

Abstract—Dynamic programming partitions the problem

into not completely independent sub problems and solves every
sub problem just once and then saves its answer in a table in
forward path. The required space for this table usually is
proportional to the square of the input size that is contained a
huge part of memory. In this paper we describe a new method
for reducing the space complexity of dynamic programming. In
this method, that information is saved in forward path, which
they cannot reproduce at backward path. A stack is used for
saving this data. By this way the path of constructing optimal
solution can be reproduced by using saved information in stack.
We can find some rules for selecting saved information. As an
example we applied this method on Longest Common
Subsequence (LCS) problem for global alignment of DNA
sequences. As we examined in proposed algorithm, the size of
stack in comparing to using space for LCS algorithm was
reduced about 10 times and we could increase the input size in
global alignment

Index Terms—bidirectional method, global alignment,
Longest Common Subsequence (LCS).

I. INTRODUCTION
 Dynamic programming is typically applied to

optimization problems and partitions the problem into not
completely independent sub problems. A
dynamic-programming algorithm solves every sub problem
just once and then saves its answer in a table, thereby
avoiding the work of recomputing the answer every time the
sub problem is encountered.

 The development of a dynamic-programming algorithm
can be broken into a sequence of four steps [1]:
1) Characterize the structure of an optimal solution.
2) Recursively defines the value of an optimal solution.
3) Compute the value of an optimal solution in a bottom-up

fashion (forward step).
4) 4. Construct an optimal solution from computed

information (backward step).
Steps 1–3 form the basis of a dynamic-programming

solution to a problem. Step 4 can be omitted if only the value
of an optimal solution is required. When we do perform step
4, we sometimes maintain additional information during the

R.Khayami is with the Departement of Computer Engineering, Islamic
Azad University of Shiraz, Iran (corresponding author), phone:
0098-917-100-4856; fax: 0098-711-6271747;
(e-mail: srkhayami@yahoo.com).

E. Parvinnia, Departement of Computer Science and Engineering, Shiraz
University, Shiraz, Iran (e-mail: parvinn@shirazu.ac.ir).

computation in step 3 in a table. This table traverses inversely
in step 4 to construct an optimal solution. The required space
for this table usually is proportional to the square of the input
size that is contained a huge part of memory. Therefore, in
some problems with large input size, the space of memory is
too big that we cannot run the program. As an example, we
can point to Longest Common Subsequence (LCS)
algorithm.

The LCS problem is one of the classical and well-studied
problems in computer science which has extensive
applications in diverse areas ranging from spelling error
corrections to molecular biology. The LCS problem is a
common task in DNA sequence analysis, and has
applications to genetics and molecular biology [2]-[5]. The
classic dynamic programming solution to LCS problem,
invented by Wagner and Fischer [6], has O(n2) worst case
running time. However, several algorithms exist with
complexities depending on other parameters. For a
comprehensive comparison of the well-known algorithms for
LCS problem and study of their behavior in various
application environments the readers are referred to [7]. LCS
is the only algorithm that has optimal solution and
independent to the shape of its inputs. Because of the space
complexity of this algorithm is the multiplication of
sequences’ lengths; we cannot use it for long sequences. For
example for two sequences with 50 Kb lengths, we need at
least 2.5 GB memory. Therefore we cannot use LCS for long
sequences on ordinary computers.

This large space is used for saving forward path in step 3 to
construct longest common subsequence in step 4. If it is
possible to produce the information in forward step at
backward path, it is possible not to save all the table of
forward path. By this way, the used memory is reduced but
this is sometimes impossible and we need some information
that without them, we cannot reproduce primary path.

