
 
 

  
Abstract—Dynamic programming partitions the problem 

into not completely independent sub problems and solves every 
sub problem just once and then saves its answer in a table in 
forward path. The required space for this table usually is 
proportional to the square of the input size that   is contained a 
huge part of memory. In this paper we describe a new method 
for reducing the space complexity of dynamic programming. In 
this method, that information is saved in forward path, which 
they cannot reproduce at backward path. A stack is used for 
saving this data. By this way the path of constructing optimal 
solution can be reproduced by using saved information in stack. 
We can find some rules for selecting saved information. As an 
example we applied this method on Longest Common 
Subsequence (LCS) problem for global alignment of DNA 
sequences. As we examined in proposed algorithm, the size of 
stack in comparing to using space for LCS algorithm was 
reduced about 10 times and we could increase the input size in 
global alignment 
 

Index Terms—bidirectional method, global alignment, 
Longest Common Subsequence (LCS).  
 

I. INTRODUCTION 
  Dynamic programming is typically applied to 

optimization problems and partitions the problem into not 
completely independent sub problems. A 
dynamic-programming algorithm solves every sub problem 
just once and then saves its answer in a table, thereby 
avoiding the work of recomputing the answer every time the 
sub problem is encountered. 

 The development of a dynamic-programming algorithm 
can be broken into a sequence of four steps [1]: 
1) Characterize the structure of an optimal solution.  
2) Recursively defines the value of an optimal solution.  
3) Compute the value of an optimal solution in a bottom-up 

fashion (forward step). 
4) 4. Construct an optimal solution from computed 

information (backward step).  
Steps 1–3 form the basis of a dynamic-programming 

solution to a problem. Step 4 can be omitted if only the value 
of an optimal solution is required. When we do perform step 
4, we sometimes maintain additional information during the 
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computation in step 3 in a table. This table traverses inversely 
in step 4 to construct an optimal solution. The required space 
for this table usually is proportional to the square of the input 
size that is contained a huge part of memory. Therefore, in 
some problems with large input size, the space of memory is 
too big that we cannot run the program. As an example, we 
can point to Longest Common Subsequence (LCS) 
algorithm.  

The LCS problem is one of the classical and well-studied 
problems in computer science which has extensive 
applications in diverse areas ranging from spelling error 
corrections to molecular biology. The LCS problem is a 
common task in DNA sequence analysis, and has 
applications to genetics and molecular biology [2]-[5]. The 
classic dynamic programming solution to LCS problem, 
invented by Wagner and Fischer [6], has O(n2) worst case 
running time. However, several algorithms exist with 
complexities depending on other parameters. For a 
comprehensive comparison of the well-known algorithms for 
LCS problem and study of their behavior in various 
application environments the readers are referred to [7]. LCS 
is the only algorithm that has optimal solution and 
independent to the shape of its inputs. Because of the space 
complexity of this algorithm is the multiplication of 
sequences’ lengths; we cannot use it for long sequences. For 
example for two sequences with 50 Kb lengths, we need at 
least 2.5 GB memory. Therefore we cannot use LCS for long 
sequences on ordinary computers.  

This large space is used for saving forward path in step 3 to 
construct longest common subsequence in step 4. If it is 
possible to produce the information in forward step at 
backward path, it is possible not to save all the table of 
forward path. By this way, the used memory is reduced but 
this is sometimes impossible and we need some information 
that without them, we cannot reproduce primary path.       

This article proposes a solution that with using it we can 
reduce memory complexity in dynamic programming at 
forward path. In this method, that information is saved which 
they cannot reproduce at backward path. A stack is used for 
saving this information. By this way the path of constructing 
optimal solution can be reproduced by using saved 
information in stack at step 4. This method was applied on 
LCS algorithm with DNA sequences as input. Because of 
reducing memory space, the input sequences could be 
increased up to several times proportion to LCS algorithm.  
The rest of the paper is organized as follows. In Section 2, we 
present all the definitions and notations to introduce the 
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concepts of LCS which we wish to handle in this paper. Also, 
we review the traditional dynamic programming techniques 
to solve the global alignment problem. In Sections 3, we 
present new algorithm for all the variants discussed in this 
paper. In particular, we first present reproduction rules 
implement-able in dynamically finding LCS and then explain 
preprocessing to find the variables not needed in backward 
iteration. In section 4, some experimental result is described 
and finally we have a conclusion and propose some future 
works. 

