
 

 

 

  

Abstract—One of the central problems in modern biology is to 

identify the complete set of interactions among the proteins in a 

cell. The structural interaction of proteins and their domains in 

networks is one of the most basic molecular mechanisms for 

biological cells, and structural evidence indicates that, 

interacting pairs of close homologs usually interact in the same 

way. In this article, we make use of both evolutionary and 

structural relationships to predict interaction between protein 

pairs solely by amino acid sequence information. High quality 

core set of 150 yeast proteins obtained from the Database of 

Interacting Proteins (DIP) was considered to test the accuracy of 

the proposed method. The strongest prediction of the method 

reached over 70% accuracy. These results show great potential 

for the proposed method. 

 
Index Terms—Protein-protein interaction, pairwise 

alignment, protein domain, inter-domain linker regions. 

 

I. INTRODUCTION 

A. The importance of protein–protein interactions 

The term protein-protein interaction refers to the 

association of protein molecules and the study of these 

associations from the perspective of biochemistry, signal 

transduction and networks. Protein-protein interactions occur 

at almost every level of cell function, in the structure of 

sub-cellular organelles, the transport machinery across the 

various biological membranes, the packaging of chromatin, 

the network of sub-membrane filaments, muscle contraction, 

signal transduction, and regulation of gene expression, to 

name a few [1]. Abnormal protein-protein interactions have 

implications in a number of neurological disorders; include 

Creutzfeld-Jacob and Alzheimer's diseases. Because of the 

importance of protein-protein interactions in cell 

development and disease, the topic has been studied 

extensively for many years and a large number of approaches 

to detect protein-protein interactions have been developed. 

Each of these approaches has strengths and weaknesses, 

especially with regard to the sensitivity and specificity of the 

method.  

B. Current methods to predict protein–protein 

interactions  

One of the major goals in functional genomics is to 

determine protein interaction networks for whole organisms, 

and many of the experimental methods have been applied to 

study this problem. Co-immunoprecipitation is considered to 
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be the gold standard assay for protein-protein interactions, 

especially when it is performed with endogenous proteins [2]. 

The protein of interest is isolated with a specific antibody. 

Interaction partners that stick to this protein are subsequently 

identified by western blotting. Interactions detected by this 

approach are considered to be real, but this method can only 

verify interactions between suspected interaction partners. 

Thus, this method is not a screening approach to identify 

unknown protein-protein interactions. 

The yeast two-hybrid screen investigates the interaction 

between artificial fusion proteins inside the nucleus of yeast 

[3]. This approach can identify binding partners of a protein 

in an unbiased manner, but this method suffers from high 

false-positive rate which makes it necessary to verify the 

identified interactions by co-immunoprecipitation. 

Tandem Affinity Purification (TAP) detects interactions 

within the correct cellular environment [4], which is a big 

advantage over the yeast two-hybrid approach. However, the 

TAP tag method requires two successive steps of protein 

purification, and thus this method cannot readily detect 

transient protein-protein interactions. This method is not an 

efficient means to detect physical protein-protein interactions 

that exist in different cellular environments either, which is 

especially important when studying the interaction network in 

an organism’s genome a very significant in the post-genomic 

era.  

Quantitative immunoprecipitation combined with 

knock-down (QUICK) relies on co-immunoprecipitation, 

quantitative mass spectrometry (SILAC) and RNA 

interference (RNAi) was introduced. This method detects 

interactions among endogenous non-tagged proteins [5], and 

thus this method’s results have the same high confidence as 

co-immunoprecipitation. However, this method also depends 

on the availability of suitable antibodies. 

These high-throughput methods have contributed 

tremendously in the creation of databases containing large 

sets of protein interactions, such as Database of Interacting 

Proteins (DIP) [6], MIPS [7] (developed at the Martinsried 

Institute for Protein Sequences) and Human Protein 

Reference Database (HPRD) [8]. In addition, several in silico 

methods have been developed to predict protein–protein 

interactions based on features such as gene context [9]. These 

include gene fusion [10], gene neighborhood [11] and 

phylogenetic profiles [12]. However, most of the in silico 

methods seek to predict functional association, which often 

implies but is not restricted to physical binding. 

