
Abstract—Forced convection heat transfer in laminar 
reciprocating flow in a two-dimensional channel based on 
Womersley number (α), Prandtel number (Pr), Pressure gradient 
amplitude and cross section thickness of the channel. As 
characteristic length is numerically simulated using spectral 
element method (SEM). In flow with high α, temperature 
distribution is highly affected by Richardson annular effect. 
Although increasing α enhances heat transfer rate, but it actually 
reduces oscillations amplitude and flow penetration length, hence
it reduces heat transfer rate. These two contradictory effects 
predict existence of optimum frequency for heat transfer rate in a 
specific geometry. In our study pressure gradient amplitude has 
been chosen as a design parameter rather than penetration length.
At this study optimum values of frequency and geometrical 
parameters are investigated.

Index Terms—Numerical simulation, Reciprocating flows, 
Heat transfer, Optimization.

I. INTRODUCTION
Several investigations have been done on fluid flow and heat 

transfer in ducts and channels at both regimes of laminar and 
turbulent flows because of their extensive engineering and 
industrial applications. In spite of these cases, oscillatory flows 
are new and have more stringent time and spatial resolution 
requirements.

Some studies have been done on the oscillatory flows to 
enhance heat transfer rate. A general review has been recently 
given by Cooper et al. [1]. Since then, additional experimental 
results dealing with zero-mean oscillatory flows have been 
reported by Zhao and Cheng [2], Richardson and Tyler [3], 
Siegel [4] and Liao et al. [5], which all show significantly 
enhanced heat transfer in ducts and enclosures.  Sert and 
Beskok, which this study is based on their work, have studied 
reciprocating flows in two-dimensional channels [6].
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Oscillatory flows can be grouped into two categories: 
pulsating (modulated) and reciprocating (fully reversing) 
flows. Pulsating flows are always unidirectional and can be 
decomposed into steady and unsteady components, such as in 
the case of blood flow in arteries. For reciprocating flows, the
flow direction changes cyclically. Hence, these flows convect 
zero net mass.

One broad application of heat transfer is thermal 
management of microelectronic components, which is a 
challenging problem. Increase in the central processing unit 
(CPU) speeds is required for faster computers. However, the 
amounts of heat generation also increase with the increased 
CPU speeds. Inefficient thermal design leads to large chip 
surface temperatures, which severely affect the chip 
performance and commonly result in chip malfunction. To 
overcome this problem, several novel heat exchanger devices 
for electronic cooling applications utilize reciprocating flow 
and heat transfer. Reciprocating flows require interchange 
between the inflow and outflow boundaries during a cycle. For 
most applications, it is difficult to determine the inflow/
outflow boundary conditions, since fluid particles exiting the 
flow domain during a part of the cycle are fed back into the 
domain, later in the cycle. 

At this study momentum equation in reciprocating flow 
forced convection in two-dimensional channels is solved 
analytically. Since in general there is no analytical solution for 
energy equation, it has to be solved numerically. One of the 
high-order accurate numerical methods for solution of 
engineering PDE’s is Spectral Element Method (SEM) [7-10]. 
SEM combines geometrical flexibility of finite element 
method and exponential convergence of spectral method. 
More details about SEM, is described in the next sections. At 
the present study, energy equation is solved using SEM. 
Although at this study because of simplicity of geometry, 
flexibility of SEM is not necessary, but exponential 
convergence of SEM made this method appropriate for 
solution of our energy equation.

II. PROBLEM DEFINITION AND MAIN PARAMETERS

In Fig.1 the geometry with imposed boundary condition is 
shown. In this problem we assume a fully developed flow that 
established by oscillatory pressure gradient. Middle zone of 
upper plate is warmed by constant heat flux while both side 
regions are in constant temperature T0. Bottom wall is 
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Fig. 1. The geometry and thermal boundary conditions used in 
this study.

insulated and for side boundaries, velocity and temperature 
are assumed to be periodic.

