
 

 

 

  

Abstract— This contribution develops a new numerical 

method to analyze fluid-structure interaction (FSI), based on 

smoothed particle hydrodynamics (SPH). In this way, fluid and 

elastic structure continua are coupled using a monolithic but 

explicit numerical scheme. The proposed method is similar to 

so-called SPH projection method and consists of two steps. The 

first step plays the role of prediction, whereas in the second step 

incompressibility constraint is satisfied. Problem of imposing 

no-slip boundary condition on deformable walls is investigated. 

The proposed method is employed to simulate a pulsatory flow 

moving through flexible walls which mimics unsteady blood 

flow in arteries. 

 
Index Terms— Smoothed particle hydrodynamics (SPH), 

Fluid-structure interaction (FSI), Meshfree method, 

Lagrangian method, no-slip boundary condition  

 

I. INTRODUCTION 

 Numerical analysis can significantly reduce time and cost by 

replacing many expensive and elaborate experiments with virtual 

simulations. In the bioengineering area, dealing with the living 

organism in vivo not only is associated with many technical 

difficulties, but also provokes ethical and moral problems. From the 

other point of view, large parts of human body consist of fluids, 

which are interacting with flexible organism. Study of body fluids in 

human is called Hemodynamics. However, in the numerical fields 

these problems, in which fluid and structures interact with each 

other, are called fluid-structure interaction (FSI).   

All other past-proposed methods for the numerical simulation of FSI 

are based on discretization of computational domain using mesh. 

Mesh generation is a delicate technique, which is highly important 

when dealing with complex geometries. Generally, there are two 

classes of mesh-based methods namely fixed-grid methods and 

deforming-grid methods [1]. Deforming-grid methods usually need 

remeshing, particularly when large deformation is of great interest, 

however remeshing strategy can be a difficult and time consuming 

task [1,2]. On the other hand, fixed-grid methods usually require an 

interpolation to the immersed boundary, which result in inaccurate 

computations in vicinity of these boundaries [2]. 

Smoothed particle hydrodynamics (SPH) is a meshfree and 
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Lagrangian method by which problems associated with mesh can be 

treated. Ability of SPH to simulate each of fluid dynamic problems 

as well as elastic plastic deformation of solids has been 

demonstrated. Recently some researches have been devoted to 

utilize SPH to simulate FSI problems [3,4]. Hence, by using SPH, 

we can couple fluid and structure using a monolithic approach. 

Antoci et al. [3] were the first who used standard SPH to simulate 

FSI problems. On the other hand, Hosseini et al. [4] developed a 

three-step SPH-projection method, which had already been 

proposed by Hosseini et al. [5], to simulate FSI problems. Their 

proposed method included a new SPH algorithm for simulation of 

elastic deformations of solids. A comparison with experiments 

illustrates that the results which were reported by Hosseini et al. [4], 

in deformation simulation of an elastic gate subjected to water 

pressure, were more accurate than the results which were reported 

by Antoci et al. [3].  

Indeed, neither Hosseini et al. [4] nor Antoci et al. [3] considered 

the no-slip boundary conditions in their simulations. In the current 

work, the problem of imposing the no-slip boundary condition on 

moving walls is studied. In this way, the three-step algorithm of 

Hosseini et al. [4,5] is modified according to the viscosity term 

which was proposed by Moriss et al. [6]. The modified algorithm is 

used to simulate an internal pulsatory flow moving through flexible 

walls, which mimics blood flows in arteries. 

 

II. GOVERNING EQUATIONS  

A. Fluid domain 

The fluid is assumed to be isothermal and incompressible 

and the governing equations within the fluid domain in 

absence of body forces, are given by 
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where ρ , t , 
j

u , p, and 
ijτ  denotes the density, time, 

velocity, pressure, and shear stress tensor respectively. 

Moreover, 
j

x is the j th component of position vector.  