Despite the availability of the mentioned methods of 

predicting protein-protein interaction, the accuracy and 

coverage of these techniques have proven to be limited. 
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Computational approaches remain essential both to assist in 

the design and validation of the experimental studies and for 

the prediction of interaction partners and detailed structures 

of protein complexes [13].  

C. Computational approaches to predict protein-protein 

interaction 

Some of the earliest techniques predict interacting proteins 

through the similarity of expression profiles [14], 

coordination of occurrence of gene products in genomes, 

description of similarity of phylogenetic profiles [12] or trees 

[15], and studying the patterns of domain fusion [16]. 

However, it has been noted that these methods predict 

protein–protein interactions in a general sense, meaning joint 

involvement in a certain biological process, and not 

necessarily actual physical interaction [17].   

Most of the recent works focus on employing the protein 

domain knowledge to predict the protein-protein interaction 

[18]-[22]. The motivation for this choice is that molecular 

interactions are typically mediated by a great variety of 

interacting domains [23]. It is thus logical to assume that the 

patterns of domain occurrence in interacting proteins provide 

useful information for training protein-protein interaction 

prediction methods [24]. An emerging new approach in the 

protein interactions field is to take advantage of structural 

information to predict physical binding [25]-[26]. Although 

the total number of complexes of known structure is relatively 

small, it is possible to expand this set by considering 

evolutionary relationships between proteins. It has been 

shown that in most cases close homologs (>30% sequence 

identity) physically interact in the same way with each other. 

However, conservation of a particular interaction depends on 

the conservation of the interface between interacting partners 

[27]. 

In this paper, we propose to predict protein-protein 

interaction using only sequence information. The proposed 

method combines evolutionary and structural relationships 

between protein pair to predict the interaction between them. 

Evolutionary relationships will be incorporated by measuring 

the similarity between protein pair using Pairwise Alignment. 

Structural relationships will be incorporated in terms of 

protein domain knowledge. We are encouraged by the fact 

that compositions of contacting residues in protein sequence 

are unique, and that incorporating evolutionary and predicted 

structural information improves the prediction of 

protein–protein interactions [28]. 

 

II. METHOD 

In this paper, we present a simple yet effective method to 

predict protein-protein interaction solely by amino acid 

sequence information. Figure 1, illustrates the overview of the 

proposed method. It consists of three main steps: (a) 

extracting the evolutionary relationships by measuring 

regions of similarity that may reflect functional, structural or 

evolutionary relationships between protein sequences (b) 

downsize the protein sequences of interest by predicting and 

eliminating inter-domain linker regions (c) scanning and 

detecting domain matches in all the protein sequences of 

interest. Two proteins may interact if they share similar 

domains. 

 

 

 
 

Fig. 1. Overview of the proposed method. 

 

A. Similarity Measures between Protein Sequences 

Using Pairwise Alignment 

One of the most fundamental tools in the field of 

bioinformatics is sequence alignment. By aligning 

sequences to one another, it is possible to evaluate how 

similar the sequences are and identify conserved regions in 

sets of related sequences. Therefore, our proposed method 

starts by measuring the protein-protein interaction 

sequence similarity, which reflects the evolutionary and 

homology relationships. Two protein sequences may 

interact by the mean of the amino acid similarities they 

contain [24]. This work is motivated by the observation 

that the Smith-Waterman (SW), algorithm [29], which 

measures the similarity score between two sequences by a 

local gapped alignment, provides a relevant measure of 

similarity between protein sequences. This similarity 

incorporates biological knowledge about protein 

evolutionary structural relationships [30]. 

