
PreText: A Predictive Text Entry System for
Mobile Phones

Deepti Nalavade, Tushar Mahule, Harshvardhan Ketkar

Abstract: Majority of the currently used
predictive text entry systems (like T9 for
lower end mobile phones) do not provide
word prediction. In these systems, the
average number of key-taps per word is high
resulting in higher typing efforts on the part
of the user. At times,
T9 provides options (words) that may not fit
into the context of the message, are wrong
grammatically and are not valid English words.
Also, T9 is slower to adapt to usage patterns.
PreText predicts the word that the user is
typing with the help of grammar rules for the
English language, making word prediction
more precise, reducing the number of key taps
required, saving the user’s time and achieving
an optimisation over the existing systems. It
also adapts to the user’s usage pattern with
the help of a frequency model. The metric used
here to evaluate the performance of text entry
systems is KSPC [1] (keystrokes per
character). The KSPC was found to be 0.7360
for PreText, providing an average improvement
of 26.91% over T9 which has a KSPC of 1.023
[1].

Keywords: text entry, predictive,
adaptive, KSPC

1. Introduction:
With the advent of smart phones, text entry is
required for a host of applications other than
text messaging like email, which require fast
text entry.

With a text entry system like T9, more effort is
required by the user as the system may not
always throw up the desired word (for
example, while typing “home”, T9 frequently
predicts “good” when what you want is
“home”, and the other way round). So the
need for a word prediction utility, which
predicts the right word in the right place, was
felt.
Considering the behavior of T9, it can be said
that it offers word completion and not word
prediction. The average number of key-taps

per word is high. In the best case, for T9,
number of key taps for each word is equal to
the number of letters in the word. As
T9 works primarily on permutations of letters;
it also provides many non-English words as
output.
PreText is developed to predict the word that
the user is typing with the help of grammar
rules for the English language. It adapts to the
user’s usage pattern with the help a frequency
model, referring to the usage frequency for
each word and its part of speech.
When the text is being entered, the expected
part of speech is found out. The system will
predict the next word taking into account
already typed word or words to get probable
words from the dictionary using an index
search mechanism and display words taking
into consideration the frequency count.
The user shall also be able to enter any word
that is not present in the dictionary. Runtime
conjugation of verbs, resolution of same words
occurring in multiple parts of speech and
handling of punctuation marks are some of the
distinguishing features of PreText.

2. Related work:
A thesis by Afsaneh Fazly – “The Use of Syntax
in Word Completion Utilities” [2] has proposed
the statistical and syntactical prediction of
words using part of speech tags and a bigram
model. “A Swedish Grammar for Word
Prediction” [3] has been developed by Ebba
Gustavii and Eva Pettersson where a Swedish
grammar for the FASTY word predictor has
been defined and implemented in which the
grammar functions as a grammar checking
filter, re-ranking the suggestions proposed by
a statistic n-gram model on the basis of both
confirming and rejecting rules.

3. System model:
PreText is to be implemented on a Linux based
mobile platform. However, the prototype is
developed on Ubuntu Linux on a standard PC
using the C language. The ambiguous, non-
QWERTY mobile phone keypad is simulated on
the computer keyboard using the number
keypad. The Graphical User Interface (GUI)

Proceedings of the World Congress on Engineering 2008 Vol III
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-4-4 WCE 2008

used to simulate the text entry in a mobile
phone makes use of GTK+ (Gimp Toolkit).
PreText assumes that the user must be
conversant with the English language and that
he enters approximately correct grammatical
sentences in English. However, even if the user
does not use grammatically correct English at
times, he is not denied any word that he wants
to type.
For words which are not present by default in
the dictionary, the user must feed words into
it. (For example short forms, names etc.
)
When the user enters a character, a drop-down
list of options is generated. On entering
another character, the list of options is
refreshed and a new list of options is
generated. Thus, the search in the dictionary
gets narrowed to fewer words.