This article proposes a solution that with using it we can
reduce memory complexity in dynamic programming at
forward path. In this method, that information is saved which
they cannot reproduce at backward path. A stack is used for
saving this information. By this way the path of constructing
optimal solution can be reproduced by using saved
information in stack at step 4. This method was applied on
LCS algorithm with DNA sequences as input. Because of
reducing memory space, the input sequences could be
increased up to several times proportion to LCS algorithm.
The rest of the paper is organized as follows. In Section 2, we
present all the definitions and notations to introduce the

A Novel Stack based Dynamic Programming for
Reducing Memory Complexity

 Applied on DNA Sequences

R. Khayami, E. Parvinnia

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

concepts of LCS which we wish to handle in this paper. Also,
we review the traditional dynamic programming techniques
to solve the global alignment problem. In Sections 3, we
present new algorithm for all the variants discussed in this
paper. In particular, we first present reproduction rules
implement-able in dynamically finding LCS and then explain
preprocessing to find the variables not needed in backward
iteration. In section 4, some experimental result is described
and finally we have a conclusion and propose some future
works.

II. 2. RELATED WORKS
The comparison of biological sequences is one of the

oldest problems in computational biology, and early work on
the problem resulted in what were arguably the first highly
successful and widely adopted applications of computer
science to biology. It became apparent early on that
alignment programs could be divided into two types: first.
Local alignment methods (Smith and Waterman, 1981;
Gotoh, 1982; Pearson and Lipman, 1988; Altschul et al.,
1990; Huang and Miller, 1991; Burkhardt et al., 1999; Arslan
et al., 2001; Ma et al., 2002) are designed to search for highly
similar regions in two sequences, where the regions of
similarity are not necessarily conserved in order and
orientation. Local alignment algorithms are generally very
useful in finding similarity between regions that may be
related but are inverted or rearranged with respect to each
other. A problem with local alignment algorithms is that,
because of the weaker assumptions in place, there is less
power in finding weakly conserved regions; furthermore,
identified conserved regions may not be true homolog's (i.e.,
related via a common ancestor). Global alignment algorithms
(e.g., Needleman and Wunsch 1970) are suitable when an
extra assumption holds, namely, that the highly similar
regions in the sequences appear in the same order and
orientation. Global alignment algorithms have been found to
be useful in many situations because biological sequences
from related organisms tend to satisfy the order assumption.
Because we must examine genome appear to have order and
orientation preserved with long length (up to 8 Mb for
human), the global alignment models lead to slow
algorithms that are also very memory intensive[8],[9].

There are 3 optimal solutions for global alignment problem.
The first is LCS algorithm that is based on dynamic
programming and has time and memory complexity O(M*N).
M and N are the length of two sequences. It is completely
described in next subsection.

The second is bidirectional algorithm that is based on LCS.
This method has two parts. In part one, forward step of LCS
is done and for reducing memory, only current and right
previous row of table is saved. Then after finishing forward
path, we have only the last row and the row before it. In part
two, backward step of LCS is done by saving information in
the last two rows. Everywhere the information is not enough
to construct backward path, part one of algorithm is run to
find that information. When two paths received each other,
we have a point that divides each sequence to two sections.
After that the algorithm can be applied on section 1 and
section 2 of each sequence individually and repeatedly.

 Part 1 of bidirectional method has O(M*N) time
complexity and O(2*min(M,N)) memory complexity. In part
2, part 1 is called and this is continued repeatedly. Therefore,
although memory complexity is reduced, final time
complexity is larger than LCS algorithm [10].

The third is based on LCS algorithm, too. It is a divide and
conquers approach that performs alignment in linear space
complexity for the expense of just doubling the
computational time. The algorithm is described in next
subsection).

A. Longest Common Subsequence Algorithm (LCS)
Definition 1: An initial substring S' of a string S is a

sequence of characters S'[i] = S[i] for i = 1, …, u where u is
length of S' and is less than or equal to length of S.

The Whole of process can be saved in two (M+1) x (N+1)
tables, named TblValues and TblParents, such that M and N
are the length of SL as longer string and Ss as smaller one
respectively. Rows are indexed by 0… M and Columns are
indexed by 0… N.