Symmetric top wall boundary conditions caused to establish
periodic conditions at vertical boundaries. If shown region
repeated periodically, we can assume that exited flow at 
righthand side of one zone is entered to the left hand side of 
next zone, which has equal behavior to the present zone,
Fig.1-a. Hence synthetical and thermophysical parameters of 
fluid at both side are uniform and implementation of periodic 
boundary conditions is logical. For this problem five non-
dimensional geometrical and thermophysical parameters are
defined that describe behavior of system completely [6].
Those parameters are as follow:

Pr, α , Lp=L*
P⁄H*, Lh=L*

h⁄H*,   L=L*⁄H*

Two parameters L and Lh, are geometrical parameters, Lp is 
penetration length of fluid which specifies mean displacement 
of fluid particles in one-half of an oscillation period τ*⁄2. Pr 
and α are parameters that describe fluid property. *H is 
channel height and used as a characteristic length.
Considering sinusoidal oscillations, the penetration length is 
defined as:

2
ˆˆ

*
*

*
** τ
ω
π uuLP == (1)

where L*
P is practical measurement of oscillation amplitude

and û* is the mean velocity in half of one period. In order to 
enhance heat transfer, L*

P has to be large enough to permit 
warmed fluid under constant heat flux region moved toward 
constant temperature boundaries. In reciprocating flows, a key 
non-dimensional parameter is Womersely number (α), that is 
defined as follow:

ν
ωα

2**H
= (2)

which ν is kinematic viscosity. Womersely number specifies 
velocity profile shape. Small α values result a quasi-steady 
flow with oscillatory parabolic velocity profiles that are in 
same phase with pressure gradient. In large values of α, well 
known phenomena, i.e. Richardson annular effect is visible.
This effect causes increasing velocity near walls and so 
maximum velocity will not be on the center of channel either. 
In this case particles at different situations oscillate with 
different phase related to pressure gradient [3]. The 
Womersley number is sometimes called the kinetic Reynolds 

number because it plays the same role as the Reynolds number 
in unidirectional steady flows. Prandtel number that shows 
ratio of momentum and thermal diffusivities is also important 
in heat transfer. For reciprocating flows, the thermal boundary 
layer thickness is determined by both the Prandtl and 
Womersley numbers.

III. GOVERNING EQUATIONS

Using below non-dimensional parameters:
x=x*/H*,  y=y*/H*,  t=t*ω*,   u=u*/H*ω*,    p=p*/(ρ*H*ω*2)
                    T=(T*-T0

*)/∆T*,       q"=q "/(k*∆T*/H*)
governing equations of problem (continuity, momentum, and  
energy) in the case of a two-dimensional channel with 
incompressible fluid and constant thermo-physical properties 
are obtained. The velocity has non-dimensionalized using 
ω*H* that is because of lack of a specific velocity for non-
dimensionalization. T*

0 is constant temperature of wall and 
∆T* is maximum allowable temperature difference in the filed, 
that is one of the design parameter. Using these non-
dimensional parameters, we have governing equations in non-
dimensional form as follow

0=⋅∇ u
r (3)
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e
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∂ 1r
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Where u
r
is velocity vector, Re = α2, Pe = Re.Pr and T and P 

are temperature and pressure distribution, respectively. In 
addition fluid properties are considered to be constant. In 
continue, we study fully developed flow, that in result for 
flows in two dimensional channels, velocity has only one 
component in x direction and it is a function of y and t. With 
this assumption continuity equation is satisfied. Due attention 
to the assumed function for pressure gradient, the analytical 
solution for velocity profile can be obtained

IV. ANALYTICAL SOLUTION of MOMENTUM EQUATION

For fully developed flow, momentum equation is simplified 
to bellow form:

2

2
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1
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dx
dp

t
u
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∂
+−=

∂
∂

(6) 

as illustrated, fluid is flowed oscillatory by means of pressure 
gradient via below relation:

)cos( ***
*

*
tA

dx
dp ω−=   (7) 

Using complex function, In non-dimensional form, (7) is 
demonstrated as follow:

))exp(( itA
dx
dp

−ℜ=− (8) 
At the above equation, A is pressure gradient amplitude that 
has been non-dimensionalized with ρ*ω*2H*. If velocity 
profile considered to be as ))(y)exp(-it(ωℜ , and substituted to 
(6), then:

0A i2 =++
′′

ω
α
ω

(9) 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008



By Implementation of boundary conditions for  (12), velocity 
profile obtained as:

]} 
)/α i)Cos((
)y/α i)Cos(( -(-it)[{iAu(y, t) 

421
2211exp

+

+
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(10) 

Equation (10) shows non-dimensional velocity profile in terms 
of non-dimensional parameters y,α , t, and A. At Fig. 2, 
velocity profile in terms of α = 1 and α = 10 are presented 
(Lp = 10). Due attention to obtained velocity function, Lp is 
determined from the below relation

α))i)((
)α(i

-(ALp 4
21tan

1
2212 +
+

ℜ=
(11)

At most references for example reference [6] this parameters 
have been studied and results compared. In one specific
geometry, the only remaining parameters are α and Lp 

equations 1, 2), that in previous studies were quantified 
independently. From the above equations observed that α≈√f*
and A.≈1/F*2 Hence at high frequencies for appropriate Lp 

(high Lp), high pressure gradient is needed that in practical 
point of view is difficult.

V. NUMERICAL SOLUTION of ENERGY EQUATION
At present section energy equation has been solved 
numerically. We start by describing the common spatial 
discretization used by the SEM formulations, then continuous 
Galerkin formulations is presented. 

A. Spatial Discretization
In SEM, the physical domain is divided into quadrilateral 
elements which can be mapped individually to a  computational 
plane (ζ,η). The solution within each element is interpolated 
with a high-order polynomial according to:

( ) ∑∑
= =

Ψ=
N

i
ij

N

j
ji tTtT

0 0
, ),()(ˆ,, ηςης

   (12) 

where Ψij(ζ,η) are the interpolation (or trial) functions in
modal form, and the jiT ,

ˆ  are unknown coefficients that 
depend on time only and has no physical meaning. In two 
dimensions the interpolant consists of tensorized modified 
Jacobi polynomials of the form [7]:

)()(),( ηςης jiij hh=Ψ    (13) 

Where, )(ςih  is defined as follow
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Pi-1
α,β(ζ,η) is Jacobi polynomial of order i.

B. Continuous Galerkin Formulation
The weak form of the advection equation amounts to
finding a T such that

Fig. 2. Analytical solution of the velocity profiles at various 
times during a cycle for (a) α=1, and (b) α=10 
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where, Ψi's are weight functions belonging to the Hilbert space 
H1, and the divergence theorem has been invoked to integrate 
by parts the divergence term. The application of the classical 
Galerkin procedure leads to a discrete system of ordinary 
differential equations of the form MT& −DT = f where T refers 
to the vector of unknown coefficients, M is the mass matrix, D 
represents the discrete divergence operator, and f is the load 
vector on the system.

C. Temporal Discretization
As mentioned above, implementation of Galerkin formulation 
to PDE’s lead to system of ordinary differential equations in 
matrix forms. There are various methods to integrate above 
system of equations in both form of implicit and explicit. Third 
order Adams-Bashforth method because of their wide stability 
region and high accuracy are of interest and is implemented 
[10].

VI. Results validation
At this section, our results have been verified by comparing 
them with results of reference [6]. Two cases of [6] have been 
chosen with below specifications. 
Case 1:

10Pr,1012221 ===== α,   ,    Lmm,    LH H
*

Case 8:
1Pr,112221 ===== α,   ,    Lmm,    LH H

*

In Fig.3 Instantaneous temperature contours for these two cases 
have been compared. As it is observed, there is a good 
agreement between results.

VII. Results and discussion
At this section, oscillations frequency and geometry of a 
channel with bellow specifications are optimized.
H*=0.001m,  L=10, LH=r×L, A*=1000 Pa/m
Air at temperature of C25� is considered as working fluid and 
its specifications assumed to be constant so:

* *
*

* 0.6288H fωα
υ

= = (16) 
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Fig. 3: Instantaneous temperature contours for cases 1 and 8 
of Ref [6]. At both cases (a) and (b) dashed lines are results of 
Ref [6] and solid lines are numerical results of presented 
study.