 

II. 2. RELATED WORKS 
The comparison of biological sequences is one of the 

oldest problems in computational biology, and early work on 
the problem resulted in what were arguably the first highly 
successful and widely adopted applications of computer 
science to biology. It became apparent early on that 
alignment programs could be divided into two types: first. 
Local alignment methods (Smith and Waterman, 1981; 
Gotoh, 1982; Pearson and Lipman, 1988; Altschul et al., 
1990; Huang and Miller, 1991; Burkhardt et al., 1999; Arslan 
et al., 2001; Ma et al., 2002) are designed to search for highly 
similar regions in two sequences, where the regions of 
similarity are not necessarily conserved in order and 
orientation. Local alignment algorithms are generally very 
useful in finding similarity between regions that may be 
related but are inverted or rearranged with respect to each 
other. A problem with local alignment algorithms is that, 
because of the weaker assumptions in place, there is less 
power in finding weakly conserved regions; furthermore, 
identified conserved regions may not be true homolog's (i.e., 
related via a common ancestor). Global alignment algorithms 
(e.g., Needleman and Wunsch 1970) are suitable when an 
extra assumption holds, namely, that the highly similar 
regions in the sequences appear in the same order and 
orientation. Global alignment algorithms have been found to 
be useful in many situations because biological sequences 
from related organisms tend to satisfy the order assumption. 
Because we must examine genome appear to have order and 
orientation preserved with long  length (up to 8 Mb for 
human), the global alignment   models lead to slow 
algorithms that are also very memory intensive[8],[9].  

There are 3 optimal solutions for global alignment problem. 
The first is LCS algorithm that is based on dynamic 
programming and has time and memory complexity O(M*N). 
M and N are the length of two sequences. It is completely 
described in next subsection. 

The second is bidirectional algorithm that is based on LCS. 
This method has two parts. In part one, forward step of LCS 
is done and for reducing memory, only current and right 
previous row of table is saved. Then after finishing forward 
path, we have only the last row and the row before it. In part 
two, backward step of LCS is done by saving information in 
the last two rows. Everywhere the information is not enough 
to construct backward path, part one of algorithm is run to 
find that information. When two paths received each other, 
we have a point that divides each sequence to two sections. 
After that the algorithm can be applied on section 1 and 
section 2 of each sequence individually and repeatedly. 

 Part 1 of bidirectional method has O(M*N) time 
complexity and O(2*min(M,N)) memory complexity. In part 
2, part 1 is called and this is continued repeatedly. Therefore, 
although memory complexity is reduced, final time 
complexity is larger than LCS algorithm [10].        

The third is based on LCS algorithm, too. It is a divide and 
conquers approach that performs alignment in linear space 
complexity for the expense of just doubling the 
computational time. The algorithm is described in next 
subsection). 

 

A. Longest Common Subsequence Algorithm (LCS) 
Definition 1: An initial substring S' of a string S is a 

sequence of characters S'[i] = S[i] for i = 1, …, u where u is 
length of S' and is less than or equal to length of S.   

The Whole of process can be saved in two (M+1) x (N+1) 
tables, named TblValues and TblParents, such that M and N 
are the length of SL as longer string and Ss as smaller one 
respectively. Rows are indexed by 0… M and Columns are 
indexed by 0… N. 

TblValues[i][j] represents a value which indicates the 
length of the longest common sequence between two 
substrings SLi and SSj .  SLi is an initial substring of SL 
where its length is equal to i. Also SSj is, in a same way, an 
initial substring of SS where its length is equal to j. 

This process is done in two iterations, forward and 
backward. 

 In the forward iteration, elements of matrices TblValues 
and TblParents, as described in following, are filled by a 
dynamic approach. Assume that the first character of each 
string is located at index 1. Hence, for every i and j, 
TblValues[i][0]=TblValues[0][j]=0.Then, for every i, j >0  

 
                  

(1) 
 

