
 
 

  
Abstract — We examine the dynamics of velocity 

amplification through pair-wise collisions between multiple 
masses in a chain, in order to develop very-high acceleration 
shock-testing machines. A theoretical basis for determining the 
number and mass of intermediate stages in such a shock 
amplifier, based on simple rigid body mechanics, is proposed. 
The influence of mass ratios and the coefficient of restitution on 
the optimization of the system is identified and investigated. In 
particular, two cases are examined: in the first, the velocity of 
the final mass in the chain is maximized by defining the ratio of 
adjacent masses according to a power law relationship; in the 
second, the energy transfer efficiency of the system is 
maximized by choosing the mass ratios such that all masses 
except the final mass come to rest following impact. 
Comparisons are drawn between both cases and the results are 
used in proposing design guidelines. It is shown that for most 
practical systems, a shock amplifier with mass ratios based on a 
power law relationship is optimal and can easily yield velocity 
amplifications of a factor 5-8 times. 
 

Index Terms — multi-body dynamics, impact-testing, 
MEMS, shock-amplification.  
 

I. INTRODUCTION 
This paper examines the dynamics of velocity 

amplification through collisions between multiple masses 
with a view to developing useful machines. The phenomenon 
of velocity alteration through multiple impacts can be 
harnessed for uses ranging from shock-amplification to 
shock-absorption. The dynamics underlying the above are 
somewhat similar [1], [2]. The current work will focus on 
velocity amplification and develop a set of rules and 
guidelines for developing versatile and low-cost machines 
for very-high shock testing of emerging electronic 
components like MEMS, nano-optics devices, and sensors. 

Due to their small masses, packaged MEMS devices can 
be designed to be very rugged. They are commonly found in 
telecommunication equipment with very high reliability 
requirements; and in critical missile control systems, smart 
ammunition and in space rockets, where they must be capable 
of performing reliably under severe acceleration conditions, 
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perhaps following a long period of storage. Current test 
methods used for testing shock-hardened MEMS devices 
include the Hopkinson bar [3], rail and air guns, very-high 
drop testing, pneumatic shock and centrifuging [4].  

The shock testing machines being proposed in this paper, 
based on velocity/shock amplification through multiple 
impacts, offer several advantages over the above methods, 
including: 
• They offer detailed and precise testing capabilities using a 

single machine that allows a vast range of shock pulses so 
that shock testing can be incorporated early in the design 
stage of the device. 

• Such machines can be scaled with the size of the object 
being tested. 

• They can be used in stand-alone mode or as attachments 
to existing shock testing machines, thereby vastly 
increasing their capability. 

• They enable high-speed video recording of the device 
during test to be implemented relatively easily. 

• They provide safer and much lower-cost shock testing 
capability. 

Several other authors have investigated the dynamics of 
multiple impacts and associated velocity amplification, 
[5]-[9], as detailed in [10]. The manner in which the current 
work differs from previous work is primarily in its focus on 
developing guidelines for building useful machines. Besides 
gathering all the relevant analytical results from previous 
work into one place, the novelty centers around the deeper 
analysis of the various configurations of shock amplifiers 
mentioned in the paper, comparisons of their relative merits, 
and the development of design guidelines. 

All the analyses presented in the paper are based on simple 
rigid body models - primarily those governing the 
momentum transfer and energy dissipation during impacts 
between two point masses or rigid spheres. These are 
sufficient because, a) the shock machines being discussed in 
this paper are designed to ensure independent pair-wise 
collisions, b) the guidelines being developed are based on 
velocity amplifications and not acceleration levels so the 
details of every impact are not important, only the velocities 
of the masses before and after impact, and c) the general 
results are valid despite deviations from rigid-body models.  

The layout of the rest of the paper is as follows: the 
dynamics of sequential, pair-wise impacts between a chain of 
vertically stacked masses is investigated to highlight the 
ensuing velocity amplification. Optimal design principles for 
shock amplifiers are then determined followed by discussion 
and conclusions. 
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II. VELOCITY AMPLIFICATION THROUGH PAIR-WISE 
COLLISIONS 

It can easily be shown, as in [10]-[12], that a heavy mass 
impacting a reasonably light mass, with a sufficiently high 
coefficient of restitution [11]-[12], can cause a velocity 
amplification of the lighter mass. For instance in a perfectly 
elastic collision between two masses that approach each other 
with equal and opposite velocities, with one of the masses 
being at least three times as heavy as the other one, the lighter 
mass rebounds with a velocity that is more than twice its 
velocity before impact. Building on the above, consider a 
shock-amplifier made of a vertical stack of masses as shown 
in Fig. 1 with the masses separated by an arbitrarily small 
distance from each other. 