The Smith-Waterman similarity score ),( 21 xxSW  

between two protein sequences 1x  and 2x  is the score of 

the best local alignment with gaps between the two protein 

sequences computed by the Smith-Waterman dynamic 

programming algorithm. Let us denote by µ  a possible 

local alignment between 1x  and 2x , defined by a number 

n  of aligned residues, and by the indices 
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11 ...1 xii n ≤<<≤  and 21 ...1 xjj n ≤<<≤  of the 

aligned residues in 1x  and 2x  respectively. Let us also 

denote by ),( 21 xx∏  the set of all possible local 

alignments between 1x  and 2x , and by ),,( 21 µxxp the 

score of the local alignment ),( 21 xx∏∈µ between 1x  

and 2x , the Smith-Waterman score ),( 21 xxSW  between 

sequences 1x  and 2x  can be written as: 
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The similarity matrix can be calculated as follow: 
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where m  is the number of the protein sequences.  

 

For example, suppose we have the following randomly 

selected protein-protein interaction dataset: 

 

YDR190C, YPL235W, YDR441C, YML022W, 

YLL059C, YML011C, YGR281W and YPR021C 

represented by 1x , 2x , 
3x , 4x , 

5x , 
6x , 

7x  and
8x  

respectively. The interaction between these 8 proteins is 

shown in Figure 2.  

 
Fig. 2. The interaction between the randomly selected 

proteins. 

 

Then the SW similarity score matrix aMatrix _  will be 

calculated as: 

 
 

From aMatrix _ , higher score may reflect interaction 

between two proteins. ),( 21 xxSW  and ),( 12 xxSW  scores 

are equal to 465; ),( 43 xxSW and ),( 34 xxSW  scores are 

equal to 553, which confirm the interaction possibility. 

However, ),( 65 xxSW  and ),( 56 xxSW  scores are equal to 

24; ),( 87 xxSW  and ),( 78 xxSW  scores are equal to 36, 

which are not the highest scores. To correct these errors 

more biological information is needed, which lead us to the 

second part of our method. 

B. Identify and Eliminating Inter-domain Linker 

Regions 

The results could be further enhanced by incorporating 

inter-domain linker regions knowledge.  The next step of 

our algorithm is to predict inter-domain linker regions 

solely by amino acid sequence information. Our intention 

here is to identify and eliminate all the inter-domain linker 

regions from the protein sequences of interest. By doing 

this step, we are actually downsizing the protein sequence 

to shorter ones with only domains, which may produce 

better alignment scores. In this case, the prediction is made 

by using linker index deduced from a data set of 

domain/linker segments from SWISS-PROT database 

[31]. DomCut developed by Suyama et al [32] is employed 

to predict linker regions among functional domains based 

on the difference in amino acid composition between 

domain and linker regions. Following [32], we defined the 

linker index iS  for amino acid residue i  and it is 

calculated as follows: 
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Where kerLin

if  is the frequency of amino acid residue i  in 

the linker region and 
Domain

if  is the frequency of amino 

acid residue i  in the domain region. The negative value of 

iS  means that the amino acid preferably exists in a linker 

region. A threshold value is needed to separate linker 

regions as shown in Figure 3.  Amino acids with linker 

score greater than the set threshold value will be eliminated 

from the protein sequence of interest. 

 

Fig. 3. An example of linker preference profile generated 

using Domcut. In this case, linker regions greater than the 

threshold value 0.093 will be eliminated from the protein 

sequence. 

 

When applying the second part of the method, the matrix 

aMatrix _  will be calculated as follows: 
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From aMatrix _ , its clearly noted that, more evidence is 

shown to confirm the interaction possibility between  

proteins 
7x and 

8x , and therefore, the result is 

furthermore enhanced. In the following part of the method, 

protein domain knowledge will be incorporated in 

aMatrix _  for better accuracy. 

