
 
 

  
Abstract—A modified genetic algorithm (GA) is presented for 

subsonic wing design using an N-S flow solver with B-L 
turbulence model. With the feature of revolution in-subsection, 
the algorithm takes advantage of binary coding system, and 
overcomes the large search space problem of requiring 
continuous sampling. The modified genetic algorithm 
remarkably improves computational efficiency by coupling 
with robustness, crossing-over and mutation operators. The 
resulting optimized subsonic wing has a higher lift-drag ratio 
than the initial shapes do. By this optimal design method, the 
algorithm introduced more parameters (twisted angles) for 
aerodynamic configuration design, and thus demonstrates 
better of feasibility, robustness, and design outcome for 
subsonic wing configuration. The resulting outcomes confirm 
that the method shows quicker in convergence, in comparison to 
the traditional genetic algorithms. 
 

Index Terms—Genetic algorithm, revolution in-subsection, 
twisted angle, plane shape  
 

I. INTRODUCTION 
 Aerodynamic design can be defined as a process 
determining the shape of bodies in order to satisfy a design 
aim and the associated constraints, in terms of aerodynamics, 
geometry or structure. The design aim of aerodynamics is to 
obtain a vehicle configuration with optimal performance, and 
thus the configuration has a much higher lift-drag ratio than 
conventional vehicle geometries. . In other words, a design 
must meet several criteria at a certain cruising speed with 
designed lift coefficients and desired drag characteristics.  
A variety of optimal methods in Computational Fluid 
Dynamics (CFD) are used more and more for vehicle design. 
The optimal methods in the aerodynamic design can 
obviously reduce the time of design cycle. Meanwhile, the 
rapid improvement of computer capabilities has made 
various numeric-optimal techniques available in the 
application of aerodynamic design. The techniques take 
account of the matured gradient, automatic differentiation, 
Adjoint-Based method, and genetic algorithms [2-5,8,9] (GA). 
When the optimal methods are in use, however, we need 
consider: 
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a) The general applicability of the optimal formulation 
immediately for different application problems, 
including also the usage of different analysis tools. 

b) The robustness, the capability intended to find global 
optimization and reduction of the interaction between 
human and expert knowledge. 

c) The ability to deal with multiple design objectives and 
constraints. 

d) The Computational efficiency in the practical 
application of a design approach. 

The GA is in possession of different advantages in optimal 
fitness. By binary coding system for the fitness, the 
traditional optimal algorithm can inherently carry out the 
crossover and mutation operations, and completely make the 
use of implicit parallel quality. But, when the number of 
parameters and the required precision are in high degree, the 
length of the binary-code string becomes so long, that the 
searching efficiency of GA algorithm is dropping, and in 
consequence, that the global optimization efficiency of GA is 
impaired.  

The purpose of this paper is to improve the performances 
of GA, through introducing an approach, ‘subsection 
evolution’, which divides the whole evolutional progress into 
two subsections. In the first one, the length of a binary-code 
string is set to a properly designated value in advance for 
improving the searching efficiency for a temporary optimal 
fitness. Based on it, a genetic optimization for high precision 
is executed in the second subsection. Coupled with the robust 
crossover and mutation operators, the approach behaves 
more efficient than before. In comparison to the initial 
shapes, the resulting optimal airfoil and wing have a higher 
lift-drag ratio, and reveals the feasibility and robustness of 
this newly designed optimization method. 

 

II. EVOLUTIONARY GENETIC ALGORITHM IN SUBSECTION 
A. Binary Representation 
For the designing of wing by means of binary genetic 
optimized coding, it is proper to assume a multi-dimensional 
function defined as: 
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And then mapping the dorman [ui, vi] of an undependable 
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So that xi could be presented as a binary form and determined 
in length. Given the precision of wing designing as 10–t, and 
set  
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as the upper boundary of the domains of the independent 
variables, dm is used to define the binary coding length 
throughout the genetic evolution algorithm cooperatively 
with the set precision 10-t. Therefore, the length (m-bit) for 
the binary coding is defined by the following equation: 
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So far, a chromosome bi comes and B is a vector of the (n) 
chromosomes, described as a binary string in m-bit. 
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Through a genetic evolution algorithm, the resulting 
optimized (n) variables are all as following 
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In order to express Mutation Operator evidently, a 
normalizing process is used in binary code. But the 
normalization results in the following faults: 
(1) It asks that Genetic coding has same expression and 

range. Although it has the advantage with binary coding, 
it has a longer Hamming distance between neighbored 
codes. For example, the binary codes of 15 and 16 are 
01111 and 10000 respectively, and the algorithm 
searching from 15 to 16 needs modify all five bits of 
binary code. It is very time-consuming to do so with 
crossover and mutation operators. This denotes both a 
longer time for fitting and a higher risk falling into a 
local optimal trap in the searching. This is the Hamming 
problem of binary coding.  