TblValues[i][j] represents a value which indicates the
length of the longest common sequence between two
substrings SLi and SSj . SLi is an initial substring of SL
where its length is equal to i. Also SSj is, in a same way, an
initial substring of SS where its length is equal to j.

This process is done in two iterations, forward and
backward.

 In the forward iteration, elements of matrices TblValues
and TblParents, as described in following, are filled by a
dynamic approach. Assume that the first character of each
string is located at index 1. Hence, for every i and j,
TblValues[i][0]=TblValues[0][j]=0.Then, for every i, j >0

(1)

TblParents[i][j] also indicates, in which way
TblValues[i][j] is made based on (1).TblValues[M][N]
indicates the length of LCS (Longest Common Sequence) but
a backward iteration is needed to produce the LCS itself by
using the matrix TblParents. Values which can be assigned to
elements of TblParents are [\ , ← , ↑] in order of their
priorities. If TblParents[i][j] is ← , the value of the associates
element in TblValues is equal to its left neighbor element i.e.,
TblValues [i] [j-1]. In this case, LCS of SLi and SSj, as the
current state, can be equal to LCS of SLi and SSj-1, as the
parent state. In this case, we call the left neighbor element as
the parent of current element. In the same way, ↑ indicates
the top neighbor element as the parent such that LCS of
current state is the same as LCS of SLi-1 and SSj, as the
parent state. If SL[i] is equal to SS[j], TblParents[i] [j] is set
to'\' in order o identify the top-left neighbor as the parent.
This is the only case, in which the length of current LCS is
one more than the length of LCS of parent state. If more than
one value can be chosen to assign, the one with more priority
is selected.

 In backward iteration, we start from the element in row M
and column N, as the end state. The process goes on by
considering parent of current state as the new current state in

()⎪
⎩

⎪
⎨

⎧

−−

=+−−
=

otherwisejiTBlVjiTblV

j
S

Si
L

SifjiTblV
jiTblV

]1][[],][1[max

][][1]1][1[
]][[

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

each level until it reaches to the element in row and/or
column 0. From now the path which connects these states in
this order is named optimal sequence, in this article. Any
visited state which is valued \ identifies its associated
character in SL or SS (which are the same) as a character of
LCS of SL and SS. We cannot reproduce the TblParents
elements in backward iteration. Therefore, if the characters of
LCS are desired, at least matrix TblParents must be saved in
forward iteration. Although the TblValues is not necessary
saved with M rows, Saving TblParents takes O(M*N)
memory.

There is a procedure to reproduce the ith row of TblParents
by using ith row of TblValues, as shown in (2):

⎪
⎩

⎪
⎨

⎧

↑

−=←
=

=

otherwise
jiTblVjiTblVelseif

jSiSif
jiTblP

SL

]1][[]][[
][][\

]][[(2)

But this procedure cannot be used to reproduce the whole of
rows of TblParents unless TblValues is saved completely or
it can be reproduced independent of TblParents. Saving
TblValues takes O (M.N) memory as same as
TblParents[11]-[13].

B. Divide and Conqure Aalgorithm
The longest path in the TblParents passes through an

unknown middle point (i , M/2). For simplicity assume M is
even. Let's try to find middle point instead of trying to find
the entire longest path. This can be done in linear space by
computing the lengths of the longest path from (0,0) to
(i,M/2) for 0≤ i ≤N and the length of longest path from
(i,M/2) to (N,M) reversly. The value L = TblValues[i][M/2]
+ reversed(Tblvalues[i][M/2]) is the length of the longest
path from (0,0) to (N,M) passing through the point (i,M/2).
Therefore, with maximizing L, the length of longest path is
computed and a middle point is identified.

Computing these values required the time equal to area of
the left rectangle from column 1 to m/2 plus the area of the
right rectangle from column M/2 +1 to M and the space O(N)
Fig. 1. After the middle point (i,M/2) is found,the problem of
finding the logest path from (0,0)to (N,M) can be portioned
into two subproblems: finding the longest path from (0,0) to
middle point (i,M/2) and finding the longest path from
middle point to (N,M). instead of trying to find these pathes,
we first try to find the middle point in the corresponding
rectangles. This can be done in the time equal to the area of
these rectangles, which is two times smaller than the area of
the original rectangle. Computing in this way, we will find
the middle vertices of all rectangles in time area + area/2 +
area/4 + … ≤ 2*area and therefore compute the longest path
in time O(N*M) and space O(N) [10].