C. Detecting Domain Matches and Associated 

Structural Relationships in Proteins 

In this part of the method, protein domains knowledge 

will be incorporated in aMatrix _ . Protein domains are 

highly informative for predicting protein-protein 

interaction as it reflects the potential structural 

relationships between them. In this implementation, we 

employed ps_scan [33] to scan one or several patterns, 

rules and profiles from PROSITE against our protein 

sequences of interest. Running ps_scan through the 8 

proteins identifies the following Domains: 

 

YDR441C (
3x )  → PS00103 

YML022W (
4x ) → PS00103 

YGR281W (
7x ) → PS00211, PS50893 and PS50929 

YPR021C (
8x )  → PS50929 

 

Which reveals structural relationships between proteins 

3x  and 4x ; and proteins 
7x  and 

8x . This step is 

illustrated in Figure 4. 

 

 

 

Fig. 4. An example of domain PS00103 found in proteins 

YDR441C and YML022W. 

 

Based on this relationship, ),( 43 xxSW  and 

),( 87 xxSW will be calculated as follow: 

 

300*),(),( 4343 kxxSWxxSW +=    (4) 

300*),(),( 8787 kxxSWxxSW +=    (5) 

Where k is the number of Domains the two interacting 

proteins share. Unfortunately, these results have not added 

more accuracy in this case, however, it confirmed the 

interacting possibilities between proteins 3x  and 4x ; 7x  

and 8x .  

III. EXPERIMENTL WORK 

To test our method, we obtained the protein-protein 

interaction data from the Database of Interacting Proteins 

(DIP). The DIP database catalogs experimentally 

determined interactions between proteins. It combines 

information from a variety of sources to create a single, 

consistent set of protein-protein interactions in 

Saccharomyces cerevisiae. The data stored within the DIP 

database were curated, both, manually by expert curators 

and also automatically using computational approaches 

that utilize the knowledge about the protein-protein 

interaction networks. This knowledge is extracted from the 

most reliable, core subset of the DIP data [34]. The DIP 

version we used contains 4749 proteins involved in 15675 

interactions for which there is domain information [6]. 

However, only high quality core set of 2609 yeast proteins 

was considered in this experimental work. This core set is 

involved in 6355 interactions, which have been determined 

by at least one small-scale experiment or two independent 

experiments [35]. Furthermore, we selected proteins 

interacts with only one protein and not involved in any 

other interactions. This process results in a dataset of 150 

proteins with 75 positive interactions as shown in Figure 5. 

The intention here is to design a method capable of 

predicting protein interaction partner, which facilitate a 

way to construct protein-protein interaction using only 

protein sequences information. 

We started our experimental work by measuring the 

protein-protein sequence interaction similarity using 

Smith-Waterman algorithm as implemented in FASTA 

[36].  The default parameters are used: gap opening penalty 

and extension penalties of 13 and 1, respectively, and a 

substitution matrix BLOSUM62 matrix. Various types of 

substitution matrices have been used over the years. Some 

were based on theoretical considerations, however, the 

most successful, based on analysis of alignments of 

numerous homologs of well-studies proteins from many 

different species [37]. The choice of which substitution 

matrix to use is not trivial because there is no one correct 

scoring scheme for all circumstances. The BLOSUM 

matrix is another very common used amino acid 

substitution matrix that depends on data from actual 

substitutions. This procedure produces the matrix 

150150_ XaMatrix . This matrix was then enhanced by 

incorporating inter-domain linker regions information. In 

this case, only well defined domains with sequence length 

ranging from 50 to 500 residues were considered. We 

skipped all the frequently matching (unspecific) domains. 

A trashed value of 0.093 is used to separate the linker 

regions. Any residue generates an index greater than the 

threshold value results in eliminating it. This procedure 

downsized the protein sequences without losing the 

biological information. In fact, running the SW algorithm 

on a sequence having pure domains, results in better 

accuracy. A linker preference profile is generated using the 

linker index values along an amino acid sequence using a 

siding window. A window of size 15=w  is used because 

it gives the best performance. 
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Fig. 5. Dataset of core interaction proteins used in the 

experimental work. 

