
 

 

 

  

Abstract— In this study, silicon microchannel heat sink 

(MCHS) performance using nanofluids as coolants was 

analyzed. The nanofluid was a mixture of nanoscale Cu 

particles and pure water with various volume fractions. Based 

on theoretical models and experimental correlations, the heat 

transfer and friction coefficients required in the analysis were 

used. The microchannel heat sink performances for a specific 

geometries with dimensions Wch = Wfin = 100 µm and Lch =300 

µm is examined. In this study, flow in laminar and turbulent 

regimes using the theoretic and experimental relations was 

investigated; moreover an artificial neural network (ANN) was 

used to simulate the MCHS having laminar flow with different 

circumstances and after that, the best geometry and volume 

fraction of nanofluid could be found based on minimum 

thermal resistance. 

 
Index Terms— Artificial Neural Network, Laminar and 

Turbulent Fow Regimes, Microchannel Heat Sink, Nanofluid.  

 

I. INTRODUCTION 

The microchannel heat sink (MCHS) has received 

extensive study over the past two decades because of its 

capability to dissipate large amounts of heat from a small 

area [1]. Experimental studies have shown that the MCHS 

has several distinct features compared to conventional heat 

dissipating devices, i.e., very small size and volume per heat 

load, the ability to produce a very high heat transfer 

coefficient, and small coolant requirements [2]–[4]. In 

addition to experimental studies, heat transfer predictions and 

geometry optimizations based on theoretical analysis and 

numerical modeling were carried out extensively in previous 

investigations [5]–[7]. Shokouhmand and Bahrami [8] 

studied the effects of electrokinetic field on heat transfer 

through rectangular microchannels. Also Muzychka [9] have 

studied different geometries and ducts such as Circular tubes, 

Rectangular, Elliptic and Polygonal ducts. 

   The most frequently used coolants in the MCHS study were 

air, water, and fluorochemicals. One of the methods for 

enhancing heat transfer is the application of additives to the 

working fluids. Recent interest based on this concept focused 

on heat transfer enhancement using a nanofluid in which 

nanoscale metallic or nonmetallic particles are suspended in 
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the base fluids. Several experimental and analytical studies 

have shown that nanofluids have higher thermal conductivity 

than pure fluids and therefore great potential for heat transfer 

enhancement [10]–[12]. 

    There have been relatively few studies on nanofluid flow 

and heat transfer characteristics as comparing with those of 

pure fluid [13]–[16]. These studies indicated that the heat 

transfer coefficient was greatly enhanced in the nanofluid 

flow. The enhancement depended on the Reynolds flow 

number, particle Peclet number, particle size and shape and 

particle volume fraction. They also found that nanoparticles 

did not cause an extra pressure drop.  

    Although limited data is available on nanofluid flow and 

heat transfer characteristics, it is believed that nanofluids are 

able to enhance heat transfer. In this study, performance of 

MCHS using nanofluids as working fluid is analyzed. The 

heat transfer and friction coefficients required in the analysis 

were based on the theoretical and experimental studies in 

both laminar and turbulent regimes. 

   Several studies were about developing models and methods 

of artificial networks [17]. Taking advantage of technique 

developed by Kolmogorov, Kurkova [18] provided a direct 

proof of the universal approximation capabilities of 

perceptron type network with two hidden layers. Lippmann 

[19] demonstrated the computational power of different 

neural net models and the effectiveness of simple error 

correction training procedures. Single and multi layer 

perceptrons, which can be used for pattern classification, are 

described as well as Kohonen’s feature map algorithm, which 

can be used for clustering or as a vector quantizer. In this 

study, a multi layer perceptron (MLP) neural network is used. 

 

II. ANALYTICAL MODELING  

A. MCHS model  

Fig. 1 shows the geometric configuration of a MCHS. The 

top surface is assumed to be insulated. The heat sink 

performance is commonly measured by its thermal 

resistance. Based on the theoretical analysis [5], it can be 

expressed as 
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α, β, η, and Re are defined as 
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In (2), m, um and Dh are defined as 
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N in (3) is given as 
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A pumping power supply is required to drive the coolant in 

MCHS operation. It is the product of the pressure drop across 

the heat sink ∆P and volume flow rateV& , i.e., 
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In (5), the pressure drops at the channel inlet and exit were 

neglected because they are usually small compared to that in 

the microchannel. From (1) and (5), Nu and λ are two 

important parameters for MCHS performance in addition to 

the microchannel geometry. Both Nu and λ depend on the 

flow regime and type of coolant used. 

