
 
 

 

  
Abstract—Taking into consideration that during the firing, 

the rocket-launching device system oscillates and these 
oscillations may have a negative influence on the unguided 
rocket firing precision, it is necessary to evaluate the exactly 
influence of the disturbance factors on the rocket movement 
upon the launcher. This study presents the equations of the 
rocket movement upon the launcher under the disturbance 
factors action, taking into consideration that the rocket is the 
integrated part of the rocket-launching device system. Knowing 
the time evolution of the rocket movement, we can evaluate 
more accurate the the rocket-launching device system 
oscillations during the firing. 
 

Index Terms— launching device, oscillation, disturbance, 
mathematical model. 

I. INTRODUCTION 
 The main problems which appear during the study of the 
launcher devices dynamics and during the rocket launching, 
consist in determination of the charges that act on the rocket, 
in calculus of the mechanical resistance [6],[7] for the 
component parts from the launching device during the launch  
and during the motion and in evaluation of the rocket 
disturbances during the launch [3], [5]. 
 Concerning the rocket launching it is imposed the 
determination of the disturbances for the rocket motion 
parameters during the launching. The deviation and the 
dispersal of this parameters is determined by the 
systematically and randomly disturbances that act on the 
launching device and on the rocket during the launching.  
 The size of the rocket motion parameters dispersal depends 
on the launching device parameters and on the stiffness of the 
different subsystems and elements of it.  In the design phases 
we have to choose the numerical values for the launching 
device parameters, so that the size of the rocket motion 
parameter deviations during the launching must be minimized.     
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II. DISTURBANCES FACTORS 

A. Act of the gas jet 
 During the rocket firing, the launching device is stressed as 
mechanic as thermic. The hot gas jet from the rocket 
propulsion system has a major contribution at this stress, 
influencing directly the mechanical resistance for the 
component parts from the launching device, the stability and 
the oscillatory motion of this during the launching, and 
implicit the firing accuracy. Consequently, the acquaintance 
of the stresses that act on the launching device by reason of 
the gas jet is quite important in the design phase, in order to 
foresee the constructive, functional and maintenance needed 
actions [5].  
 The rocket engine gas jet during the launching is a 
no-isothermal, free or limited supersonic jet, according with 
the launching type. The concretely nature of the gas jet, as 
well as the own parameters effective values (velocity, density, 
static and dynamic pressure, debit, temperature, etc.) in 
different points of the jet, influences the intensity of the 
action on the launching device. 
 In the case of sloped launching the action area of gas jet is 
bigger, including the guide path, the other rockets, the 
leveling devices, etc. 
 In order to express the gas jet action of the rocket engine 
on the launching device, we use the state parameters of the jet 
and the value distribution of them.  
 

B. Act of the wind 
 The pressure of the air stream (the wind) on the surface of 
the tilting platform gets out a resultant resistance force. The 
value of this force depends of the air friction upon the walls 
and of the pressure difference between the anterior and 
posterior parts [5].   
 So, the kinetic energy of the moving air is spent through 
friction (converted in the caloric energy) and through the 
development of the vortex round of the assembly (converted 
in the vortex kinetic energy).   
 

C. Launching device oscillations during the firing 
We consider that the launching device with the moving 

rocket form an oscillating system, described by an assemble 
of the rigid bodies (Fig. 1) bound together by elastic elements, 
having as main components: the vehicle chassis (upon which 
is laid the launching device’s basis with the revolving support 
of the mechanisms), the tilting platform (with the containers 
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for the rockets) and the rockets (including the moving 
rocket). 
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Tilting 
platform 

Rocket Vehicle chassis 

 
Fig. 1 The components of the rocket-launching device system 
 
An important problem in studying the rocket launch is to 
determine the oscillations and their effects on the initial 
conditions of the rocket path. This phenomenon influences 
the stability of the launching device and the firing precision.  
The study presents the methods that allow calculating the 
oscillations of the launching device during firing, evaluating 
the dynamic stability and also computing more accurately the 
rocket movement elements during launch [1].  
 