 

 Further more, protein domains knowledge will be 

incorporated in 
150150_ XaMatrix . In this implementation, 

ps_scan [33] is used to scan one or several patterns, rules 

and profiles from PROSITE against the 150 protein 

sequences. All frequently matching (unspecific) patterns 

and profiles are skipped. The ps_scan requires two 

compiled external programs from the PFTOOLS package : 

"pfscan" used to scan a sequence against a profile library 

and "psa2msa" which is necessary for the "-o msa" output 

format only. The 
150150_ XaMatrix  is then used to predict 

the protein interaction network. Two proteins may interact 

if the similarity score between them is the highest. 

IV. RESULTS AND DISCUSSION 

The performance of the proposed method is measured by 

how well it can predict the protein-protein interaction 

network. Prediction accuracy, whose value is the ratio of 

the number of correctly predicted interactions between 

protein pairs to the total number of interactions and 

non-interactions possibilities in network, is the best index 

for evaluating the performance of a predictor. However, 

approximately 20% of the data are truly interacting 

proteins, which leads to a rather unbalanced distribution of 

interacting and non-interacting cases.  

To assess our method objectively, another two indices 

are introduced in this paper, namely specificity and 

sensitivity commonly used in the evaluation of information 

retrieval. A high sensitivity means that many of the 

interactions that occur in reality are detected by the 

method. A high specificity indicates that most of the 

interactions detected by the screen are also occurring in 

reality. Sensitivity and specificity are combined measures 

of true positive ( tp ), true negative ( tn ), false positive 

( fp ) and false negative ( fn ) and can be expressed as: 

Sensitivity (Sens) = 
fntp

tp

+
, Specificity (Spec) = 

fptn

tn

+
 

 
Where, tp  = interacting two protein sequences classified 

interacting, 

fn = non-interacting two protein sequences classified 

interacting, 

fp = interacting two protein sequences classified 

non-interacting, 

tn = non- interacting two protein sequences classified 

non-interacting  

 

Based on the above mentioned performance measures, our 

algorithm was able to achieve encouraging results. In 

Figures 6 and 7, we summarized the sensitivity and 

specificity results based on the three stages of the method. 

The figures clearly show improvement in sensitivity but not 

much in specificity and that’s because of the big number of 

non-interacting possibilities. 
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Fig. 6. Sensitivity and specificity results. 
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Fig. 7. Overall accuracy. 

 

The overall performance evaluation results are 

summarized in Table 1. 

 

        Table 1: Overall performance evaluation 

 
*Rate of False Positive (RFP), which defined as the fraction of negative 

test sequences that score as high as or better than the positive sequence 

RFP = 

)( tnfp

fp

+

 for 0)( >+ tnfp  [38]. 
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V. CONCLUSION 

In this article we make use of both evolutionary and 

structural similarities among domains of known interacting 

proteins to predict putative protein interaction pairs. When 

tested on a sample data obtained from the Database of 

Interacting Proteins (DIP), the proposed method shows 

great potential and a new vision to predict protein-protein 

interaction. It proves that the combination of methods 

predicts domain boundaries or linker regions from 

different aspects and the evolutionary relationships would 

improve accuracy and reliability of the prediction as a 

whole. However, it is difficult to directly compare the 

accuracy of our proposed method because all of the other 

existing methods use different criteria for assessing the 

predictive power. Moreover, these existing methods use 

completely different characteristics in the prediction. One 

of the immediate future works is to consider the entire 

protein-protein interaction network and not to restrict our 

work on binary protein-protein interaction. 

REFERENCES 

[1] Donaldson, I., Martin, J., de Bruijn, B., Wolting, C., Lay, V., 

Tuekam, B., Zhang, S., Baskin, B., Bader, G.D., Michalickova, K., 

Pawson, T., and Hogue, C.W. (2003). PreBIND and 

Textomy--mining the biomedical literature for protein-protein 

interactions using a support vector machine. BMC Bioinformatics. 

4:11. 