III. PROPOSED ALGORITHM
There are so many dynamic algorithms (commonly

graph-based) that should have a backward procedure and use
a huge amount of memory to determine the optimal path. In
some of them, a state needs the information of all previous
states to gain values of its variables. In some others, states are
divided into some layers and each state only needs the states

in previous layer. Hence, the memory can be used only to
save previous and current layers of states to calculate the
optimal

Fig.1 unidirectional algorithm

value. But finding the optimal path needs a backward
iteration whereas values of variables in only two last layers
are in hand. In case of these algorithms, there is no method to
reproduce the unsaved information while the backward
procedure is taking place unless it starts again from the start
state that is much time consuming. In this case, to reduce the
required space, some methods have been proposed such as
bidirectional/unidirectional divide and conquer [10]. There is
usually no way to reproduce unsaved information of a special
state with respect to the information of states which are
visited later. But some of these algorithms, such as finding
LCS, can reproduce much of this information by a reverse
action with respect to the later states which are visited earlier
in backward procedure. Hence, the required memory space
may decrease to size of two layers even if the optimal path is
desired.

Unfortunately, this reverse action is not applicable on all
variables and it seems that they must be stored as same as
before. Since the backward procedure also takes place layer
by layer, these variables can be stacked in forward and pop in
backward procedure. Therefore, some memory is needed to
store the stack in addition of two layers. In following, some
methods have been proposed to reproduce some elements of
a row in TblValues with respect to the next row. In forward
iteration, each layer is produced with respect to previous one
and then newer layer is overwritten on older one to free the
space for next row. Before any overwriting takes place,
elements of older one can be tested whether they are
reproducible by elements of new row. If they never can be

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

reproduced, they will be stacked.
There are some variables in search algorithms which may

never be used in backward procedure. These variables are
problem dependent and it is not possible to predefine them.
Hence with respect to the problem (in this case, regarding the
strings) these variables can be specified by a preprocessing in
order to reduce both of memory storage and processing time.
In fallowing, some preprocessing has been proposed for
finding LCS.

Despite, using a stack to save only not reproducible
variables reduces the needed memory space but the size of
the stack is also so large to be stored in most of high size
problems. To overcome this lack, two general methods and
one specific method for LCS problem are proposed.

In LCS, the variables are stack in order of row visiting (top
to down) and then right to left. Hence, the element at the top
of stack is one of not reproducible variables which located in
row with bigger index than others and, in having same row
index, it is located in the most left position. In this article,
some type of storing the stack is considered such that at each
level, the element in the lowest row in a specified column
which is not yet pop is reachable in O(1). Each element is
stored by its value, column number, TRow number and the
index of previous element in the stack with the same column
number. Also an array, named 'ColumnView', is used to save
the index of the last pushed element in the stack with a
specified column number. TRow number associated to an
element is the minimum row number of elements with the
same value and same column. It can also be stored in an array
(with the same size as a row) for elements of current row in
forward iteration and it may changes in overwriting
procedure.

A. Reproduction rules implement-able in dynamically
finding LCS:
To reproduce elements of a row from the values exposed

by the next row, elements are considered from left to right
and their values are calculated by following rules in order of
their presentation:
1) If this variable has been stacked (as the top of the stack),

it will be pop. Its value is assigned to associated element
in matrix, and its reference to the previous element in
stack with the same column is utilized to update the array
ColumnView.

2) Regarding the next row in TblParents (Which is
reproduced by associated row in TblValues) this element
is parent of any element, named child, its value can be
calculated by the value of child.