B. Solid domain 

The momentum equation for an elastic body in absence of 

body forces is  
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where 
ijσ  is the stress tensor which can be written as 
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where 
ij

S  is the deviatoric stress tensor. The deviatoric 

stress can be presented by assuming linear elastic theory and 

considering Hook’s law as [7] 
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where G  is the shear modulus. The strain rate tensor
ijε� , 

and rotation tensor 
ijω  are defined as 
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Substituting (4) into (3) yields 
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III. METHODOLOGY  

The foundation of SPH is based on interpolation theory. 

According to the aforementioned theory, any field variable 

A  can be defined over a domain of interest in terms of its 

values at a set of discrete disordered points (so-called SPH 

particles) by suitable definition of an interpolation kernel. 

These particles carry the material properties such as density, 

velocity, pressure, stress etc. The exact integral 

representation of A  is 

( ) ( ) ( ) rrrrr ′′−

Ω

′= � dδAA ,  (9) 

where ( )rr ′−δ  is the Dirac delta function and Ω  is the 

computational domain. Equation (9) can be represented by 

integral interpolation of the quantity A as 

( ) ( ) ( ) rrrrr ′′−

Ω

′≈ � dhW ,AA ,  (10) 

where h  is smoothing length proper to kernel function W 

which represents the effective width of the kernel. The 

kernel has the following properties [8] 
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There are many possible choices of kernel function. A 

quintic kernel is used in the following simulation [6] 
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where 
h

s
r

= . The dominant error term in the integral 

interpolant is ( )2
hO .  

If ( )r′A  is known only at a discrete set of N  point 

Nrrr ,...,, 21  then the interpolation of quantity A  can be 

approximated by a summation interpolant as follows [8] 
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where the summation index b denotes a particle label and 

particle b carries a mass bm at the position br . The value of 

A  at th−b particle is shown by bA .  

Derivative of A with respect to x  is given by [9] 
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where Φ  is any differentiable function.  

 

IV. SOLUTION ALGORITHM 

In this section, the fully explicit three-step algorithm of 

Hosseini et al. [4] will be modified to consider no-slip 

boundary condition on moving walls. The first two steps of 

the aforementioned algorithm play the rule of prediction part 

of pressure projection methods (e.g. see [10]) and the third 

one is a correction. Since in the first step only body forces 

should be taken into account, in absence of body forces, it can 

be neglected. Hence, the algorithm is reduced to two 

following consecutive steps. 

A. First step (Prediction) 

Solid: In this step for solids, divergence of deviatoric stress 

tensor is calculated. In this way first, the deviatoric stress 

tensor is calculated according to constitutive equation (5), 

then the divergence of deviatoric stress tensor 
i

T  is given 

by  
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Fluid: In this step for fluids, divergence of shear stress 

tensor should be calculated. Hosseini et al. [4], [5] calculated 

the shear stress tensor using the second principal invariant of 

the shear strain rate tensor, nevertheless, it can be simply 

investigated that the resulted velocity profile for the 

Poiseuille problem is inaccurate near the boundaries. 

Morris et al. [6] suggested another form of the viscous term 
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Although the above form does not satisfy angular 

momentum [11], provides accurate results near the 

boundaries.  

The vector 
i

T  is used to calculate a temporary velocity 

filed which is employed to move fluid or structure particle 
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to a new temporary position. 
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B. Second step (Correction) 

There was no constraint to impose incompressibility effect 

in the previous step, thus particle movements have changed 

density of the particles. Density variations can be calculated 

using the continuity equation. Choosing 1=Φ , 
i

u=A , 

and using the provisional velocity field of the previous step, 

(14) gives  
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This equation ensure that when two particles approach 

each other, their relative velocity and the gradient of kernel 

function have the same signs, consequently DtD aρ~  will 

be positive and aρ~  will increase and vice versa. The velocity 

field 
i

û , which is needed to restore the density of particles to 

their original value, is now calculated. In this way, the 

pressure gradient term of momentum equation is combined 

with the continuity equation (1)  
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result is a Poisson equation by which a trade off between 

density and pressure is produced [12] 
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According to (23), pressure of each particle can be 

calculated as 
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The SPH form of (21) provides the velocity field by which 

incompressibility is satisfied 
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Finally, overall velocity of each particle at the end of time 

step will be obtained as 
iii

tt uuu ˆ~ +=∆+ , (26) 

and final positions of particles are calculated using a central 

difference scheme in time 
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This step is common between both fluid and structure 

particles, hence, if fluid particles approach structure particles, 

their pressure will increase and thus move structure particles 

into a new position where the coupling is satisfied and vice 

versa. 