[2] Gharakhanian, E., Takahashi, J., Clever, J., and Kasamatsu, H. 

(1998). In vitro Assay for Protein-Protein Interaction: 

Carboxyl-Terminal 40 Residues of Simian Virus 40 Structural 

Protein VP3 Contain a Determinant for Interaction with VP1. 

PNAS 85(18):6607-6611. 

[3] Bartel, P.L. and Fields, S. (eds) (1997). The yeast two-hybrid 

system. In Advances in Molecular Biology. Oxford University 

Press, New York. 

[4] Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and 

Seraphin, B. (1999). A generic protein purification method for 

protein complex characterization and proteome exploration. Nature 

Biotechnology. 17(10):1030-1032. 

[5] Selbach, M. and Mann, M. (2006). Protein interaction screening by 

quantitative immunoprecipitation combined with knockdown 

(QUICK). Nature Methods. 3:981-983. 

[6] L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U. Bowie, D. 

Eisenberg, “The Database of Interacting Proteins: 2004 update”, 

Nucleic Acids Res. 2004 Jan 1;32, pp:449-51. 

[7] Mewes,H.W. et al. (2004) MIPS: analysis and annotation of 

proteins from whole genomes. Nucleic Acids Res., 32 (Database 

issue), D41–D44. 

[8] Peri,S. et al. (2004) Human protein reference database as a 

discovery resource for proteomics. Nucleic Acids Res., 32 

(Database issue), D497–D501. 

[9] Espadaler,J. et al. (2005) Detecting remotely related proteins by 

their interactions and sequence similarity. Proc. Natl Acad. Sci. 

USA, 102, 7151–7156. 

[10] Marcotte,E. et al. (1999) Detecting protein function and 

protein–protein interactions from genome sequences. Science, 285, 

751–753. 

[11] Dandekar,T. et al. (1998) Conservation of gene order: a fingerprint 

of proteins that physically interact. Trends Biochem. Sci., 23, 

324–328. 

[12] M. Pellegrini, E. M. Marcotte, M. J. Thompson, D. Eisenberg, and 

T. O. Yeates, “Assigning protein functions by comparative genome 

analysis: protein phylogenetic profiles,” In the proceedings of 

National Academy of Sciences, USA, vol. 96, 1999, pp: 

4285–4288. 

[13] A. Szilàgyi, V. Grimm, A. K Arakaki and J. Sholnick, “Prediction 

of physical protein-protein interactions”, Phys. Biol. 2005, pp: 

1-16. 

[14] E. M. Marcotte, M. Pellegrini, M. J. Thompson, T. O. Yeates, and 

D. Eisenberg, “A combined algorithm for genome-wide prediction 

of protein function,” Nature, vol. 402, 1999, pp: 83–86. 

[15] F. Pazos and A. Valencia, “Similarity of phylogenetic trees as 

indicator of protein-protein interaction,” Protein Engineering, vol. 

14(9), 2001, pp: 609- 614. 

[16] J. Enright, I. N. Ilipoulos, C. Kyrpides, and C. A. Ouzounis, 

“Protein interaction maps for complete genomes based on gene 

fusion events,” Nature, vol. 402, 1999, pp: 86–90. 

[17] D. Eisenberg, E. M. Marcotte, I. Xenarios, and T. O. Yeates, 

“Protein function in the post-genomic era,” Nature, vol. 405, 2000, 

pp: 823-826. 

[18] J. Wojcik and V. Schachter, “Protein-Protein interaction map 

inference using interacting domain profile pairs,” Bioinformatics, 

vol. 17, 2001, pp: S296-S305. 

[19] W. K. Kim, J. Park, and J. K. Suh, “Large scale statistical prediction 

of protein-protein interaction by potentially interacting domain 

(PID) pair,” Genome Informatics, vol. 13, 2002, pp: 42-50. 

[20] S. K. Ng, Z. Zhang, and S. H. Tan, “integrative approach for 

computationally inferring protein domain interactions,” 

Bioinformatics, 19, 2002, pp: 923-929. 