Where f* is oscillations frequency and α  is Womersely 
number. Considering definition of A:

2 2

*

* * * *

21810.14AA
H fρ ω

= = (17)

as defined above:
2 2 22 1 tan((1 ) )
(1 ) 4pL A i

i
α

α
 
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+  

(18)

Using f* and r (0≤ r ≤1), that is the ratio of constant heat flux 
region to channel length; the problem can be define 
completely. Now appropriate values for f* and r in order to 
maximize heat transfer is discussed.

At first for a constant r, frequency changed at the range of 
0.001≤ f* ≤1000 and at each frequency heat flux q″ is 
calculated. q′′ is non-dimensionalized using heat flux at a 
stationary fluid at the same geometry. In the case of stationary 
fluid only diffusion terms remain and so energy equation is 
reduced to Laplace equation. Defining none-dimensional 
variable, q″⁄q″

cond, effect of advection term in heat transfer for 
various frequency can be studied. These effects have been 
studied for various r and results have shown at Fig.4. In 
addition as observed from Fig. 4, by increasing r to 
approximately r=0.8, advection term, play an important role in 
heat transfer. For example at r=0.8 and optimum frequency of 
f*≈20, advection term can enhance heat transfer rate nearly 9.2 
times. For small and large values of r (r≈0 or r≈1), advection 
term is negligible because at this cases, diffusion is dominated 
heat transfer mechanism.

In addition from Fig. 5 observed that at very high 
frequencies temperature distributions are approached to 
stationary flow condition and effect of advection term in 
energy equation can be neglected. Also at very low

Fig 4: Effect of frequency on heat flux in various magnitudes 
of r. 

frequencies, when flow direction is changed, velocity 
magnitude is nearly zero and temperature distribution will be 
similar to stationary flow, so we have sudden increasing of 
temperature. Sudden enhancement of temperature caused that 
for all values of r at very high and very low frequencies,
values of q″⁄q″

cond have been approached to 1. At Fig.5,
maximum temperature as a function of non-dimensionalized 
time for .r = 0 5 and various frequency of f*=0.001, f*=1.0 
and f*=1000 is represented.

As it shown in Fig. 5-a, at low frequencies, when flow 
direction is changed, there is sudden increasing in maximum 
temperature while for the other times, maximum temperature 
is in an appropriate range. By increasing frequency, amplitude
of temperatures variations reduced and also mean value 
approached to greater ones. At Fig. 5-b this fact is shown. At 
this case, because of flow low average temperature and low 
temperature oscillations amplitude, maximum temperature at 
one period is very smaller than maximum values of Fig.5-a. At 
figure Fig. 5-c, oscillations frequency is very high, and as

Fig 5: temperature in channel as a function of non-
dimensionalized time in half of one period for .r = 0 5 and 
various frequency of a) * .f = 0 001 ,b) * .f =1 0  and c) 

*f = 1000
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described before, this caused to increasing mean value to 
maximum temperature value of stationary flow. Hence
although temperature oscillations amplitude is too low, 
because of high mean value, appropriate condition is not
observed.
At Fig. 4,  for each value of r, maximum allowable heat flux 

has been non-dimensionalized with maximum allowable heat 
flux of stationary flow at corresponding r. So comparison of 
heat transfer magnitude between different values of r is 
provided.
In addition maximum transferred heat is proportional to 

product of maximum heat flux and length of warm zone. In 
order to compare heat transfer of different r, we did non-
dimensionalization in other way. So for each frequency 
transferred heat from warm surface at  r=0.5 is used as 
reference value for non-dimensiolization. At Fig. 6 results of 
this non-dimenalization is shown.
As it shown at very high and very low frequencies for small 

values of r, discharged heat is more than case of r=0.5. At 
0.6 0.7r≤ ≤ for moderate frequencies heat transfer is 
maximum and by increasing or decreasing r, its value is 
reduced. It should be noticed that, although for high and low 
frequencies and low r, relative transferred heat is enhanced, 
since heat transfer rate is very low, in general, there is no 
important improvement in heat transfer. At moderate 
frequencies (as seen from Fig. 4 amount of heat transfer is 
very high. In order to final adding up and obtaining total 
optimum geometry and frequency, for optimum frequencies of 
different r, maximum transferred y has been non-
dimensionalized with transferred heat at optimum frequency 
of r=0.5. Results are presented at Fig. 7. From this figure 
observed that for 0.6r ≈ at corresponding optimum 
frequency, f*≈30, heat transfer is maximum.
   Follow effects of two parameters *A and Pr are studied. At 
Fig. 8 graph of q″⁄q″