V. BOUNDARY CONDITION 

The desired problem involves a liquid interacting with 

moving elastic walls. These elastic walls must prevent 

penetration of fluid particles into solid boundaries. In 

addition, in such internal flow problems the no-slip condition 

needs to satisfy.  In order to ensure the no-slip condition, the 

fluid velocity at boundary should be equal to the solid 

velocity at this point.  

As mentioned above, second step satisfies the desired anti 

penetration condition itself by increasing the pressure when 

two particles approaching each other. However, the no-slip 

boundary condition demands more attention, since unlike 

other past-proposed methods, which were consisted of fixed 

or moving rigid boundaries, in FSI problems deformable 

boundaries are of interest. For instance, it is possible to 

implement the no-slip boundary condition using image 

particles [13]. Nevertheless, this method is usually limited to 

straight boundaries and simple geometries.  

The velocity extrapolation method of Morris et al. [6] 

proved practical. According to this method, velocity of each 

fluid particle is extrapolated to neighbor wall particles (as an 

artificial velocity) across the tangent plane (or tangent line in 

2D) of the boundary (Fig. 1). The unit vector of the tangent 

plane is 
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In order to implement the aforementioned method for FSI 

problems, it can be assumed that there are ghost particles 

which have similar positions as wall particles. The artificial 

extrapolated velocity of each wall particle is attributed to the 

relevant ghost particle. Other properties of these ghost 

particles are similar to those of fluid particles. 
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The no-slip boundary condition satisfies when velocity of 

ghost particles as well as boundary particles are contributed 

to calculate viscous forces. 

 

 

 
 

 

Fig. 1 Boundary condition treatment to simulate no-slip boundary condition 
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Fig. 2 Vector plot of velocity field at different stages of the flow pulse 

 

VI. TEST CASE 

The numerical test case is a two dimensional FSI 

simulation of a pulsatory flow moving through flexible walls. 

It is consisted of two flexible walls which are fixed at both 

ends with a length 0.09 m , a constant thickness 

=0h 0.003 m , a radius  =0R 0.015 m , and shear module 

of =G 1.5 Mpa . An incompressible viscous fluid, with 

density =ρ 1000
3

mkg and dynamic viscosity 

=µ 0.004 smkg ; moving inside the constructed duct 

with a pulsatile flow volume rate of period T . The time 

dependent velocity, which is imposed at upstream, is taken to 

be 

T

t
BAtU

π2
sin)( += ,  (30) 

where A  and B  are constant parameters which are selected 

to be 0.006 and 0.007 respectively. No-slip boundary 

condition is imposed on deformable walls. Square particles 

are selected with initial particle spacing of =∆ fx 0.001 m  

and 2fw xx ∆=∆  for fluids and solids respectively. 

Simulation needs several complete flow pulses to become 

stable. The vector plot of velocity field as well as its 

staggered plot is shown in Fig. 2 and Fig. 3 respectively at 

different stages of the pulse. 

 

VII. CONCLUSION 

In this paper, a monolithic method for FSI problems 

involving no-slip boundary condition and internal fluid flows 

is developed using SPH. In order to improve the overall 

efficiency of the method, divergence of shear stress tensor for 

fluids is substituted with the expression which was proposed 

by Morris et al. [6]. Moreover, the problem of dealing with 

moving boundaries to impose no-slip boundary condition is 

investigated using ghost particles which carry the 

extrapolated velocity. 
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Fig. 3 Staggered plot of velocity field at different stages of the flow pulse 

 

 

 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008