[21] S. M. Gomez, W. S. Noble, and A. Rzhetsky, “Learning to predict 

protein-protein interactions from protein sequences,” 

Bioinformatics, 19, 2003, pp: 1875-1881. 

[22] C. Huang, F. Morcos, S. P. Kanaan, S. Wuchty, A. Z. Chen, and J. 

A. Izaguirre, “Predicting Protein-Protein Interactions from Protein 

Domains Using a Set Cover Approach”, IEEE/ACM Transactions 

on Computational Biology and Bioinformatics, vol. 4, no. 1, 2007. 

[23] T. Pawson and P. Nash, “Assembly of cell regulatory systems 

through protein interaction domains,” Science, vol. 300, 2003, pp: 

445-452. 

[24] N. M. Zaki, S. Deris and H. Alashwal, “Protein Protein Interaction 

Detection Based on Substring Sensitivity Measure", International J. 

of Biomedical Sci., Vol. 1, 2006, pp: 148-154. 

[25] P. Aloy and R. B. Russell, “InterPreTS: protein interaction 

prediction through tertiary structure”, Bioinformatics, 19, 2003, 

pp: 161–162. 

[26] L. Lu, “Multiprospector: an algorithm for the prediction of 

protein–protein interactions by multimeric threading”, Proteins, 49, 

2002, pp: 350–364. 

[27] J. Espadaler, O. Romero-Isart, R. M. Jackson and B. Oliva1 

"Prediction of protein–protein interactions using distant 

conservation of sequence patterns and structure relationships", 

Bioinformatics, Vol. 21 no. 16 2005, pp: 3360–3368. 

[28] O. Keskin, “A new, structurally nonredundant, diverse data set of 

protein–protein interfaces and its implications”, Protein Sci., 13, 

2004, 1043–1055. 

[29] T. Smith and M. Waterman, “Identification of common molecular 

subsequences”, J. Mol. Bio., 147, 1981, pp: 195-197. 

[30] H. Saigo, J. Vert, N. Ueda and T. Akutsu, “Protein homology 

detection using string alignment kernels,” Bioinformatics, Vol. 20 

no. 11, 2004, pp: 1682-1689. 

[31] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence 

database and its supplement TrEMBL in 2000”, Nucleic Acids 

Res., 28, 2000, pp: 45–48. 

[32] M. Suyama and O. Ohara, "DomCut: prediction of inter-domain 

linker regions in amino acid sequences", Bioinformatics 19, 2003, 

pp: 673-674. 

[33] A. Gattiker, E. Gasteiger, A. Bairoch, “ScanProsite: a reference 

implementation of a PROSITE scanning tool”, Applied 

Bioinformatics, 1(2), 2002, pp: 107-108. 

[34] I. Xenarios, L. Salwínski, X. J. Duan, P. Higney, S. Kim and D. 

Eisenberg, “DIP, the Database of Interacting Proteins: a research 

tool for studying cellular networks of protein interactions” , Nucleic 

Acids Research, Oxford University Press, vol. 30, 2002, pp: 

303-305. 

[35] C. M. Deane, L. Salwinski, I. Xenarios, and D. Eisenberg, “Protein 

interactions: two methods for assessment of the reliability of high 

throughput observations,” Molecular & Cellular Proteomics, vol. 

1(5), 2002, pp: 349-56. 

[36] W. R. Pearson, “Rapid and sensitive sequence comparisons with 

FASTAP and FASTA Method”, Enzymol, 183, 1985, pp: 63. 

[37] Marketa, Z. and Jeremy, O. B., “Understanding bioinformatics”, 

Garland Science, Taylor & Francis Group, LLC, 2008. 

[38] N. M. Zaki, S. Deris, and R. M. Illias, “Performance analysis of 

string kernel on protein remote homology detection”, Applied 

Bioinformatics, vol 4, (1), 2005, pp: 45-52. 

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008