 

B. Nusselt number and friction coefficient models  

Assuming laminar and fully developed flow in the 

microchannel, λ correlation for pure fluid is given as [5],            
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And for λ in turbulent flow and in macro scales 

 

25.0Re

3164.0
=λ                                               (7) 

 

Since there was no correlation for turbulent flow in micro 

scale, we use the macro scale correlation (7), for turbulent 

flow. 

 

 
Fig. 1 Schematic diagram of the microchannel heat sink 

 

    As pointed out by Xuan and Roetzel [13], two approaches 

can be used to predict the heat transfer of nanofluids. The first 

approach is the conventional model that treats the nanofluid 

as a single-phase fluid. The heat transfer and friction 

coefficients are the same as those for pure fluid except that 

the nanofluid transport properties must be used. That is, 
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The nanofluid transport properties involved in the heat 

transfer and pressure drop calculations can be evaluated 

using the following expressions [13] 
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The second approach to describe the heat transfer for 

nanofluid flow is to treat the nanofluid as a two-phase 

mixture in which irregular and random movement of particle 

increases the heat exchanging rate. That is, thermal 

dispersion takes place in the nanofluid flow [17]. To take the 

thermal dispersion effect into account, it is better to describe 

the heat transfer based on experimental correlation. In the 

study by Xuan and Li [15], two formulas proposed to 

correlate the experimental data for nanofluid heat transfer 

coefficient (Nusselt number) in laminar and turbulent circular 

tube flow are given as 

 

( ) 4.0333.0218.0754.0 PrRe285.110.14328.0 nfnfdnf PeNu φ+=       (12) 

 

For turbulent flow 

 

( ) 4.09238.0001.06886.0 PrRe6286.70.10059.0 nfnfdnf PeNu φ+=     (13) 

 

And for turbulent flow in macro scale, Dittus-Boelter 

equation [20], 

 
4.08.0 PrRe023.0=Nu                                   (14)     

 

Ped is the particle Peclet number describing the thermal 

dispersion caused by the microconvection and microdiffusion 

effects and Prnf is the nanofluid Prandtl number. Ped and Prnf 

are defined as 
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  Note that the heat transfer correlation described in (12) and 

(13) were obtained from nanofluid flow in macroscale 

dimensions. These correlations can be used in the 

microchannel flow as long as the channel dimension is large 

enough that scaling effects can be neglected [21]. 

    Similar to heat transfer correlation, limited experimental 

data are available for the pressure drop in nanofluid flow 

[14]–[16]. These studies indicated that the existence of 

nanoparticles in the fluid flow did not cause extra pressure 

drop when the particle volume faction is less than 3%. Based 
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on these experimental observations, pressure drop for 

nanofluid flow in microchannel can be evaluated using (

with transport properties of nanofluid. 

 

III. ARTIFICIAL NEURAL NETWORK 

 

A. Neuron model  

A neuron model consists of a processing element 

synaptic input connections and a single output. The signal 

flow of neuron inputs xni is considered to be unidirectional as 

indicated by arrows as in a neuron’s output signal flow. A 

general neuron symbol is shown in Fig. 2. 

  The neuron’s output signal is given by the fo

relationship 
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where w is weight vector defined as 

 

� � ���    ��   …   ����                                           
 

and xn is the input vector 
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The function f(w
t 
xn) is often referred to as an

function. The variable net is defined as a scalar product of the

weight and the input vector. 
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Using (19) in (16), we get 
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It is observed from (16) that the neuron as processing

performs the operation of summation of its 

Subsequently, it performs the non-linear operation 

through its activation function. Typical activation functions

used are [23] 
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and 
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where σ > 0 in (21) is proportional to neuron gain 

determining the steepness of the continuous function 

near net = 0. 

 

Fig. 2. General symbol of neuron.