 

m1

m2-vff

mn-vff

e1,0vff

 
Fig. 1: Model of velocity amplifier prior to second impact 

 
The stack consists of a series of increasing masses with the 

heaviest mass at the bottom so that 1 2 ... nm m m> > > . 
Assume that the entire chain is dropped from some height 
towards the ground such that initially all the masses are 
approaching the ground with the same free-fall velocity, ffv . 

The sequence of events that occurs at impact, in terms of 
rigid-body mechanics, is as follows. 

Mass 1m impacts the ground first, instantaneously 

reversing its velocity to 1,0 ffe v  (where e1,0 is the coefficient 

of restitution for impacts between 1m and the ground) and 

then impacts the approaching mass 2m . With an appropriate 

2,1e  and mass ratio 2,1r = 2m / 1m , as shown in [10], 2m will 

reverse its velocity with a magnitude significantly higher 
than its approach velocity of ffv . This phenomenon of 

velocity amplification through pair-wise impacts continues 
sequentially as 2m impacts 3m , which then impacts 4m , and 

so on until mass 1nm − impacts the final mass in the chain nm .  
It can be shown [10] that the expression for the velocity 

gain of nm , following the sequence of impacts described 
above, is: 
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where Gn is the ratio of the velocities of nm after and before 
impact. Equation (1) describes the velocity gain for systems 
somewhat more general than that explained in Fig. 1, because 

by assuming values of 1,0 1e >
 
we have systems where the 

first mass could hit an ‘active ground’ with the potential for 
adding energy to 1m . 

In the following section we examine values of mass ratios 
and coefficients of restitution that maximize Gn in a given 
system of masses. 

 

III. MAXIMUM VELOCITY GAIN SYSTEM 
It can be shown [10] that for the vertically stacked chain of   

masses of Fig. 1, and with a constant coefficient of 
restitution e , the velocity gain of the topmost mass can be 
maximized if the mass ratios obey a power law and it is given 
as: 

( )
11

1

1
1

1

n

n n

n

e
G

R
−

−

+
= −

⎛ ⎞
+⎜ ⎟

⎝ ⎠

                                                   (2)

 

 

where R=mn/m1, and the power law for the mass ratios is 
given as: 

1
1

, 1
n

i ir R −
− =                 ( 2,3,..., )i n=                              (3) 
 
A chain of n masses with mass ratios specified by (3) is 

referred to as the Maximum Velocity Gain (MVG) system in 
the rest of this paper.  

For perfectly elastic collisions ( 1e = ), the asymptotic 
limit for velocity gain when n → ∞ , is given by: 
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For inelastic collisions, for every given e , an maxn that 

leads to a max
nG can be found directly by tabulating or plotting 

(2). max
nG decreases with decreasing e . Fig. 2 illustrates how 

the velocity gain changes with the number of masses in the 
chain, the presence of an maxn and a corresponding max

nG and 
their dependence on e . Note that the maximum velocity 
amplification achievable through this scheme of multiple 
impacts decreases rapidly with the increase of energy 
dissipation associated with every impact, such that for values 
of 0.35e < there is no velocity amplification at all. Hence 
for purposes of building a shock-amplifier, it is imperative 
that the impacts be mediated through materials/methods that 
have very high restitution. 

It may also be shown [10] that maxn can be found by using 
the following method. First determine: 
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where 0x  is the solution to the equation:
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and then calculate: 
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The nearest rounded integer (both floor and ceiling) to 
*n that yields a higher value of nG through equation (7) is 

then maxn and the corresponding nG is max
nG . Fig. 3 shows 

the value for maxn computed for the range of [ ]0,1e = and 

for a large range of R . 
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Fig. 2: Plot illustrating velocity gain as a function of the number of masses 

and the coefficient of restitution, for a vertically-stacked  
maximum-velocity-gain chain with 0.012R = . 
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Fig. 3: Plot of optimum number of masses to maximise velocity of the 
uppermost mass versus mass ratio and coefficient of restitution, for a 

vertically-stacked maximum-velocity-gain chain system. 