III. FORCES AND MOMENTS THAT ACT ON THE ROCKET 
DURING FIRING 

    To be able to approach the real analyzed phenomenon, we 
took into consideration all forces and moments that act upon 
the rocket-launching device system during firing. 
We will consider separately the moving rocket in order to 
highlight the exterior and interior forces that act on it: 

 Propulsion force: 
   -  rocket thrust T  oriented  along the RR xO axis. 

 External force: 
   - rocket weight, RG . 

 Connection forces and moments. 
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Fig. 2 The rocket forces and moments 

 
     The connection forces, including the friction force act on 
the all contact surface between the rocket and the tilting 
platform. In order to reduce the complexity of the calculus, 
but without limiting the studied problem generality, these 
forces will be reduced to resulting forces and moments in the 
rocket centre of masse [1], [5]: 
• the connection force between the rocket and the tilting 

platform, RF  (force of reaction of the tilting platform on 
the moving rocket), has the components RyF  and RzF  

in the transversal plan of the rocket, oriented along 
the RR yO axis and respectively RRzO  axis (connection 
forces between the rocket and the tilting platform), and 
the component RxF  oriented along the RR xO axis, that 

consist in the withholding force retF . This acts upon the 
rocket until the thrust overcomes the withholding force 
(the withholding force keeps the rocket from moving 
until the rocket thrust attains a certain imposed value). 
Additionally, the friction force fF  acts between the 
rocket and the tilting platform; 

• the connection moment between the rocket and the 
tilting platform, RM (the moment of reaction of the 
tilting platform on the moving rocket) is given in relation 
with the rocket centre of masse, having the components 

RxM , RyM  and RzM  in the rocket system of axes 

RRRR zyxO . 

IV. MOVEMENT EQUATIONS OF THE ROCKET  
 In the rocket-launching device system  there are 6 
characteristic points (Fig. 3) [1]: TO (the fixed point bound 
up with the ground), SO  (the vehicle chassis centre of 
masse), ΠO  (the centre of masse of the revolving 
support), ηO  (the meeting point between the axle collar of 

the tilting platform and the longitudinal plan of the launching 
device), BO  (the tilting platform centre of masse) and RO  
(the moving rocket centre of masse). 

 
Fig. 3 The calculus diagram for 

 the rocket-launching device system 
 

In our study, the moving rocket system of axes moves in 
relation to the tilting platform system of axes, whereas the 
last one moves in relation to the chassis system of axes which 
has the ground system of axes as a reference system (fixed 
coordinate system) [8], [5].  

To simplify the calculus, but without limiting the 
generality of the study, we consider the movement of the 
rocket-launching device system during firing being 
completely described by 6 state variables: the rocket linear 
translation in the container’s guiding tube, s , two angles that 
define the tilting platform’s position (pitch and gyration 
oscillation), yϕ , zϕ , other two angles that define the vehicle 
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chassis pitch and rolling motions, xγ , yγ , and the chassis 

center of masse oscillating vertical displacement, Sz . 
On the basis of the data presented before and using the 

fundamental theories of the solid mechanics (pulse theorem, 
etc.) we can determine the vectorial equations that describe 
the movement of the centre of masse and therefore the 
movement around it for all the 3 main components of the 
system. 

In this manner, we obtain a system of 6 vectorial equations, 
respectively of 18 scalar second order differential equations, 
that allow determining the state variables. Following we 
present only the rocket movement equations, the other 
equations being obtained using the similar methods.  