 

observations, pressure drop for 

microchannel can be evaluated using (6) 

ETWORK MODELING  

A neuron model consists of a processing element [22] with 

connections and a single output. The signal 

is considered to be unidirectional as 

indicated by arrows as in a neuron’s output signal flow. A 

 

The neuron’s output signal is given by the following 

�                   (16) 
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) is often referred to as an activation 

The variable net is defined as a scalar product of the 

                           (19) 

                                                               (20)         

) that the neuron as processing node 

performs the operation of summation of its weighted inputs. 

linear operation f(net) 

through its activation function. Typical activation functions 

                                     (21) 

                                        (22) 

) is proportional to neuron gain 

the steepness of the continuous function f(net) 

 
2. General symbol of neuron. 

    By shifting and scaling the bipolar 

defined by (21) and (22), unipolar activation function can

obtained as [23] 
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and 
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B. Delta learning rule for multi

   The back propagation-training algorithm allows 

experiential acquisition of input output mapping knowledge 

within multilayer networks. Input patterns are submitted 

during the back propagation training sequentially. If a pattern 

is submitted and its classification or association is determined 

to be erroneous, the synaptic weights as well as the thresholds 

are adjusted so that the current least mean square 

classification error is reduced. The 

comparison of target and actual values and adjustment, if 

needed, continue until all mapping examples from the 

training are learned within an acceptable over all error.

    During the association or classification phase the trained

neural network itself operate in a feed forward manner. 

However, the weight adjustment enforced by the learning 

rule propagates exactly backwards from the output layer to 

the hidden layer towards the input layer. 

and detailed formulation can be found on the study of 

et al. [23]. 

IV. RESULTS AND 

A. Analytical approach  

Since the Nusselt number correlation for the nanofluid 

microchannel flow is based on the 

the Cu–H2O nanofluid is considered in this study. Th

particle volume fraction of the nanofluid is in the range of 

0.3–2%. Performance of a MCHS using a Cu

in laminar and turbulent flow regimes is discussed below.

    A silicon MCHS with the following geometric dimensions 

Whs = 1 cm, Lhs = 1 cm, Wch = 100 µm, and L

considered first. The pumping power is used as a primary 

variable because it represents the energy consumed during 

the MCHS operation. Using (5), it is found that the flow in 

the microchannel remains laminar when the 

is under 3 W (Re < 2000) and is turbulent for higher powers 

for this MCHS geometry for example for pump power over 

10 Reynolds number is about 20000.

    Nusselt number as a function of Reynolds number for 

laminar flow for three different vol

(12) is shown in Fig. 3. 

 

 

 

By shifting and scaling the bipolar activation function 

), unipolar activation function can be 

                                            (23) 

                                       (24) 

Delta learning rule for multi-perceptron layer  

training algorithm allows 

acquisition of input output mapping knowledge 

multilayer networks. Input patterns are submitted 

training sequentially. If a pattern 

and its classification or association is determined 

erroneous, the synaptic weights as well as the thresholds 

adjusted so that the current least mean square 

error is reduced. The input output mapping 

and actual values and adjustment, if 

all mapping examples from the 

acceptable over all error. 

During the association or classification phase the trained 

ral network itself operate in a feed forward manner. 

the weight adjustment enforced by the learning 

propagates exactly backwards from the output layer to 

hidden layer towards the input layer. More description 

be found on the study of Singh 

ESULTS AND DISCUSSION 

Since the Nusselt number correlation for the nanofluid 

microchannel flow is based on the study of Li and Xuan [14], 

O nanofluid is considered in this study. The 

particle volume fraction of the nanofluid is in the range of 

Performance of a MCHS using a Cu-water nanofluid 

in laminar and turbulent flow regimes is discussed below. 