TblParents[i][j] also indicates, in which way 
TblValues[i][j] is made based on (1).TblValues[M][N] 
indicates the length of LCS (Longest Common Sequence) but 
a backward iteration is needed to produce the LCS itself by 
using the matrix TblParents. Values which can be assigned to 
elements of TblParents are [\ , ← , ↑] in order of their 
priorities. If TblParents[i][j] is ← , the value of the associates 
element in TblValues is equal to its left neighbor element i.e., 
TblValues [i] [j-1]. In this case, LCS of SLi and SSj, as the 
current state, can be equal to LCS of SLi and SSj-1, as the 
parent state. In this case, we call the left neighbor element as 
the parent of current element. In the same way, ↑ indicates 
the top neighbor element as the parent such that LCS of 
current state is the same as LCS of SLi-1 and SSj, as the 
parent state. If SL[i] is equal to SS[j], TblParents[i] [j] is set 
to'\' in order o identify the top-left neighbor as the parent. 
This is the only case, in which the length of current LCS is 
one more than the length of LCS of parent state. If more than 
one value can be chosen to assign, the one with more priority 
is selected.  

 In backward iteration, we start from the element in row M 
and column N, as the end state. The process goes on by 
considering parent of current state as the new current state in 
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each level until it reaches to the element in row and/or 
column 0. From now the path which connects these states in 
this order is named optimal sequence, in this article. Any 
visited state which is valued \ identifies its associated 
character in SL or SS (which are the same) as a character of 
LCS of SL and SS. We cannot reproduce the TblParents 
elements in backward iteration. Therefore, if the characters of 
LCS are desired, at least matrix TblParents must be saved in 
forward iteration. Although the TblValues is not necessary 
saved with M rows, Saving TblParents takes O(M*N) 
memory. 

There is a procedure to reproduce the ith row of TblParents 
by using ith row of TblValues, as shown in (2): 

⎪
⎩

⎪
⎨

⎧

↑

−=←
=

=

otherwise
jiTblVjiTblVelseif

jSiSif
jiTblP

SL

]1][[]][[
][][\

]][[           (2) 

But this procedure cannot be used to reproduce the whole of 
rows of TblParents unless TblValues is saved completely or 
it can be reproduced independent of TblParents. Saving 
TblValues takes O (M.N) memory as same as 
TblParents[11]-[13]. 
  

B. Divide and Conqure Aalgorithm 
The longest path in the TblParents passes through an 

unknown middle point (i , M/2).  For simplicity assume M is 
even. Let's try to find middle point instead of trying to find 
the entire longest path. This can be done in linear space by 
computing the lengths of the longest path from (0,0) to 
(i,M/2) for 0≤ i ≤N and the length of longest path from 
(i,M/2) to (N,M) reversly. The value L = TblValues[i][M/2] 
+ reversed(Tblvalues[i][M/2]) is the length of the longest 
path from (0,0) to (N,M) passing through the point (i,M/2). 
Therefore, with maximizing L, the length of longest path is 
computed and a middle point is identified. 

Computing these values required the time equal to area of 
the left rectangle from column 1 to m/2 plus the area of the 
right rectangle from column M/2 +1 to M and the space O(N) 
Fig. 1. After the middle point (i,M/2) is found,the problem of 
finding the logest path from (0,0)to (N,M) can be portioned 
into two subproblems: finding the longest path from (0,0) to 
middle point (i,M/2) and finding the longest path from 
middle point to (N,M). instead of trying to find these pathes, 
we first try to find the middle point in the corresponding 
rectangles. This can be done in the time equal to the area of 
these rectangles, which is two times smaller than the area of 
the original rectangle. Computing in this way, we will find 
the middle vertices of all rectangles in time area + area/2 + 
area/4 + … ≤ 2*area and therefore compute the longest path 
in time O(N*M) and space O(N) [10].  

 

III. PROPOSED ALGORITHM 
There are so many dynamic algorithms (commonly 

graph-based) that should have a backward procedure and use 
a huge amount of memory to determine the optimal path. In 
some of them, a state needs the information of all previous 
states to gain values of its variables. In some others, states are 
divided into some layers and each state only needs the states 

in previous layer. Hence, the memory can be used only to 
save previous and current layers of states to calculate the 
optimal  

 
Fig.1 unidirectional algorithm 

 
 

value. But finding the optimal path needs a backward 
iteration whereas values of variables in only two last layers 
are in hand. In case of these algorithms, there is no method to 
reproduce the unsaved information while the backward 
procedure is taking place unless it starts again from the start 
state that is much time consuming. In this case, to reduce the 
required space, some methods have been proposed such as 
bidirectional/unidirectional divide and conquer [10]. There is 
usually no way to reproduce unsaved information of a special 
state with respect to the information of states which are 
visited later. But some of these algorithms, such as finding 
LCS, can reproduce much of this information by a reverse 
action with respect to the later states which are visited earlier 
in backward procedure. Hence, the required memory space 
may decrease to size of two layers even if the optimal path is 
desired. 

