 'xcllb ’ Vawab (17)
pax’ ) 5\ pp,lck +1?)
Although the above form does not satisfy angular

momentum [11], provides accurate results near the
boundaries.

The vector T" is used to calculate a temporary velocity
filed which is employed to move fluid or structure particle
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to a new temporary position.

i'=u_, +T' At, (18)

(19)

i

~i _ ~
X' =xl,, + U AL

B. Second step (Correction)

There was no constraint to impose incompressibility effect
in the previous step, thus particle movements have changed
density of the particles. Density variations can be calculated
using the continuity equation. Choosing ® =1, A =u",
and using the provisional velocity field of the previous step,
(14) gives

@j N (i
(dt a pazb:pb(ua

This equation ensure that when two particles approach
each other, their relative velocity and the gradient of kernel

—u )V W, -r,,h). (0

function have the same signs, consequently Dﬁa / Dt will
be positive and 0 . will increase and vice versa. The velocity

field 1", which is needed to restore the density of particles to
their original value, is now calculated. In this way, the
pressure gradient term of momentum equation is combined
with the continuity equation 1)

1L PP, i’ 0. an

P At ax

0= —[%VP]AL (22)
D

result is a Poisson equation by which a trade off between
density and pressure is produced [12]

\p poAt

According to (23), pressure of each particle can be
calculated as

(23)

P = Po — pa+z 8m, szx;bz.VaWab
IOOAI b (Ioa+pb) |rab| +772
. (29
Z 8m, P;;x;b VW,
7 (PP I+’

The SPH form of (21) provides the velocity field by which
incompressibility is satisfied
+ —)V W,

=—At m
z bp b

Finally, overall velocity of each particle at the end of time
step will be obtamed as

i —
Uppnr = (26)
and final positions of particles are calculated using a central

difference scheme in time

(25)
i+a

i i At i i
X, =X _nt T(Mr + ut—Ar) : (27)

This step is common between both fluid and structure
particles, hence, if fluid particles approach structure particles,
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their pressure will increase and thus move structure particles
into a new position where the coupling is satisfied and vice
versa.

V. BOUNDARY CONDITION

The desired problem involves a liquid interacting with
moving elastic walls. These elastic walls must prevent
penetration of fluid particles into solid boundaries. In
addition, in such internal flow problems the no-slip condition
needs to satisfy. In order to ensure the no-slip condition, the
fluid velocity at boundary should be equal to the solid
velocity at this point.

As mentioned above, second step satisfies the desired anti
penetration condition itself by increasing the pressure when
two particles approaching each other. However, the no-slip
boundary condition demands more attention, since unlike
other past-proposed methods, which were consisted of fixed
or moving rigid boundaries, in FSI problems deformable
boundaries are of interest. For instance, it is possible to
implement the no-slip boundary condition using image
particles [13]. Nevertheless, this method is usually limited to
straight boundaries and simple geometries.

The velocity extrapolation method of Morris et al. [6]
proved practical. According to this method, velocity of each
fluid particle is extrapolated to neighbor wall particles (as an
artificial velocity) across the tangent plane (or tangent line in
2D) of the boundary (Fig. 1). The unit vector of the tangent
plane is
i M 28)

‘xém - xé)—l‘

In order to implement the aforementioned method for FSI
problems, it can be assumed that there are ghost particles
which have similar positions as wall particles. The artificial
extrapolated velocity of each wall particle is attributed to the
relevant ghost particle. Other properties of these ghost
particles are similar to those of fluid particles.

w, =ulb+(d, )d, Nu,—u).

ghost (29)
The no-slip boundary condition satisfies when velocity of
ghost particles as well as boundary particles are contributed

to calculate viscous forces.
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Fig. 1 Boundary condition treatment to simulate no-slip boundary condition

WCE 2008



Proceedings of the World Congress on Engineering 2008 Vol 11
WCE 2008, July 2 - 4, 2008, London, U.K.

111 T |

st L e

LTS

A0

i
P e e ]

e

i e e s e e

e e AR A A e 8 = e e T
———

L

i!HIIJJ!l.i-P-H

it T

o
e

7
..,7555,49‘%/ -
ORI

ST

Fig. 2 Vector plot of velocity field at different stages of the flow pulse

VI. TEST CASE
The numerical test case is a two dimensional FSI
simulation of a pulsatory flow moving through flexible walls.
It is consisted of two flexible walls which are fixed at both
ends with a length 0.09 m , a constant thickness

ho =0.003 m , a radius Ro =0.015m , and shear module
of G=1.5Mpa . An incompressible viscous fluid, with
density p= 1000 kg / m’ and dynamic viscosity

U =0.004 kg / m s ; moving inside the constructed duct

with a pulsatile flow volume rate of period 7 . The time
dependent velocity, which is imposed at upstream, is taken to
be

. 27t
U(t)=A+BsmT, (30)
where A and B are constant parameters which are selected
to be 0.006 and 0.007 respectively. No-slip boundary
condition is imposed on deformable walls. Square particles

are selected with initial particle spacing of Ax ; =0.001m

and Ax, =Ax, /2 for fluids and solids respectively.

Simulation needs several complete flow pulses to become
stable. The vector plot of velocity field as well as its
staggered plot is shown in Fig. 2 and Fig. 3 respectively at
different stages of the pulse.

VII. CONCLUSION

In this paper, a monolithic method for FSI problems
involving no-slip boundary condition and internal fluid flows
is developed using SPH. In order to improve the overall
efficiency of the method, divergence of shear stress tensor for
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fluids is substituted with the expression which was proposed
by Morris et al. [6]. Moreover, the problem of dealing with
moving boundaries to impose no-slip boundary condition is
investigated using ghost particles which carry the
extrapolated velocity.
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Fig. 3 Staggered plot of velocity field at different stages of the flow pulse
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