 

A. Movement equation of the rocket center of masse 
Applying the pulse theorem and considering the system of 

forces presented above, we obtain the first vectorial equation 
that describes the rocket movement on the launching device 
[5]: 
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In this equation we can highlight some terms having the 
dimensions of the forces (representing the components of the 
inertial forces: RS

tF− , RtFγ− , RrFγ−  etc), as following: 

 term dues to the vertical chassis translation movement,  

SR
RS
t zMF &&−=− ; 

 term dues to the rocket translation upon the guiding tube, 
sMF R

R
t

&&= ; 
 terms due to the chassis rotations: 
 ( )SRR

Rt lMF ×γ−=− γ && , for the tangential acceleration; 

 2
SRR

Rr lMF γ=− γ & , for the normal acceleration; 

 ( )sM2F R
Rc && ×γ−=− γ , for the Coriollis acceleration; 

 ( )SRR
R lMF γγ−=− γ && , complementary term dues to the 

rotation γ ; 
 terms due to the tilting platform rotation: 
  ( )RR

Rt lMF ηϕ ×ϕ−=− && , for the tangential acceleration; 

  2
RR

Rr lMF ϕ=− ηϕ & , for the normal acceleration; 

  ( )sM2F R
Rc && ×ϕ−=− ϕ , for the Coriollis acceleration; 

 ( )RR
R l  MF ηϕ ϕϕ−=− && , complementary term due to the 

rotation ϕ ; 
 terms due to the chassis and tilting platform rotations, γ  

and ϕ : 

 ( ) lM2F RR
1R ϕγ=− ηγϕ && ; ( )RR

2R l  M2F ηγϕ γϕ−=− && . 

In the similar manner, we note with R
tF− , the term dues to 

the rocket translation along the guiding tube, having the 
expression sMF R

R
t

&&−=− . 

 

B. Movement equation around the rocket center of masse 
In order to obtain the vectorial equation of the rocket 

movement around of its center of masse, we apply the kinetic 
moment theorem in relation with the rocket center of 
masse, RO . So, we obtain the following equation: 

   ( ) RRRRRR M=ωτ×ω+ωτ & ,      (2) 
where, considering that the rocket has a symmetrical form in 
relation with the RR xO  axis, we have 

Rτ  - the tensor moment of inertia: 
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where the transversal moments of inertia are equals, 
JJJ RzRy == ; 

Rω  - the angular velocity of the RRRR zyxO  system of 

axes in relation with the TTTT zyxO  system of axes bound 
with the ground: 

 β+ϕ+γ=ω=ω &&&)0(
RR ;       (4) 

RM  - the vector of resultant moment given by the all forces that 
act on the rocket, calculated  in relation with the point RO . 

C. Scalar equations of the rocket movement  
Using the vectorial equations (1) and (2), that describe the 

rocket movement during the firing, and the expression for the 
terms of the forces and moments presented above, we obtain 
the scalar equation of the rocket movement written in relation 
with the system of axes bound with the axle collar of the 
tilting platform ηηηη zyxO : 
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  The terms that express the existence of the rocket lateral 
movement (that contain xγ& , xγ&& ) are due, in special, to the 
unlevelness distribution of the tilting platform weight and of 
the vehicle chassis in relation with the launching longitudinal 
plan. 
 The equations (5) – (10) with the other 12 scalar equation 
corresponding to the tilting platform and to the chassis form a 
second order differential nonlinear equations system that 
allows to determine the launching device oscillations using 
the numerical solving [1], [5].   

V. SCHEDULING ALGORITHM FOR THE DETERMINATION OF 
THE ROCKET MOVEMENT UPON THE LAUNCHING DEVICE 
The numerical application named ILANPRN [4], 

developed by the authors using the general mathematical 
model [1], [2] allows calculating the oscillations of the 
rocket-launching device system.  
 Following we present the module that allow determining 
the rocket movement along the guiding tube as well as the 
connection forces and moments between the rocket and the 
tilting platform.  