A silicon MCHS with the following geometric dimensions 

= 100 µm, and Lch = 300 µm is 

considered first. The pumping power is used as a primary 

variable because it represents the energy consumed during 

the MCHS operation. Using (5), it is found that the flow in 

the microchannel remains laminar when the pumping power 

is under 3 W (Re < 2000) and is turbulent for higher powers 

for this MCHS geometry for example for pump power over 

10 Reynolds number is about 20000. 

Nusselt number as a function of Reynolds number for 

laminar flow for three different volume fractions according to 
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Fig. 3. Nusselt number as function of Reynolds number for 
laminar flows 

    

It can be seen that Nu increases by increasing 

comparing Fig. 3 with the diagram of Chein

is observed that this Nusselt number for small Re is even less 

than Nu of pure water, therefore this empirical correlation 

needs correction to be used for microchannels.

    Nusselt number for turbulent flow as a function of 

Reynolds number is shown in Fig. 4. Like laminar flow, by 

increasing Re and φ, Nu increased. In this diagram, 

Dittus-Boelter correlation for 

was used. According to the diagram, an increase of about 

20% in Nu is attained using nanofluid. 

    Using (25) for Nusselt number from [24], the following 

diagram (Fig. 5) for different volume fractions was produced.   

 
333.075.0 PrRe04.0 nfnfnfNu =                                       

 

This method was used by Abbassi and Aghanajafi [25]. The 

diagram is shown for φ=2%. By increasing the volume 

fraction, Nusselt number decreased, thus this method is not a 

good choice for calculating the Nusselt number of nanofluids 

in MCHS and needs correction. 

    In Figure 6, the thermal resistances using the Nu computed 

before with various pumping powers are shown. It is 

observed that the minimum Rth is 0.045 kcm

and pump power of 3W. Comparing with the diagram of 

Chein and Huang [1], a decrease of 75% with the pure water 

was detected. This reduction in Rth is clearly due

thermal dispersion. 

 

Fig. 4. Nusselt number as function of Reynolds number for 
turbulent flows 

 

 

160Pr7.0 ≤≤

 
3. Nusselt number as function of Reynolds number for 

It can be seen that Nu increases by increasing φ. By 

Chein and Huang [1], it 

is observed that this Nusselt number for small Re is even less 

than Nu of pure water, therefore this empirical correlation 

needs correction to be used for microchannels. 

Nusselt number for turbulent flow as a function of 

wn in Fig. 4. Like laminar flow, by 

, Nu increased. In this diagram, 

and Re>10000 

was used. According to the diagram, an increase of about 

[24], the following 

5) for different volume fractions was produced.    

                             (25) 

Aghanajafi [25]. The 

increasing the volume 

fraction, Nusselt number decreased, thus this method is not a 

good choice for calculating the Nusselt number of nanofluids 

6, the thermal resistances using the Nu computed 

s pumping powers are shown. It is 

is 0.045 kcm
2
/W for φ=2% 

. Comparing with the diagram of 

Chein and Huang [1], a decrease of 75% with the pure water 

is clearly due to the 

 
. Nusselt number as function of Reynolds number for 

Fig. 5. Nusselt number as function of Reynolds
turbulent flows using (25)

 

Fig. 6. Microchannel heat sink thermal resistances as function 
of pumping power for laminar flows

 

    In Fig. 7, the turbulent flow thermal resistances for pump 

power larger than 3W are shown. It is observed that by 

increasing pumping power and volume fractio

decreases.  It is noticeable that the differences among 

turbulent flow for different volume fractions are less than 

differences in Rth with laminar flow.

   In Fig. 8, pressure drops for laminar flow are shown. It has 

a good congruous with the diagram of 

Fig. 7. Microchannel heat sink thermal resistances as function 
of pumping power for turbulent flows

 

. 

160

 

 
. Nusselt number as function of Reynolds number for 

turbulent flows using (25) 

 
6. Microchannel heat sink thermal resistances as function 

of pumping power for laminar flows 

, the turbulent flow thermal resistances for pump 

power larger than 3W are shown. It is observed that by 

increasing pumping power and volume fraction, Rth 

It is noticeable that the differences among Rth with 

turbulent flow for different volume fractions are less than 

with laminar flow. 

for laminar flow are shown. It has 

the diagram of Chein and Huang 

 
7. Microchannel heat sink thermal resistances as function 

of pumping power for turbulent flows 
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Fig. 8. Pressure drop across microchannel heat sink as 
function of pumping power for laminar flow

 

    In Fig. 9, pressure drops for turbulent flow are shown. 

significant differences existed between the pure water

nanofluid flows because particle size is small and particle 

volume fraction is low. This may be considered as one of the 

advantages in using nanofluid as heat transfer fluid in various

applications.  
 