(2) When the high precision is in place, the expression of a 
binary code is very redundant, which will reduce 
searching efficiency.  

The solution of creep mutation is introduced to solve the 
Hamming problem. The principle is to set 1 whether added to 
or subtracted from a binary number for genetic code in the 
Hamming problem.  
The idea of subsection evolution is introduced to improve the 
searching efficiency. The evolution of  resulting generation 
consist of the following steps: 
Step 1: given (n) initial binary variables in (m + k)-bit, the 

binary bits of a variable are divided into two substrings 
in m- and k-bit respectively; 

Step 2: the substrings in m-bit are considered. Fed into the 
genetic algorithm, the (n) substrings in (m)-bit evolve 
into (n) resulting-optimized strings, x*, in (m)-bit;  

Step 3: make every substring in (k)-bit into in (k+1)-bit by 
entailing an extra bit;  

Step 4: feeding these new entailed substrings in (k+1)-bit to 
the algorithm come (n) strings in (k+1)-bit;  

Step 5: following the first (m-1) bits of the substring x*, a new 
resulting substring in (k+1)-bit becomes into 
(m+k)-bit;  

Step 6: feeding the resulting string in (m+k)-bit to the genetic 
algorithm over again, comes a temporary optimal 
string;  

Step 7: combining the first (m-1) bits of the substring x* and 
the last (k+1) bits of the temporary sub-string together, 
the (n) optimized substrings become in (m+k)-bit 
finally.  

The above seven steps of evolution result in a generation, and 
each and every generation comes in the same way by the 
evolution. It is available to prove that optimal variable 
approaches at the required-precision level. 
In accordance with the above description, by means of 
decoding and mapping, the expressed original value of the (m 
+ k)-bit of i th string is:  
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In the subsection evolution, the expression of combing the 
substring in m-bit and substring in k–bit is: 
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Subtracting the above two expressions come the following: 

)22)(12(
212)(

1

0
kmm

km

j

j
jmii

km
i

km
i buvxx −

−−

=
−

+⋅

−−
−

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=− ∑   （6） 

And 

           
)12( −

−
<− +⋅

m
iikm

i
km

i
uvxx    （7） 

In an evolution, the maximum error of a string in (m+k)-bit, a 
substring in m-bit entailing a substring in k-bit, is less than a 
weighted value of the first (m) bits of the initial string.  In 
Steps 1 and 2, the first (m-1) bits of the resulting substring in 
m-bit are the first part of the final accurate value. Since and 
after Step 3, through the evolving of the substring in 
(k+1)-bit and being entailed, a final string in (m+k)-bit 
becomes the value in high precision. Thus, the fitness is 
available to calculate according to the formula (4). As the GA 
is for the multi-dimensional optimization or high precision 
fitness, the variables have to be binary strings. And if they are 
of long form, the subsection evolution is a choice to avoid 
low efficient searching.   
 
B. Genetic operators 
The Genetic operators are of the following three steps: 
(1) Selection and reproduction 

Parents are chosen based on the Roulette-wheel method, 
in which the probability of choosing a parent is 
proportional to its fitness value. Each pair of parents 
produces one offspring by crossover. Then, Mutation 
occurs in the offspring. After a new population is 
produced, the fitness of each member is compared to that 
of the parent generation, and the best and the second best 
members in the new born generation are assigned as the 
new parent generation, and strike away the inferior 
crossover or mutation. This technique in use guarantees 
that the best member in all the populations will not be 
screened out by means of the GA operators during the 
optimal procedure. 

(2) Crossover and Mutation 
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The uniform crossover scheme [6]  takes place in the 
present paper. Based on the uniform probability, it is 
determined how to substitute every genetic bit of a 
parent. The crossing is not in place at a genetic bit where 
it is equal to 0, and but as it is equal to 1. The crossing 
appears as follows:  

[ ]
[ ] [ ] [ ]

[ ]⎩
⎨
⎧

⇒→
⎭
⎬
⎫

00110101
11101010

10011100
10101001
01110110

crossover

 

Mutation[7] is carried out by randomly selecting a gene 
(geometric node) and then changing its value randomly 
within a preset range. As this change is applied to the 
selected geometric node, the neighbors of the node are so 
adjusted that the curvature of the sectioned profile is not 
over-abrupt. 