4. Problem Statement:
With the existing text entry systems in mobile
phones, the average number of key taps per
word is usually greater than the number of
letters present in the word. This results in
higher typing efforts on the part of the user. It
is necessary to improve the user's typing
speed by intelligent word prediction, eventually
reducing the number of key-taps.

5. Proposed Solution:

PreText consists of

• A concise dictionary (segregated into
part of speech files) of English words with
their frequency counts.
• An N-level index search mechanism to
search a word, given a portion of it.
• A bigram [2] and trigram [2] grammar
structure.
• An adaptive mechanism making use of
frequency counts associated with words as
well as grammar rules.
• A verb sub-grammar in order to
conjugate verbs.
• A facility for users to enter user-
defined words and a GUI consisting of a
text area to type text and a drop-down list
of options which is scrollable.

The dictionary does not implement a tree or
linked list structure due to the overhead of
handling pointers. Also, instead of using a CFG
(Context Free Grammar) model, including noun
phrases and verb phrases, a bigram and
trigram model was preferred since the context
of a text message in a mobile phone is small
and the user may not adhere to grammar
beyond three words in a sentence.
The following diagram shows a higher level
flow of the system as a whole:

 Fig 1: System model

Proceedings of the World Congress on Engineering 2008 Vol III
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-4-4 WCE 2008

Word searching and list retrieval: An n-level index search mechanism is used to
search for words in the dictionary. The
dictionary is primarily divided into separate

files, each for a specific part of speech and one
file for the user entered words which are not in
the dictionary. The words in the files are
previously sorted in ascending order of the
digits. For example, the file for conjunctions is
stored as:

2586844 although 234
263 and 4435
288 but 543
43 if 2354
74623 since 54
8436 then 2325
86844 tough 45
94453 while 65

Here, (the number on the left of the word (for
example ‘2586844’ for ‘although’) is the key
code from the ambiguous mobile key pad for
the word. The number on the right (for
example ‘234’ for ‘although’) is the frequency
count of the word.

When the system is started for the first time,
the offset bytes, from the byte at the start of
the file, of words starting with distinct numbers
from distinct files are recorded in a 2D array.
This array is shown in the “Fig 2” below as the
‘Offset Array’. The rows represent 9 out of the
total 14 different parts of speech files in the
“Fig 2” given below. The columns represent the
first digit of the key code of a word.
Now, consider that the user is typing the word
‘the’ on the mobile. Using the grammar model,
the possible parts of speech that the word
might belong to is known. The system now

scans the ‘Offset Array’ (in Fig 2) for the digit 8
in the parts of speech files that have been
zeroed in on.

When PreText gets this offset byte, it jumps to
that offset byte in the particular file, starts
making a list of words that the user might
intend to use and displays the top 5 words
based on the adaptive mechanism involving
frequency counts. While this list is being
generated, this time is used to compute in
parallel the offsets of words with number codes
as 82, 83, 84 … 89. This can be done assuming
that the user will not press backspace and
keep on typing to get the word he intends.

The user presses key number 4 now. Here, the
offsets of the words with number code 84….
from the all the probable parts of speech have
already been obtained. So, jumping to those
locations, a new list of probable words is
generated. Now, the same process is repeated
for generating offsets for words with number
codes 841, 842, 843 … 849.

The above process gets executed repeatedly
for all the words, thus giving a list of probable
words and at the same time computing the
offsets for probable words when the next key
is pressed. This pre computing helps in saving
the time of searching for a word as the user
types. It gives better results in a faster way in
combination with the grammar rules owing to
the pre computing n-level index search
mechanism.

Fig 2: N-level Index Search

Proceedings of the World Congress on Engineering 2008 Vol III
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-4-4 WCE 2008

Grammar:
The grammar used contains a mixture of
productions belonging to bigram and trigram
models.