Unfortunately, this reverse action is not applicable on all 
variables and it seems that they must be stored as same as 
before. Since the backward procedure also takes place layer 
by layer, these variables can be stacked in forward and pop in 
backward procedure. Therefore, some memory is needed to 
store the stack in addition of two layers. In following, some 
methods have been proposed to reproduce some elements of 
a row in TblValues with respect to the next row. In forward 
iteration, each layer is produced with respect to previous one 
and then newer layer is overwritten on older one to free the 
space for next row. Before any overwriting takes place, 
elements of older one can be tested whether they are 
reproducible by elements of new row. If they never can be 
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reproduced, they will be stacked.  
There are some variables in search algorithms which may 

never be used in backward procedure. These variables are 
problem dependent and it is not possible to predefine them. 
Hence with respect to the problem (in this case, regarding the 
strings) these variables can be specified by a preprocessing in 
order to reduce both of memory storage and processing time. 
In fallowing, some preprocessing has been proposed for 
finding LCS. 

Despite, using a stack to save only not reproducible 
variables reduces the needed memory space but the size of 
the stack is also so large to be stored in most of high size 
problems. To overcome this lack, two general methods and 
one specific method for LCS problem are proposed. 

In LCS, the variables are stack in order of row visiting (top 
to down) and then right to left. Hence, the element at the top 
of stack is one of not reproducible variables which located in 
row with bigger index than others and, in having same row 
index, it is located in the most left position. In this article, 
some type of storing the stack is considered such that at each 
level, the element in the lowest row in a specified column 
which is not yet pop is reachable in O(1).  Each element is 
stored by its value, column number, TRow number and the 
index of previous element in the stack with the same column 
number. Also an array, named 'ColumnView', is used to save 
the index of the last pushed element in the stack with a 
specified column number. TRow number associated to an 
element is the minimum row number of elements with the 
same value and same column. It can also be stored in an array 
(with the same size as a row) for elements of current row in 
forward iteration and it may changes in overwriting 
procedure. 

 

A. Reproduction rules implement-able in dynamically 
finding LCS: 
To reproduce elements of a row from the values exposed 

by the next row, elements are considered from left to right 
and their values are calculated by following rules in order of 
their presentation: 
1) If this variable has been stacked (as the top of the stack), 

it will be pop. Its value is assigned to associated element 
in matrix, and its reference to the previous element in 
stack with the same column is utilized to update the array 
ColumnView.  

2) Regarding the next row in TblParents (Which is 
reproduced by associated row in TblValues) this element 
is parent of any element, named child, its value can be 
calculated by the value of child. 

3) If values of the bottom neighbor B and bottom right 
neighbor BR are not similar, BR is certainly one more 
than B and value of the element in the hand is equal to B. 

4) If value of the left neighbor is same as B, value of current 
element is B too. 

5) If you reach this state, the neighbors in TblValues are 
valued as shown in Fig. 2 : 

 
B-1 * ? 
? B B 

Fig. 2 reproduction rule5 

 
Where, the '*' identifies the current element at the hand and '?' 
shows the undetermined value. * can be only B or B-1. Set R 
and C as the row and column numbers of current element 
respectively. If the value of element referenced by 
ColumnView[C] is equal to B, * is located between two 
elements in column C with value B; hence * is equal to B too. 
6) If value of element which is referenced by 

ColumnView[C+1] is equal to B, name its TRow 
number as T. Hence TblValues[T][C+1] is equal to B but 
surly TblValues[T-1][C+1] is B-1. Hence the parent of 
element in row T and column C+1 can never be its top 
neighbor. If SL[T]≠SS[C+1], parent of element in row 
T and column C+1 is certainly its left neighbor. Hence, 
TblValues[T][C] is also equal to B. Since T is lower than 
or equal to R, * is also B. 