(3) Replication  
An elite-preservative operator is used for replication as 
parental binary strings in the present paper. The 
mechanism of the survival of the fittest guarantees the 
best individual of the current generation to be replicated 
into next generation. The mechanism is to check if the 
best individual of parent is preserved when the new 
generation is born. As not so, a random chosen 
individual in gene takes place from the parent 
generation. Experimental results proved that this 
mechanism would effectively prevent the optimal 
chromosomes from losing. 

 

III. COMPUTATION FLUID DYNAMIC SOLVER 
In terms of CFD-based performance assessment, a 
fluid-oriented solver [1] based on B-L turbulent model, is in 
use for the viscid fluid of subsonic airfoil and wing. Once the 
designing variables are set by the GA, the solver has to be 
called in by feeding the designing variables into it. The solver 
then yields the ratios of lift-to-drag. These values are then 
stored up in a file. They can be used by the GA for the 
calculation of the optimal objective and hence the fitness 
functions. For an individual in a generation, at least once 
CFD call is needed. Therefore, an enormous number of CFD 
calls are necessary for the entire optimization. 

IV. PERFORMANCE TEST OF THE ALGORITHM 
A multi-modality function comes to test the performance of 
the subsection-evolution GA operator: 
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Fig. 1 shows the spatial structure of the multi-modality 
function. The maximum value is the optimal objective. The 
constraint condition is , [0.0,2.0]x y ∈ . It is evident that the 
achieving of maximum may well be prevented from the 
maximum by trapping in a local maximum. David L. Carroll[5] 
chose binary code for GA operator in 2001，the population 
number as 5, and the fitness value of function. Fig. 2 shows 
results of the compare off-line performance between the 
initial GA model and optimized GA model. The horizontal 
axis expresses the evolution generation，the vertical axis 
expresses the optimal fitness value of every generation. The 
global optimal value is achieved at generation 20 with 

optimized GA model, yet at generation 50 with the initial GA. 
It shows that the searching performance of optimized GA 
model is in excess the initial GA model. 
 

 
Fig.1 2-dimensional multimodality function 

 
 

 
Fig.2  Comparison of off-line performance between initial 

GA and optimal GA 
 

V. RESULTS AND DISCUSSION 
A. Optimization of Airfoil 
The GA works on designing variables subject to certain 
performance constraints. A Hicks-Henne function curve is 
used to represent airfoil. The actual values of (x, y) 
coordinates of the control nodes for the B-spline curves are 
set as the designing variables 

0
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The NACA0012 airfoil is used to test the present algorithm 
for initial airfoil shape. The N-S equations are associated 
with B-L turbulent model for field simulation. Lift-to-drag 
ratio of airfoil is as fitness: 

dl CCF /=  
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The free stream of fluid is: 
05.6,28.0 ==∞ αM . 

For satisfying structural requirements of aircraft, the 
constraint condition of airfoil is: the thickness of airfoil limits 
in 0.04~0.12. Table 1 shows the outcomes of lift, drag and 
lift-to-drag ratio of the initial vs. optimized value. Through 
60 iterations, it shows that optimized drag declines and the 
lift-to-drag ration increase about 9.9% with the initial GA, 
14.19% with the optimized GA, as well as the outcomes of 
high aerodynamic performance. Fig.3 shows that the mesh 
distribution of the airfoil. The convergent history of the 

 
Fig.3 Mesh distribution of airfoil 

 
 

computation is shown in Fig. 4. In comparison to the initial 
GA, which does not get the converged after 60 CFD calls, 
while the subsection evolution optimized GA get converged 
after 60 CFD calls, reaching the fitness. So to speak, the 
improved evolutional method performs in quality for 
convergence. The best of fitness is of the best individual 
member of each generation, though the other fitness are 
related to the non-best members. The trend of the fitness in 
fig. 4 clearly shows that the optimization is the approaching 
of generation-by-generation, and the reliability of the 
subsection evolution GA. Fig.5 shows the designed optimal 
airfoil in comparison to the initial one. The designed shape 
demonstrates the modifying through from the leading edge to 
the trailing edge of the airfoil.  
 

