
 
 

 

  
Abstract—The analytical two dimensional temperature 

field for a spherical metal powder particle subjected to 
Gaussian heat flux is derived. The particle is considered to be 
spherical, homogeneous and isotropic with time-independent 
thermal properties. The heat transfer equation is solved, the 
temperature distribution in the spherical particle is derived, 
the 3-D temperature charts are drawn, the results are 
compared with available resources and good agreements 
have been observed. As several conduction heat transfer 
problems can be modeled by a sphere subjected to Gaussian 
heat flux, the results are used to approximate the problems 
and the time consuming complex numerical calculations 
avoided. Good example for this problem is Rapid 
prototyping with low frequency Selective Electrical 
Discharge Sintering (SEDS). In SEDS, electrical plasma arcs 
provide the thermal energy for initial binding. Binding is a 
heat transfer process from the energy source to the raw 
material which cause the separated particles to unify. Heat 
fluxes entering the powder particle from concentrated 
energy sources such as electrical plasma arcs or lasers have 
Gaussian distribution. Metal powder which is used as raw 
material in SEDS process is considered as spherical particle. 
 

Index Terms— Analytical solution, Gaussian boundary 
condition, SEDS, Temperature Field, Heat Transfer.  
 

I. INTRODUCTION 
  Several conduction heat transfer problems can be 
modeled by a sphere subjected to Gaussian heat flux. An 
example which could be modeled as it said, is Rapid 
prototyping with low frequency Selective Electrical 
Discharge Sintering (SEDS), which is a new method for 
manufacturing different parts and molds with complicated 
geometry. It gives the possibility to make complex parts 
and molds in a faster time and a considerably lower cost. 
[1]. In SEDS, an electrical plasma arcs provide the thermal 
energy for initial binding of the powder particles. Binding 
is a heat transfer process from the energy source to the raw 
material which cause the separated particles to unify. Heat 
fluxes entering the powder from concentrated energy 
source such as plasma arcs or lasers have been usually 
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modeled by constant [2], [3] or Gaussian distribution [4], 
[6]. Controlling the temperature in initial binding stage 
would result in better binding and in turn higher part 
quality. Thus calculating the temperature field in this 
matter is of great importance [1]. 
  In this survey it is assumed that the metal powder which 
is used as raw material in SEDS process is spherical, 
homogenous and isotropic with time-independent thermal 
properties. Heat transfer process for each powder particle 
is analyzed separately, conduction and convection have 
been taken into account and radiation is neglected, the heat 
flux is considered to be from concentrated source with 
Gaussian distribution; solving the conduction heat transfer 
equation analytically in the spherical coordinates, the two 
dimensional temperature field for a spherical particle 
subjected to Gaussian heat flux is derived. The results in 
this method are exact and they can be used to approximate 
different problems with Gaussian boundary condition; in 
addition time-consuming and non-exact complex 
numerical calculations are avoided.   
 

II. MODELING 
The problem geometry is simulated as shown in Fig. 1. 

As mentioned before, the heat flux has Gaussian 
distribution. b is the plasma arc radius and 0q  is the 
maximum heat flux at the center of the arc. 

 
 

 
 

Fig. 1, Simulation of powder particle 
 

 
The entering heat flux can be written as followed, Q is the 
total amount of the heat from the plasma arc. [1] 
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From the total amount of the heat flux only the radial 
vector, is absorbed by the metal powder, thus the amount 
of heat entering the sphere upper half is equal to: 
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pα is the absorbent factor of metal powder. 

 

III. GOVERNING EQUATIONS 
The spherical coordinate is located at the center of the 

spherical particle. The heat conduction equation in 
spherical coordinates for an isotropic material that has 
temperature and time-independent properties, with the 
absence of heat source under asymmetric condition, is [7]: 
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The initial sphere temperature is constant equal to 0T   , 
the ambient temperature is T∞, and therefore there is 
convection between the sphere and the ambient. Only the 
sphere upper half is subjected to heat flux and the 
temperature at the center of the sphere is limited, thus the 
boundary and initial conditions are: 

, ,[ ( , , ) ] ( )
oo r t

Th T r t T k g
r ψψ ψ∞

∂
− + =

∂
 (4) 

20
0

sin 3exp[ ( ) ]cos
2 2( )

30
2 2

p
Rq

bg

ψ π πα ψ ψ
ψ

π πψ

⎧ − < <⎪⎪= ⎨
⎪ < <
⎪⎩

 
(5) 

0,,0 =
∂
∂

tr
T

ψ
 (6) 

0)0,,( TrT =ψ  (7) 

Assuming 0T Tθ = −  for having homogenous initial 
condition, we will have the following boundary and initial 
condition: 
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IV. ANALYTICAL SOLUTION 
The problem cannot be solved directly because of the 

non-homogeneous term ( )f ψ  [8]. Using superposition 
principle; the solution of the problem is the summation of a 

steady-state solution 0 ( , )rθ ψ and a transient 
solution

1( , , )r tθ ψ . 
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  The differential heat conduction equation in the 
steady-state case is: 
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Boundary conditions are the same as (9), (10), and (11). 
Transient conduction differential equation is: 
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The following condition should be satisfied in the transient 
solution: 
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A. Steady-State Solution 
Variables’ separation method is used to solve (13), 

)()(),(0 ψψθ Ψ= rRr  (18) 

Choosing the constant n(n+1); two differential equations 
are obtained, an Euler type (19) and a Legendre type (20). 
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Equation (19), is an Euler type differential equation with 
the following solution: 
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Because of the constant temperature in the center of the 
sphere (11), we have