7) Assume that Y<=R is specified such that for every i 
between Y and R inclusively, TblValues[i][C-1] is equal 
to B-1, as shown in Fig. 3: 

 
Y B-1 ? ? 
… B-1 ? ? 
J B-1 # ? 
… B-1 ? ? 
R B-1 * ? 
R+1 ? B B 
 C-1 C C+1 

 
Fig. 3 reproduction rule7 

 
Y is a variable which specifies a row index such that 
TblValues[Y][C-1]is the same as TblValues[R][C-1] but Y is 
tried to be as minimum as possible. In our implementation, Y 
is equal to R at the start of reproducing row indexed by R. 
When value of element located in row R and column C is 
determined, then Y is updated by (3) to be used for next 
element.  

⎪
⎩

⎪
⎨

⎧

−
−==

otherwiseCRtGrandparen
CRTblVCRTblVelseifY

ExistsCEifCEofTRow
Y oldnew

1),(
]1][[]][[

)()(
             (3) 

 
Where, E(R, C) is the element which were or still is 
referenced by ColumnView[C] such that value of that 
stacked element is equal to TblValues[R][C]; E(R, C) is also 
saved in an array for current row and is updated whenever an 
element is pop from stack. Grandparent (R, C) is presented by 
(4): 
 

]][][[),( CSRsAppearanceCRtGrandparen S=                     (4) 
 
Hence, examination of this condition is done in O(1) time 
complexity and O(k.M) memory complexity. 
 
8) In state that none of above conditions is satisfied, value 

of current element at the hand is equal to B-1 (one less 
than value of bottom neighbor). 

Because replication By considering above conditions in 
reproduction of rows, stacking elements is done in forward 
iteration as described in fallowing. In forward iteration, new 
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row of TblValues and TblParents are produced by 
considering values of elements in previous row of TblValues. 
Before replacement of older row with newer one, all elements 
of older row in TblValues are considered from right to left. 
Afterwards, each element, which cannot be reproduced by 
elements of new row in TblValues and TblParents with above 
procedure, is stacked unless its value is less then value of its 
bottom neighbor B. 

 

B. Preprocessing to find the variables not needed in 
backward iteration 
From now, any element, in TblV or TblP, is known as an 

equality point if its associated characters in SL and SS are the 
same. According to previous discussions, any element is an 
equality point if and only if value of its associated element in 
TblP is '\'. Since of equality points are only dependent on the 
associated characters, they are identified even before running 
the algorithm. 

Definition 2: el(a,b) is used to address an element located 
in row a and column b of TblV or TblP matrices and is 
associated with LCS of SL a and SS b such that its parent is 
identified in TblP[a][b] and the length of LCS is stored in 
TblV[a][b]. 

Definition 3: Up-Right bound is a sequence of elements 
starts from el(1,1) such that each of following elements is 
right neighbor(in matrix) of previous element in sequence 
unless the previous element would be an equality point. In the 
case that an element of sequence is an equality point, its 
bottom-right neighbor is selected as the next element in 
Up-Right sequence. Up-Right bound can be stored by array 
UR with size N. 

Definition 4: Up-Left bound is defined similar to Up-Right 
except that each element is the bottom neighbor of previous 
element unless the previous element is an equality point. It 
can be represented by an array UL with size M. 

Indeed, Up-Right and Up-Left sequences find common 
sequences, as large as possible, whereas this common 
sequence is an initial substring of SL and SS respectively.  

Definition 5: Down-Right bound sequence is a sequence of 
elements start from el(M,N) such that each of following 
elements is the top neighbor( in matrix) of its previous 
element in sequence unless the previous element is an 
equality point. In the case that an equality point is presented, 
the top-left neighbor is selected as the next element. This 
sequence may be represented by an array DR with size M. 

Definition 6: Down-Left bound sequence is the same as the 
Down-Right except that each element is the left neighbor (in 
matrix) of previous element unless the previous one is an 
equality point. It may be represented by an array DL with size 
N. 

Down-Right and Down-Left sequences are Up-Left and 
Up-Right sequences respectively if SL and SS are presented 
inversely (from end to start). In the backward iteration, the 
optimal sequence never exceeds these bounds and having 
associated values of these bounds elements in TblV, a huge 
amount of this table is not needed to be stacked.  