Bigram takes into consideration the context of
the previous word and predicts the current
possible word. For example:

Article Noun

Trigram considers the past two words and
predicts the current possible word. For
example:

Noun Verb Adjective

Consider the following grammar rules:

Article Noun

Article Adjective

On entering a character, to search for a word,
only the part of speech files that the grammar
rules specify are searched. For example, in
accordance with the above grammar rules,
only the noun and adjective files will be
searched to display options if the previously
typed word is an article.
However, if the user attempts to enter a word,
which is neither in the noun file, nor in the
adjective then, in such a case, PreText
searches the remaining part of speech files.
PreText searches the remaining files only if no
matching pattern is found in the grammatically
valid files. Thus, PreText ensures that the
whole dictionary is not searched, and hence
the searching overhead is reduced.
If the desired pattern is not found even after
searching the remaining files, then PreText
assumes that the word is not present in the
dictionary, and it prompts the user to add the
word to the dictionary.
If the grammar is violated frequently, and the
user consistently uses grammatically incorrect
English, the degradation in performance is
graceful, since the bigram and trigram model is
used.

Frequency and Word Ranking
Model:
The frequency and word-ranking model
operates at two levels: word usage level and
rule-based level.
Just as each word has a frequency, each
grammar rule has usage frequency level
associated with it.

For example, the following bigrams each have
a frequency associated with them,

Article Noun

(Rule frequency: 0.4)

Article Adjective
(Rule frequency: 0.2)

This frequency is incremented if the rule is
used that is, if the user selects a noun, the
frequency of the corresponding rule (Article
Noun) will be incremented. Before sorting the
options, the frequency of each word from a
part of speech file is multiplied with the rule
frequency of the part of speech. Thus the
cumulative frequency of the two is found out.
The list is then sorted in descending order of
this cumulative frequency. This improves
adaptability to the user’s usage patterns. If a
particular word is selected, the word frequency
as well as the frequency of the grammar rule
that has been used is incremented.

Verbs and User-defined words:
PreText also ensures that there is agreement
in person and number for the verb predicted,
with respect to the pronoun previously typed.
For example, if the user wishes to type "he
runs", then the verb 'to run' is conjugated at
runtime. After the user has entered 'he', the
form 'runs' is shown in the list of options, and
'run' is discarded. This modification in the
infinitive is done at runtime. Only the infinitive
’run' is stored in the dictionary, and various
rules are used to generate the correct
conjugation of the verb. The system also
conjugates the verb according to tense used.
This results in efficient use of the limited
memory resources of a mobile phone.
For user-defined words, a separate file is
maintained and a relatively higher frequency is
assigned to these words because the usage
probability of these words is more since the
user has entered them.
If the user does not encounter the desired
word in the suggested list of words, then he
continues typing till the word gets over. Thus,
PreText gives a worst-case performance
equivalent to the best case performance of T9.

Proceedings of the World Congress on Engineering 2008 Vol III
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-4-4 WCE 2008

6. Analysis:
In order to evaluate the performance of the
system, KSPC is used. KSPC is an acronym for
keystrokes per character. It is the number of
keystrokes required, on average, to generate a
character of text for a given text entry
technique in a given language [1]. The lower
the value for the KSPC, the lesser the typing
efforts by the user and lesser the time required
for entering text.
KSPC is computed as follows:

KSPC=∑(Kw x Fw)/∑(Cw x Fw)

Where,
Kw is the number of keystrokes required to
enter a word,
Cw is the number of characters in the word,
and
Fw is the frequency of the word in the corpus.
[1]
Kw and Cw takes into consideration the
terminating SPACE after each word. For the
QWERTY keyboard, KSPC is equal to 1 since
more than one letter does not have to share
one single key. For word completion KSPC is
greater than 1. However, with word prediction,
there is potential for KSPC to be less than 1
because words can be entered without
explicitly entering every letter, as is done in
PreText. The complete word can be extracted
and supplied from a portion of a word. A sorted

list of words starting with the part of word
typed by the user until that moment is
displayed every time a letter of the word is
entered. On observing the desired word in the
list, the user selects the word. The number of
keystrokes to enter the word is determined
and the KSPC is computed.
For PreText, the number of keystrokes to enter
a word includes the number of characters in
the word stem at the point where the intended
word appears in the candidate list, and the
keystroke overhead to select the intended
word in the option list wherein the user selects
the word and adds a SPACE.