 

While designing a shock amplification machine for testing 
purposes, design constraints arise from the size of the 
machine, the size and shape of the objects to be tested, the 
materials that are available, the required shock levels and 
their durations, etc. The above, in turn, impose constraints on 

R and e . Whereas Fig. 2 gives a sense of the velocity 
amplifications that are possible for 0.012R = , Fig. 4 gives 

a broader picture of the dependence of *G (which is very 

close to max
nG ) on R  and e . Fig. 4 shows that *G  

increases monotonically with increasing e  and decreasing 
R . For high coefficient of restitution, the rapid increase 
in *G with decreasing mass ratio illustrates how effectively 
the velocity amplification principle can be utilized for 
building powerful shock amplifiers. 
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Fig. 4: Plot of 

*G versus R and e , for the maximum-velocity-gain 
system of vertically-stacked masses. 

 
 

IV. MAXIMUM ENERGY TRANSFER SYSTEM 
Since transferring energy from a heavier mass to a lighter 

mass through impact is the primary basis for the shock 
amplification being explored here, intuition suggests that a 
system of masses where all the energy is transferred to the 
lightest mass would be the most efficient one as a shock 
amplifier. Such a system composed of a chain of masses 
where all of them, except the final mass nm , come to rest 
after impact is henceforth called as the Maximum Energy 
Transfer (MET) system. Assuming a constant coefficient of 
restitution e  for all impacts, it can be shown [10] that the 
mass ratios required for a vertically-stacked MET system 
have to satisfy the condition: 
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For elastic collisions, (8) reduces to:  
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For inelastic collisions ( 1e < ), it can be shown by 
induction that (8) reduces to:  

1

1, 2 1

i

i i i

e er
e

+

+ +

−
=

−
       ( )1; 1,2,..., 1e i n< = −            (10) 

Further manipulation of (10) reveals that for larger values 
of i , it quickly reaches a limit given by: 

1,lim i ii
r e+→∞

=                                                                      (11) 

Unlike with the power law in the MVG configuration, the 
mass ratios in the MET configuration are not the same along 
the chain and do not depend on R , i.e. the ratio of the first 
and the final mass. Instead, as shown by (8), (9) and (11), the 
mass ratios depend on e . Fig. 5 plots the mass ratios to 
illustrate their dependence on e . 
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Fig. 5: Pair-wise mass ratios , 1i ir −  versus mass number for varying 

coefficient of restitution in a vertically-stacked MET configuration. 
 

The velocity gain for the uppermost mass of the 
vertically-stacked MET can be derived to be: 
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It is clear from (12) that unlike the MVG system, for the 
MET system the velocity gain of the uppermost mass 
increases monotonically with n  and e . For elastic 
collisions, (12) reduces to nG n= . Although this implies 
that velocity gain increases without limit for elastic 
collisions, it is also clear from (12) that with inelastic 
collisions the achievable velocity gain from a chain of 
vertically-stacked masses is limited, with nG quickly 
approaching a limit given by: 

maxlim
1n nn

eG G
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Equation (13) implies that in a vertically-stacked MET 

system, velocity gain (i.e., 1nG > ) is only achievable if 

0.5e > . (Note that this is higher than the requirement for an 
MVG system where velocity gain can be attained as long as 

0.35e > ). Equation (12) is plotted in Fig. 6, for masses 
ranging from two to ten in the chain, to further illustrate that 
for values of e  significantly less than 1, max

nG is modest and 

achieved with fairly short chains. For more dramatic velocity 
gains that realize the benefit of somewhat longer chains, it is 
necessary to have high values of e . 

Fig. 7 plots the mass ratios 1im m  to illustrate how it can 
be used along with Fig. 6 to facilitate the design of a 
vertically-stacked MET shock amplifier. For instance if nm , 

1m  and e  are known, the mass ratio 1nm m  can be 
calculated, and identified as a point on the appropriate e  
curve in Fig. 7. All the mass ratios higher than 1nm m , and 
corresponding to integer points for mass number, are the 
mass ratios to be used for intervening masses in the 
vertically-stacked MET chain. If only e  and 1m  are known, 

but a certain nG  is desired, the number of masses needed in 
the chain can be figured out from the appropriate curve in 
Fig. 6 and their mass ratios from Fig. . An example is 
illustrated in Fig. 7, determining the number of masses for a 
machine with 0.1R =  -  in this case the nearest whole 
number is 4. 
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Fig. 6: Velocity amplification of the uppermost mass in vertically-stacked 