3) If values of the bottom neighbor B and bottom right
neighbor BR are not similar, BR is certainly one more
than B and value of the element in the hand is equal to B.

4) If value of the left neighbor is same as B, value of current
element is B too.

5) If you reach this state, the neighbors in TblValues are
valued as shown in Fig. 2 :

B-1 * ?
? B B

Fig. 2 reproduction rule5

Where, the '*' identifies the current element at the hand and '?'
shows the undetermined value. * can be only B or B-1. Set R
and C as the row and column numbers of current element
respectively. If the value of element referenced by
ColumnView[C] is equal to B, * is located between two
elements in column C with value B; hence * is equal to B too.
6) If value of element which is referenced by

ColumnView[C+1] is equal to B, name its TRow
number as T. Hence TblValues[T][C+1] is equal to B but
surly TblValues[T-1][C+1] is B-1. Hence the parent of
element in row T and column C+1 can never be its top
neighbor. If SL[T]≠SS[C+1], parent of element in row
T and column C+1 is certainly its left neighbor. Hence,
TblValues[T][C] is also equal to B. Since T is lower than
or equal to R, * is also B.

7) Assume that Y<=R is specified such that for every i
between Y and R inclusively, TblValues[i][C-1] is equal
to B-1, as shown in Fig. 3:

Y B-1 ? ?
… B-1 ? ?
J B-1 # ?
… B-1 ? ?
R B-1 * ?
R+1 ? B B
 C-1 C C+1

Fig. 3 reproduction rule7

Y is a variable which specifies a row index such that
TblValues[Y][C-1]is the same as TblValues[R][C-1] but Y is
tried to be as minimum as possible. In our implementation, Y
is equal to R at the start of reproducing row indexed by R.
When value of element located in row R and column C is
determined, then Y is updated by (3) to be used for next
element.

⎪
⎩

⎪
⎨

⎧

−
−==

otherwiseCRtGrandparen
CRTblVCRTblVelseifY

ExistsCEifCEofTRow
Y oldnew

1),(
]1][[]][[

)()(
 (3)

Where, E(R, C) is the element which were or still is
referenced by ColumnView[C] such that value of that
stacked element is equal to TblValues[R][C]; E(R, C) is also
saved in an array for current row and is updated whenever an
element is pop from stack. Grandparent (R, C) is presented by
(4):

]][][[),(CSRsAppearanceCRtGrandparen S= (4)

Hence, examination of this condition is done in O(1) time
complexity and O(k.M) memory complexity.

8) In state that none of above conditions is satisfied, value

of current element at the hand is equal to B-1 (one less
than value of bottom neighbor).

Because replication By considering above conditions in
reproduction of rows, stacking elements is done in forward
iteration as described in fallowing. In forward iteration, new

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

row of TblValues and TblParents are produced by
considering values of elements in previous row of TblValues.
Before replacement of older row with newer one, all elements
of older row in TblValues are considered from right to left.
Afterwards, each element, which cannot be reproduced by
elements of new row in TblValues and TblParents with above
procedure, is stacked unless its value is less then value of its
bottom neighbor B.

B. Preprocessing to find the variables not needed in
backward iteration
From now, any element, in TblV or TblP, is known as an

equality point if its associated characters in SL and SS are the
same. According to previous discussions, any element is an
equality point if and only if value of its associated element in
TblP is '\'. Since of equality points are only dependent on the
associated characters, they are identified even before running
the algorithm.

Definition 2: el(a,b) is used to address an element located
in row a and column b of TblV or TblP matrices and is
associated with LCS of SL a and SS b such that its parent is
identified in TblP[a][b] and the length of LCS is stored in
TblV[a][b].

Definition 3: Up-Right bound is a sequence of elements
starts from el(1,1) such that each of following elements is
right neighbor(in matrix) of previous element in sequence
unless the previous element would be an equality point. In the
case that an element of sequence is an equality point, its
bottom-right neighbor is selected as the next element in
Up-Right sequence. Up-Right bound can be stored by array
UR with size N.