7. Simulations and
Experimentation:
The system was tested on a number of English
sentences. The words not present in the
dictionary (proper nouns and short forms)
were entered by the user as user defined
words and stored separately.
It is found that for the Multi Tap mode of text
entry, KSPC is 2.0342 while that for the
dictionary mode (T9), it is 1.0072. Among 100
test sentences, the following “Table I” shows
the 10 sentences that were tested on PreText
in which results range from an improvement of
9% to as good as 36%: an average of the
performance of PreText in comparison to T9,
for each sentence gave the figure of 26.91%
and the KSPC was calculated to be 0.7360.

Table I: Test Results

Sr. no

Sentence KSPC (Key Strokes Per
Character)

Performance (as
compared to T9
KSPC of 1.0072)

1. come tomorrow at his place 0.629862 +37.46%
2. the boys run slowly 0.829815 +17.61%
3. come to the mystery spot 0.638690 +36.58%
4. gnsd sweetu 0.421453 + 58.15%
5. have you had enough food? 0.701082 +30.39%
6. both are same 0.909692 +9.68%
7. you are made for each other 0.784206 +22.13%
8. your project is good 0.752143 +25.32%
9. the competition is tough 0.458880 + 54.43%
10. btw i forgot to tell that

henry went home
0.824244 +18.16%

Proceedings of the World Congress on Engineering 2008 Vol III
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-4-4 WCE 2008

8. Conclusion:
Thus, PreText, on an average, provides an
improvement of 26.91% over T9 in terms of
KSPC.
This means that the user can type

more in lesser number of key taps. Therefore, at
least by initial perceptions, PreText provides
better performance in terms of number of key
taps taken to type a word. However, better
testing techniques might be required in the form
of user trials, so that user acceptability and
adaptability can be tested.

9. Future Work:
Provision for short forms using textual
compression techniques:
PreText predicts the whole word to the user,
unless the short form has already been entered
as a user-defined word. The user may run out of
space to type further and also, may not be
inclined to enter the short form into the
dictionary every time. A solution to this can be
to compress the contents of the message
textually: i.e. ‘coming’ becomes ‘cmng’, and so
on.

Prediction of options after using backspace:
When the user makes a mistake while typing, he
backtracks by pressing backspace single or
multiple times. This disturbs the grammar. It is
imperative that the user gets optimal
performance even after he backtracks.
Therefore, the grammar must backtrack
accordingly. Currently, in the prototype
developed, the grammar is reset after the user
presses backspace.

ACKNOWLEDGMENT
Thanks for the guidance from Ms. Dimple
Kuriakose (Lecturer, Vishwakarma Institute
of Technology, Pune, India).

REFERENCES

[1] I. Scott MacKenzie. KSPC (Keystrokes per

Character) as a Characteristic of Text Entry
Technique. Dept. of Computer Science, York
University, Toronto, Ontario, Canada M3J
1P3. smackenzie@acm.org

[2] Afsaneh Fazly. The Use of Syntax in Word

Completion Utilities. A thesis submitted in
conformity with the requirements for the
degree of Master of Science, Graduate
department of Computer Science, University
of Toronto. (2002).

[3] Ebba Gustavii and Eva Pettersson {ebbag,

evapet}@stp.ling.uu.se. A Swedish
Grammar for Word Prediction. Master’s
thesis in Computational Linguistics
Språkteknologiprogrammet (Language
Engineering Programme) Uppsala University,
Department of Linguistics.

[4] Hedy Kober, Eugene Skepner, Terry Jones,

Howard Gutowitz and Scott MacKenzie.
Linguistically Optimized Text Entry on a
Mobile Phone. Submitted to CHI 2001.

[5] Mark D Dunlop (Centre for Human Machine

Interaction, Risø National Laboratory,
Denmark) and Andrew Crossan (Department
of Computing Science, University of
Glasgow, Scotland.) Predictive Text Entry
Methods for Mobile Phone.

Proceedings of the World Congress on Engineering 2008 Vol III
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-17012-4-4 WCE 2008