 

IV. 4. EXPERIMENTAL RESULT 
The new algorithm is implemented as a computer program 

named SBDP (Stack Based Dynamic Programming). The 
SBDP program can handle both DNA and protein sequences 
for global alignment. The program takes as input two 
sequences in FASTA format. We tested SBDP on DNA 
sequences with large length up to 100kb[14,15]. The results 
indicate that SBDP almost worked as expected and use a 
stack with almost 1.5Gb on an ordinary computer with 
512Mb RAM. If sequences with the same length are applied 
on LCS algorithm, it needs a memory larger than 10Gb. 
SBDP has reduced the used memory to the least size that it is 
possible by using stack.  

The method is used in this algorithm could be an idea for 
using in all dynamic programming algorithms. The main idea 
in dynamic programming is the memorization every possible 
state and saving the forward path and the traverse that path 
inversely in backward step to construct the optimal solution. 
If the input size of algorithm is become large, the memory 
space will be too large that running the program is become 
impossible. Based on proposed algorithm in this article all 
possible state and forward path are not saved. We can find 
some rules that in forward step only that information is saved 
which cannot be reproduced in backward step. The rules 
extract of method of calculating middle results and the 
characteristics of forward path. Since the backward 
procedure also take place layer by layer, the information can 
be stacked in forward and pop in backward procedure. The 
stack can be become small to 10 times in comparing to using 
memory for LCS algorithm. Therefore free space can be used 
for larger inputs. In our experimental result, it is proved. As 
we examined in SBDP algorithm, the size of stack in 
comparing to space size of LCS algorithm was reduced about 
10 times and we could increase the input size in global 
alignment.  

The time complexity of SBDP algorithm is O(M*N) and in 
comparing to LCS increases a little that its reason is 
reproduction of backward path. SBDP algorithm cannot 
reduce memory as much as unidirectional algorithm. But 
with respect to not producing all of backward path, the run 
time of SBDP algorithm is faster than unidirectional method. 
Also, unidirectional algorithm is divide and conquer method 
that is a recursive program and for large input size the used 
space for recursion could be considerable. 

 As conclusion, we can use different algorithms by this 
way: 
1) Since the input size is not so large that we can run the 

LCS algorithm, it is the best selection in run time. 
2) Since we don't have enough memory and the input size is 

large, we can use the SBDP algorithm and it is faster 
than unidirectional method. 

3) Since the length of stack is too large that we cannot run 
SBDP algorithm, the unidirectional method can be used. 
It is obvious that in this case run time is slower than other 
algorithms. 

As future work, we can implement SBDP algorithm with 
divide and conquer method. By this way we have not only the 
linear space of unidirectional algorithm, but also we have fast 
run time of SBDP algorithm. This method is designing and 
will be described completely in the future article..  
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V.  CONCLUSION 
Dynamic programming is typically applied to optimization 

problems and partition the problem into not completely 
independent sub problems. A dynamic-programming 
algorithm solves every sub problem just once and then saves 
its answer in a table, thereby avoiding the work of 
recomputing the answer every time the sub problem is 
encountered. Dynamic programming has two forward and 
backward steps. In forward step the table is produced and in 
backward step this table traverses inversely to construct an 
optimal solution. The required space for this table usually is 
proportional to the square of the input size that is  a huge part 
of memory. Therefore, in some problems with large input 
size, the space of memory is too large that we cannot run the 
program. 

This article proposes a solution that with using it we can 
reduce memory complexity in dynamic programming at 
forward path. In this method, that information is saved in 
forward path, which they cannot reproduce at backward path. 
A stack is used for saving this information. By this way the 
path of constructing optimal solution can be reproduced by 
using saved information in stack. We can find some rules for 
selecting saved information. The rules extract of method of 
calculating middle results and the characteristics of forward 
path. Since the backward procedure also take place layer by 
layer, the information can be stacked in forward and pop in 
backward procedure. As an example we applied this method 
on LCS problem. The LCS problem is a common task in 
DNA sequence analysis, and has applications to genetics and 
molecular biology. The classic dynamic programming 
solution to LCS problem has O(n2) worst case running time 
and space complexity. With respect to the saved information 
in its table and the characteristics of backward path, some 
rules were extracted. By these rules some information was 
stacked in forward step and pop in backward step to 
reproduce the backward path and constructing an optimal 
longest subsequence. The size of stack in comparing to space 
size of LCS algorithm was reduced about 10 times and we 
could increase the input size in global alignment. The time 
complexity of proposed algorithm is O(M*N) and in 
comparing to LCS increases a little that its reason is 
reproduction of backward path.  
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