 Because the rocket is in a tube from the launching 
container, it will follow the movements of the tilting 
platform. Consequently, the rocket will receive from the 
vehicle chassis the rotation γ  and the translation Sz , and 

from the tilting platform the rotation ϕ . In relation with the 
tilting platform, the rocket does a translation with the velocity 
s& , along the firing sense, and a rotation movement with the 

angular velocity β& .  
The connection between the rockets and the tilting 

platform is realized using the guiding tube concretized 
through the connection forces  RiF  and connection moments, 

RiM . In the Fig. 4  we present the calculus diagram of the 
rocket movement.  
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Fig. 4 The calculus diagram of the rocket movement 

  
 The initial firing parameters, among that we notice the 
rocket constructive characteristics, the presence of the rocket 
on the launching device, as well as the initial firing position 
(the orientation of the tilting platform along the firing 
direction), are some needed initial data used to solve the 
rocket equations. The other data category is represented by 
the linear and angular position variables from the tilting 
platform level and respectively from the vehicle chassis level. 
 After the calculus we can generate the values of the 
connection forces and moments between the rocket and the 
tilting platform as well as the time history of the rocket 
position along the launching device. These evolutions have 
an important influence upon all the launching device system 
components and, implicitly upon the rocket during the firing.    
  

VI. NUMERICAL RESULTS 
 We consider a study case, based on the real situation 
having 2 rocket in the launching container placed in the 
positions 15 and 40. The first rocket is launched from the 15 
position, and after 0.5 s we launch the second rocket from the 
40 position. 

 
Fig. 5 Time history of the displacement s  

 
The launching device orientation along the firing direction 

is given by the angles 0Hϕ  and 0Vϕ  equals with o45 . In the 
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Fig. 5 is shown the time history of the rocket center of masse 
displacement from the position 40, launched after 0.5 s. The 
election of the gap 0.5 s is made according with the stability 
of the launcher device during firing. 

In the Fig. 6 - Fig. 9 we present the lateral components of 
the connection forces and moments between the rocket and 
the tilting platform, RyF , RzF , RyM  and RzM .  

 
Fig. 6 Time history of the force RyF  

 
Fig. 7 Time history of the force RzF  

 

 
Fig. 8 Time history of the moment  RyM  

 

 
Fig. 9 Time history of the moment  RzM  

 
The longitudinal components of these forces and moments 

hasn’t represented because their influence are smaller. On the 
presented diagrams we can notice the influence of the gas jet 
force and of the withholding force of the rocket. The rocket 
movement along the guiding tube influences the stability of 
the whole system launching device-rocket during firing 
through the components of the connections forces and 
moments transmitted from the tilting platform [3].    

Following we present the time histories of the state 
variables corresponding of others components of the system, 
respectively the oscillations yϕ , zϕ  of the tilting platform 

and the oscillations sz , xγ  and yγ  of the vehicle chassis. 

  
Fig. 10 Time history of the rotation angle  yϕ  

  
Fig. 11 Time history of the rotation angle  zϕ  
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Fig. 12 Time history of the displacement Sz  

 
Fig. 13 Time history of the rotation angle  xγ  

 

 
Fig. 14 Time history of the rotation angle  yγ  

 

In the fig. 10 – 14 we notice that the state variables from 
the tilting platform level and from the vehicle chassis level 
have the damped oscillating time histories. This situation is 
convenient to the launching device stability in the case of 
firing with lots successively rockets. This thing is very 
important, considering also the accuracy of firing.  

These oscillations have been confirmed by the 
experimental results which validate and lead to the 
improvement of the numerical scheduling algorithm.  

VII. CONCLUSION 

The evolution calculus of the rocket state variables during 
firing allows the evaluation of dynamic forces present at all 
levels of the launching device system component, and 
therefore the analysis of the dynamic behavior of the whole 
assembly system. The evaluation of the oscillation 
parameters of a rocket-launching device system and of their 
influence to the system stability during firing, such as the 
initial rocket flight condition, leads implicitly to evaluating 
the firing accuracy, a must in the design of a precise 
rocket-launching device system.  
     In conclusion, the rocket is an essential component 
needed to be taken into account in the launching phase design. 
The movement of the rocket under the action of the 
disturbances factors has a major influence upon the stability 
of whole launching device – rocket system. 
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