MET chains, consisting of two to ten masses, as a function of coefficient of 
restitution. 
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Fig. 7: Plot of mass ratio 1im m versus mass number for varying 

coefficient of restitution in a vertically-stacked MET configuration. 
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V. THE OPTIMAL DROP TESTING CONFIGURATION 
Given that both MET and MVG systems are capable of 

providing very significant velocity amplification in a 
vertically-stacked configuration, the next issue is whether 
there are regions in ‘design space’ where one of them is more 
optimal over the other for a practical shock amplifier. 
Generally the design goals for a vertically-stacked shock 
amplifier are to maximize the velocity gain for the top-most 
mass while minimizing the total mass in the system for a 
given R and e . The proposed amplifier consists of a series of 
successively smaller masses stacked vertically and dropped 
on a rigid surface such that a sequence of impacts occurs 
between the masses and the uppermost mass achieves a large 
gain in velocity. In practice the masses will be guided using 
linear bearings running on rods so that motion is confined to 
the vertical axis. 

Accordingly, Fig. 8 compares the velocity gain and the 
total system mass respectively for a very large range of R and 
e  (i.e., a large part of the practically encountered design 
space) for the MVG and the MET configurations. The 
comparisons are done by normalizing the values of the above 
three metrics for the MVG system by the corresponding 
values for the MET system. Note that for any given R and e  
in these figures, the values of nG and M for the MVG 
system are those of an optimal configuration, i.e., the MVG 
configuration that yields maxn and max

nG from (5)-(7), and for 
the MET configurations from (8)-(12). In addition, the 
plotted values of R are dictated by the MET system so they 
fall on the curve dictated by (8). 

Examination of Fig. 8 and Fig. 9 leads to the main 
conclusion of this paper: the MVG configuration is more 
optimal than the MET configuration. Not only does the MVG 
configuration provide higher velocity gain and lower system 
mass, it is effective over much larger ranges for R  – even for 
very small values of R . The improved performance of the 
MVG system is even more pronounced for lower values of 
e ,  which could be beneficial as the restitution of an actual 
shock amplifier might degrade over time. 

Note that the guidelines presented above are general; the 
design of an actual shock amplifier should be determined 
after evaluating both MVG and MET models. 

VI. CONCLUSION 
This paper examined the dynamics of velocity 

amplification through pair-wise collisions between multiple 
masses in a chain, with a view to developing useful shock 
amplification machines for testing small and very-rugged 
components like MEMS. All the analyses presented in the 
paper were based on simple but sufficient rigid body models - 
primarily those governing the momentum transfer and energy 
dissipation during impacts between two point masses or rigid 
spheres.  

The design and performance of a shock testing machine 
consisting of a chain of monotonically decreasing masses 
(heaviest mass at the bottom) that is dropped from some 
height onto a high-restitution surface, was analysed in detail. 
In particular it was shown that vertically-stacked shock 
amplifiers with mass ratios (between the masses) governed 

by a power law are ideal, in the sense that they yield the 
highest velocity gain in systems with reasonably high 
coefficients of restitution. In addition, these shock amplifier 
designs are optimal for very large ranges of the mass ratio 
between the lightest mass (carrying the object under test) and 
the heaviest mass and can deliver velocity amplifications for 
coefficients of restitution that barely exceed 0.35. 
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The shock amplification configurations investigated in this 

paper are fairly simple, designs that would lead to 
straight-forward machines. If higher velocity amplification is 
desired than that attainable with the above machines, other 
features can be added. For instance in the vertically-stacked 
configuration, the restitutive surface that the masses drop 
onto could be ‘active’, i.e., it adds net energy to the system; 
the initial velocity of the uppermost mass could be made 
higher than that of the other masses, etc. The analysis of the 
above scenarios is very much in the scope of the methods 
presented in this paper. 

The dynamics principles expounded in this paper, and the 
design guidelines, can be used for multiple purposes: 
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building launchers and shock amplifiers, significantly 
decreasing the size or the form factor of current shock-testing 
machines, for building protective armor and energy 
absorbers, for increasing the efficiency of energy harvesters, 
etc. Particularly in the area of shock testing of emerging 
opto-electronic components like MEMS & nano-scale 
devices, that are inherently very rugged or being used in 
space and military applications, the shock amplifiers 
described in this paper provide a low-cost, versatile, safe, 
detailed, precise and observable alternative to the currently 
practiced ballistic and other methods. 

In upcoming papers, the design, construction and 
performance details of shock amplification machines built 
using the above principles will be presented. Challenges 
around the shaping of very-high acceleration shock pulses 
will also be addressed. 
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