cond at r=0.5 for different values of   
A*=100, 1000, 10000 is presented. As shown by increasing 
pressure gradient amplitude (A*), maximum heat flux   
enhanced and occurred at higher frequencies while by 

Fig 6: Effect of frequency on heat transfer in various 
magnitudes of r.

Fig 7: non-dimensiolization total heat  transfer and optimum 
geometry.

reducing A* this value is reduced and approached to lower 
frequencies. This fact is clear because by increasing  pressure 
gradient, oscillations amplitude causes to increasing up and 
heat transfer is improved. In addition optimum frequency is 
enhanced and Richardson annular effect causes to heat 
transfer increasing. This matter for small values of A* is
completely reverse.
At Fig.9 effect of Pr number on heat transfer rate for r=0.5

is shown. At this case Pr=0.707. As seen increasing Pr, 
causes to increasing ratio of heat transfer in presence of 
advection term to heat transfer of stationary flow. This matter 
can not be seen for low Pr, i. e. reality at this case diffusion is 
dominant heat transfer mechanism and advection term can be 
neglected.
   At fluid with low Pr (liquid metals) because of high heat 
conductivity coefficient (k*), conduction heat transfer has 
more contribution in total heat transfer in comparison with 
fluid with high prandtel number. Also for large Pr it seems 
that optimum frequencies don’t change and is independent of 
Pr.

Fig 8: Effect of pressure gradient amplitude on
non-dimensiolization heat flux.

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008



Fig 9: Effect of prandtel number on non-dimensiolization heat 
flux.

 Another matter is thermal developing. In flow with low
Prandtel number, temperature distribution in the fluid is highly 
affected by temperature of other points in the field (because of 
dominance of diffusion term and ellipticity of governing 
equations) at this conditions much little time is needed to 
reach fully development. This fact can be seen from Fig.1 0. 

VIII. Conclusion
Reciprocating forced convection flow has been studied. It is 

shown that for constant pressure gradient (A* = cte.), non-
dimensional parameters Lp and α will not be independent. It is 
found that at high values of α, Richardson annular effect 
become important and heat transfer will be enhanced. On the 
other hand high frequencies cause to sever decreasing the 
oscillations amplitude and penetration length. Reduction of 
penetration length, prevent the appropriate convection of the
fluid under constant heat flux zone toward constant 
temperature boundaries and result reduction of heat transfer 
rate. In order to show this fact with an example, optimum 
frequency and geometry for maximization of heat transfer rate 
is investigated.

Fig 10: Effect of prandtel number on thermal development.

At very high frequencies, oscillations amplitude is reduced and 
fluid has very small displacement. At very high frequencies the 
fluid becomes stationary conduction heat transfer will occurred.  
At very low frequencies, mechanism of heat transfer is nearly 
unidirectional forced convection. Since at this case Pe is a small 
number, when fluid changes direction, thermal developing is 
done quickly and so when u ≈ 0 heat transfer mechanism is 
conduction. For a specified fluid, If higher value determined for 
A*, maximum value is occurred at higher frequencies and in 
addition, because of Richardson annular effect, value of q/qmax
is enhanced. On the contrary decreasing A*, optimum point is 
shifted to lower frequencies and q/qmax is also decreased. 
Furthermore, geometrical parameters also might to be 
optimized, i.e., with constant L (Lh + Lt = L = cte.), optimum 
ratio of r=LH/L for maximum heat transfer rate has been 
obtained. By assumption of constant A and specific fluid, 
optimum values for Lh, and  α is obtained so the heat transfer 
rate be maximum. This procedure also can be done by 
numerical method of optimization such as genetic algorithm 
that in future works will be performed.
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