Definition 4: Up-Left bound is defined similar to Up-Right
except that each element is the bottom neighbor of previous
element unless the previous element is an equality point. It
can be represented by an array UL with size M.

Indeed, Up-Right and Up-Left sequences find common
sequences, as large as possible, whereas this common
sequence is an initial substring of SL and SS respectively.

Definition 5: Down-Right bound sequence is a sequence of
elements start from el(M,N) such that each of following
elements is the top neighbor(in matrix) of its previous
element in sequence unless the previous element is an
equality point. In the case that an equality point is presented,
the top-left neighbor is selected as the next element. This
sequence may be represented by an array DR with size M.

Definition 6: Down-Left bound sequence is the same as the
Down-Right except that each element is the left neighbor (in
matrix) of previous element unless the previous one is an
equality point. It may be represented by an array DL with size
N.

Down-Right and Down-Left sequences are Up-Left and
Up-Right sequences respectively if SL and SS are presented
inversely (from end to start). In the backward iteration, the
optimal sequence never exceeds these bounds and having
associated values of these bounds elements in TblV, a huge
amount of this table is not needed to be stacked.

IV. 4. EXPERIMENTAL RESULT
The new algorithm is implemented as a computer program

named SBDP (Stack Based Dynamic Programming). The
SBDP program can handle both DNA and protein sequences
for global alignment. The program takes as input two
sequences in FASTA format. We tested SBDP on DNA
sequences with large length up to 100kb[14,15]. The results
indicate that SBDP almost worked as expected and use a
stack with almost 1.5Gb on an ordinary computer with
512Mb RAM. If sequences with the same length are applied
on LCS algorithm, it needs a memory larger than 10Gb.
SBDP has reduced the used memory to the least size that it is
possible by using stack.

The method is used in this algorithm could be an idea for
using in all dynamic programming algorithms. The main idea
in dynamic programming is the memorization every possible
state and saving the forward path and the traverse that path
inversely in backward step to construct the optimal solution.
If the input size of algorithm is become large, the memory
space will be too large that running the program is become
impossible. Based on proposed algorithm in this article all
possible state and forward path are not saved. We can find
some rules that in forward step only that information is saved
which cannot be reproduced in backward step. The rules
extract of method of calculating middle results and the
characteristics of forward path. Since the backward
procedure also take place layer by layer, the information can
be stacked in forward and pop in backward procedure. The
stack can be become small to 10 times in comparing to using
memory for LCS algorithm. Therefore free space can be used
for larger inputs. In our experimental result, it is proved. As
we examined in SBDP algorithm, the size of stack in
comparing to space size of LCS algorithm was reduced about
10 times and we could increase the input size in global
alignment.

The time complexity of SBDP algorithm is O(M*N) and in
comparing to LCS increases a little that its reason is
reproduction of backward path. SBDP algorithm cannot
reduce memory as much as unidirectional algorithm. But
with respect to not producing all of backward path, the run
time of SBDP algorithm is faster than unidirectional method.
Also, unidirectional algorithm is divide and conquer method
that is a recursive program and for large input size the used
space for recursion could be considerable.

 As conclusion, we can use different algorithms by this
way:
1) Since the input size is not so large that we can run the

LCS algorithm, it is the best selection in run time.
2) Since we don't have enough memory and the input size is

large, we can use the SBDP algorithm and it is faster
than unidirectional method.

3) Since the length of stack is too large that we cannot run
SBDP algorithm, the unidirectional method can be used.
It is obvious that in this case run time is slower than other
algorithms.

As future work, we can implement SBDP algorithm with
divide and conquer method. By this way we have not only the
linear space of unidirectional algorithm, but also we have fast
run time of SBDP algorithm. This method is designing and
will be described completely in the future article..