1 0nN = . 
Equation (20), is a Legendre equation which could be 
solved by defining ζ=cos(ψ) 
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  ( ), ( )n nP Qζ ζ are the Legendre functions. ( )nQ ζ functions 
are not defined in ǀζǀ<1 so we will have

2 0nN = , and 
therefore from (18), we will have: 
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the constants nM  could be found by applying (9), and the 
steady-state solution is: 
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B. Transient Solution 
Using the variables’ separation method for solving (14), 

assuming 1( , , ) ( ) ( ) ( )r t R r tθ ψ ψ τ= Ψ  and using the constant 

n(n+1) and 2ω  the following equations will be obtained: 
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2 0nC =  is obtained from (16), 
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Again ( )nQ ζ functions are not defined in ǀζǀ<1 so we 
will have 0nB = , 
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Boundary equations (15), should be satisfied, therefore 
eigen values knω  could be calculated. The final solution 
of the transient problem can be expressed as: 
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Satisfying (17), nA  can be calculated and (31) will be 
expressed as: 
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C. Final Temperature Field 
   The total temperature field will be the summation of 
steady-state (24) and the transient solution,(32) : 
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Finding (36) , the temperature field according to the radial 
position, polar angle and time is derived. Temperature at 
any time can be calculated anywhere in the sphere. 

V. RESULTS 
From (36) temperature at any time can be calculated at 
any point in the sphere. The sphere diameter is 
considered to be 1 “mm”. In Fig. 2, the three dimensional 
temperature filed is drawn according to the polar angle ψ 
and the sphere radius.  
 
 

 

Fig.2(a), 3-D Temperature distribution at t=0.5 s 

 

Fig.2(b), 3-D Temperature distribution at t=1 s 
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In Fig. 3, the temperature constant contours are drawn 
according to the polar angle ψ and the sphere radius R, at 
t=0.5 s and t=1 s. It is observed that the temperature at 
the upper part of the sphere (R= 0r and ψ=0) which is 
subjected to heat flux is maximum. The temperature will 

be reduced by increasing the polar angle ψ. The 
temperature filed will also be reduced by decreasing the 
radius r. Fig. 4, shows the temperature charts at different 
radius. Results are compared to Ref. [1] & [9] and good 
agreements have been observed. 

 
 

 Fig. 3(a), Temperature contour in the sphere at t=0.5 Fig. 3(b), Temperature contour in the sphere at t=1 s 
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Fig.  4, Temperature according to polar angle at different sphere radius, t=1 s 
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I. NOMENCLATURE 
 

a² Inverse of thermal diffusivity (1/α) s /m² 
b Plasma arc radius m 

pC  Specific heat capacity J/kg.K 
h Convection heat transfer coefficient W/m².K
J Bessel J function - 
k Thermal conductivity W/m.K
P Legendre function - 
Q Total thermal energy W 

0q  Heat Flux W/ m² 

r,ψ,φ Spherical coordinate - 

0R , 0r  Sphere radius m 

T Temperature C 
T∞ Ambient temperature C 
T0 Initial temperature C 
t Time s 
x Radial distance from arc center m 
α Powder thermal diffusivity m²/s 

pα  Absorptive coefficient of powder  - 
θ Temperature C 
ρ Density kg/m³ 
ω Eigenvalue - 

 

REFERENCES 
 
[1] S. Saedodin.S, "PHD thesis: Fundamentals of Selective Electrical 

Discharge Sintering in Rapid Prototyping in (SEDS)" Chapter 4. 
Iran University of science & technology, Tehran-Iran, 2006. 

[2] F. Abe, K. Osakada, M. Shiomi and A. Yoshidome, 1999, Finite 
Element Analysis of Melting and Solidifying Processes in Laser 
Rapid Prototyping of Metallic Powders, International Journal of 
Machine tools & Manufacturing, No.39. 

[3] A. Faghri and Y. Zhang, 1999, Melting of a Sub cooled Mixed 
Powder Bed with Constant Heat Flux Heating, International 
Journal of Heat and Mass Transfer, Vol.42, pp.775-788. 

[4] H. Chung and S. Das, 2004, Numerical molding of scanning 
laser-induced melting, vaporization and resolidification in metals 
subjected to time-dependant heat flux inputs, International Journal 
of Heat & Mass Transfer, No.47, pp.4165. 

[5] T.L. Bergman and M. Kandis, 2000, A Simulation-Based 
Correlation of the Density and Thermal Conductivity of Objects 
produced by Laser Sintering of Polymer Powder, ASME Journal of 
Manufacturing Science and Engineering, Vol.122, No.3. 

[6] J.R. Leith and F.B. Nimick, 1992, A model of thermal conductivity 
of granular poros media, ASME Journal of Heat Transfer, Vol.114. 

[7] F.P. Incorpora and P.D. David, “Fundamental of Heat Transfer, 
John Wiley & Sons, 2004, chapter 2. 

[8] G. Atefi and M. Moghimi, 2006, Temperature Fourier Series 
Solution for a Hollow Sphere, ASME Journal of Heat Transfer, 
Vol.128. 

[9] A. Mirahmadi, S. Saedodin and Y. Shanjani, 2005, Numerical Heat 
Transfer Modeling in Coated Powder as Raw Material of 
Powder-Based Rapid Prototyping  Subjected to Plasma Arc, 
Numerical Heat Transfer Journal , Vol.48, No.6. 

 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008