Table 1 Aerodynamic property comparison between GA vs. GA 
modified 

Coeff. initial GA GA Modified 

lC  0.830094 0.828735 0.827376 
dC  0.105782 0.096055 0.092365 

/l dC C  7.847208 8.627700 8.957582 
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Fig.4 Evolution history 
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Fig.5 Comparison of initial vs. optimized airfoil 

 
B. Optimization of Wing Planar Shape 
In wing configuration design, the airfoil’s formula is 
determined. The mesh distribution of a wing chooses the C-H 
configuration. The C mesh is distributed along the streamline 
direction and the H mesh is distribution along the span 
direction. The planar parameters of a wing are to be 
optimized. They include the wing sweep, root chord, span, 
and tip chord. The planar constraint conditions of the wing 
are [0.3491, 0.6982], [0.8, 1.0], [1.0, 1.2] and [0.4, 0.5] 
respectively; the constraint condition of airfoil is: the 
thickness is limited within 0.04~0.12. There are all 18 such 
optimal parameters, including 14 parameters for airfoil 
design and 4 parameters for wing plane design. The 
maximum evolution number is set at 70; the population 
number of the first 30 generations is set at 10; the number of 
the rest 40 generations is set at 5. The free stream condition 
is:  

05.46.0 ==∞ αM  
Table 2 shows,  through 40 iterations, in terms of the lift, 
drag, and lift-to-drag, the comparison of the initial vs. 
optimized values shows optimization in drag deducing and 
the lift-to-drag ratio increasing by about 60%, the resulting 
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higher aerodynamic performance by means of the optimized 
GA. 

Table2 Aerodynamic parameters comparison  
between initial and optimal wing shape 

Aerodynamic Initial Optimal 
lC  0.546503 1.446295 
dC  0.233342 0.388092 

/l dC C  2.342066 3.726676 
 
Table 3 shows the comparison of planar parameters between 
initial and optimized wings, increasing of the span, root 
chord and sweep, declining of the tip chord, as well as 
improvement in the aerodynamic performance of the wing. 
 

Table3 Comparison of planar parameter value  
between initial and optimal wing 

Plane  initial optimal 
sweep 30 31.293414 
Span  1.1963 1.1992 

Root Chord  0.8059 0.9967 
Tip chord 0.4533 0.4096 

 
Fig. 8 shows the initial wing plane in comparison to the 

optimal wing plan. As table 3, the planar shape varies the 
chord and sweep respectively. Fig. 9 shows the optimal 
evolution history and the high optimal performance. 
 
C Optimal of Wing twist angle 
The root twisted and tip twisted angles are respectively 
considered as [-0.55,-0.50],[-0.08,-0.02] through the 
optimizing of parameters. Here are 20 optimized parameters 
totally, of which 14 for airfoil designing and 6 for wing plane 
designing. The maximum evolution number is at 70, the 
population number of the first 30 evolutions is set at 10, the 
following 40 evolutions is set at 5. The free stream condition 
is: 

05.46.0 ==∞ αM  
Table 4 demonstrates, through 40 iterations, in terms of the 
lift, drag and lift-to-drag, the comparison of the optimized 
outcomes without twisted angle vs. those with twisted angle, 
optimized drag deducing, the lift-to-drag increasing up to 
about 60%, the resulting higher aerodynamic performance by 
the optimized GA, regarding the twisted angles of wing 
section as design parameters. Table 5 shows the comparison 
of planar parameters of a wing between optimal without 
twisted angular parameters and with. It shows that the span, 
root chord and sweep are increased, the tip chord and span 
are deduced, which change the aerodynamic performance of 
wing. 
 

 
Fig.8   Comparison of planar shape between initial and optimized 

wings 
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Fig.9  Evolution history 

 
Table 4  Aerodynamic property comparison  
between optimization 1 and optimization 2 

aerodynamic Optimal 1 Optimal 2 
lC  1.446295 0.960661 
dC  0.388092 0.161045 

/l dC C  3.726676 5.965172 
 
 
 
 

Table 5  Comparison of planar parameter value 
between initial and optimal wing 

Planar  initial design 
sweep 30 39.348105 
span 1.1963 1.1852 

Root chord 0.8059 0.9829 
Tip chord 0.4533 0.4385 
Root twist 0 -0.516694 
Tip twist 0 -0.037367 

 
Fig. 10 shows the evolution history of optimizing with 
twisted-angle parameter (optimization 1) and without 
(optimization 2). It also shows that the more wing parameters 
are chosen, the better aerodynamic result of a wing is 
obtained. 
 

 
Fig.10 Comparison of Evolution history between 

optimization 1 and optimization 2 

VI. SUMMARY 
An approach, ‘subsection evolution’, dividing an entire 

evolution process into two subsections, with binary coding, 
coupled with the robust crossover and mutation operators, 
improves the original GA optimal efficiency greatly. 
Combined with the CFD solver in high precision and the 
optimized GA method for aerodynamic optimization, the 
resulting airfoil and wing has a higher lift-to-drag ratio than 
the initial shapes. The invented optimizing approach also 
demonstrates a great feasibility and robustness in engineering 
computation. 
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