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

V. CONCLUSION
Dynamic programming is typically applied to optimization

problems and partition the problem into not completely
independent sub problems. A dynamic-programming
algorithm solves every sub problem just once and then saves
its answer in a table, thereby avoiding the work of
recomputing the answer every time the sub problem is
encountered. Dynamic programming has two forward and
backward steps. In forward step the table is produced and in
backward step this table traverses inversely to construct an
optimal solution. The required space for this table usually is
proportional to the square of the input size that is a huge part
of memory. Therefore, in some problems with large input
size, the space of memory is too large that we cannot run the
program.

This article proposes a solution that with using it we can
reduce memory complexity in dynamic programming at
forward path. In this method, that information is saved in
forward path, which they cannot reproduce at backward path.
A stack is used for saving this information. By this way the
path of constructing optimal solution can be reproduced by
using saved information in stack. We can find some rules for
selecting saved information. The rules extract of method of
calculating middle results and the characteristics of forward
path. Since the backward procedure also take place layer by
layer, the information can be stacked in forward and pop in
backward procedure. As an example we applied this method
on LCS problem. The LCS problem is a common task in
DNA sequence analysis, and has applications to genetics and
molecular biology. The classic dynamic programming
solution to LCS problem has O(n2) worst case running time
and space complexity. With respect to the saved information
in its table and the characteristics of backward path, some
rules were extracted. By these rules some information was
stacked in forward step and pop in backward step to
reproduce the backward path and constructing an optimal
longest subsequence. The size of stack in comparing to space
size of LCS algorithm was reduced about 10 times and we
could increase the input size in global alignment. The time
complexity of proposed algorithm is O(M*N) and in
comparing to LCS increases a little that its reason is
reproduction of backward path.

REFERENCES
[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to

Algorithms. The MIT Press and McGraw-Hill Book Company, 1989.
[2] D. S. Hirschberg. "Algorithms for the longest common subsequence

problem", Journal of ACM, 1977, pp.664-675.
[3] R. C. Edgar and S. Batzoglou, "Multiple sequence alignment", Current

Opinion in Structural Biology , 2006, pp.368–373,
www.sciencedirect.com.

[4] J. W. Hunt and T. G. Szymanski. "A fast algorithm for computing
longest subsequences". Commun. ACM, 1997.

[5] T. Jiang and M. Li. "On the approximation of shortest common
supersequences and longest common subsequences", SIAM Journal of
Computing, 1995.

[6] R. A. Wagner and M. J. Fischer. "The string-to-string correction
problem". Journal of ACM, 1974.

[7] L. Bergroth, H. Hakonen, and T. Raita. "A survey of longest common
subsequence algorithms. In String Processing and Information
Retrieval" (SPIRE), IEEE Computer Society, 2000 ,pp. 39-48.

[8] X. Huang and K. Chao, "A generalized global alignment algorithm",
Bioinformatics, 2003, Vol. 19, No. 2, PP. 228–233.

[9] N. Bray, I. Dubchak and L. Pachter "AVID: A Global Alignment
Program", Cold Spring Harbor Laboratory Press, 2003.

[10] P. A. Pevzner, Computational molecular biology an algorithmic
approach, Prentice-Hall, 2005.

[11] P. A. Pevzner and S. Sze, "Combinatorial approaches to finding subtle
signals in DNA sequences", Proceedings of the 8th International
Conference on Intelligent Systems for Molecular Biology, 2000.

[12] T. Jiang, G. Lin, B. Ma, and K. Zhang. "The longest common
subsequence problem for arc-annotated sequences",. In Ra®aele
Giancarlo and David Sanko®, editors, Combinatorial Pattern Matching
(CPM), volume 1848 of Lecture Notes in Computer Science, springer,
2000, pp. 154-165

[13] R.C. Edgar "MUSCLE: a multiple sequence alignment method with
reduced time and space complexity", BMC Bioinformatics, 2004 .

[14] Expasy: www.expasy.org/sprot/
[15] Pubmed: www.ncbi.nlm.nih.gov/entrez/

Proceedings of the World Congress on Engineering 2008 Vol II
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-3-7 WCE 2008