Fig. 9. Pressure drop across microchannel heat sink as 
function of pumping power for turbulent flows

 

B. ANN based modeling  

An artificial neural network developed here can be used for 

modeling several geometries of MCHS with several types of 

nanofluids. This artificial modeling is followed by a 

computer program which uses ANN for arbitrary geometry 

and volume fraction range to find the optimum geometry and 

volume fraction on the basis of minimum thermal

The developed ANN and computer program can be used for a 

wide range of geometries and nanofluid properties.

    A 4-layered network model is taken with [6, 1, 25, 15] 

configuration i.e. 6 input neurons, 1 output neurons, 25 

neurons in the first hidden layer and 15 neurons in the second 

hidden layer. The input variables are φ, Lch

tb and output is Rth. In addition, activation functions used for 

both hidden and output layers are according to (23).

   The network is trained using 32000 patterns and 5000 test 

inputs are given for testing. Training the estimator took about 

1000 iterations and about 1.5 h. Performance of the network 

is 4.0×10
-9

. 

    Using this network and the control system, gives the 

following table which shows the minimum R

volume fraction of nanofluids. 

 

 
. Pressure drop across microchannel heat sink as 

laminar flow 

for turbulent flow are shown. No 

significant differences existed between the pure water and 

nanofluid flows because particle size is small and particle 

considered as one of the 

d as heat transfer fluid in various 

 
9. Pressure drop across microchannel heat sink as 
function of pumping power for turbulent flows 

artificial neural network developed here can be used for 

geometries of MCHS with several types of 

nanofluids. This artificial modeling is followed by a 

computer program which uses ANN for arbitrary geometry 

and volume fraction range to find the optimum geometry and 

volume fraction on the basis of minimum thermal resistance. 

The developed ANN and computer program can be used for a 

wide range of geometries and nanofluid properties. 

layered network model is taken with [6, 1, 25, 15] 

configuration i.e. 6 input neurons, 1 output neurons, 25 

t hidden layer and 15 neurons in the second 

ch, Wch, Lhs, Power, 

. In addition, activation functions used for 

output layers are according to (23). 

32000 patterns and 5000 test 

inputs are given for testing. Training the estimator took about 

1000 iterations and about 1.5 h. Performance of the network 

Using this network and the control system, gives the 

minimum Rth for each 

Table 1. Minimum Rth

Volume fraction 

0.01 

0.02 

0.03 

0.04 

0.05 

   
The above minimum thermal 

changing the parameters mentioned in Table 2. In these 

numbers, some limitations such as fabrication and usage are 

considered. 

 
Table 2. Range of variables for finding the minimum R

Variable 

φ 

Lch (m) 

Wch (m) 

Lhs (m) 

Power (W) 

tb 

 

V. CONCLUSION

The performances of microchannel heat sinks using 

nanofluids as the coolant were analyzed.

and friction coefficients for the nanofluid flow were based on 

the theoretical models and experimental correlations. For the 

specific MCHS geometry studied, it is found

could enhance MCHS performance as compared with that 

using pure water as the coolant. The enhancement is due to 

the increase in thermal conductivity of coolant and the 

nanoparticle thermal dispersion effect. The other advantage 

in using nanofluid as coolant in the microchannel

that there is no extra pressure drop produced since the 

nanoparticle is small and particle volume 

addition thermal resistance of MCHS 

less than laminar flow regime. 

found for every volume fraction using artificial 

network (ANN). 
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NOMENCLATURE 

 
Cpf               specific heat of coolant, J/kgK 

Dh                hydraulic diameter of microchannel, m 

dp                       nanoparticle diameter, m 

f(net)           activation function 

G                    geometric factor of microchannel 

h                 heat transfer coefficient, W/m2K 

kf                        pure water thermal conductivity, W/mK 

ks                       material thermal conductivity, W/mK 

knf                      nanofluid thermal conductivity, W/mK 

kp                particle thermal conductivity, W/mK 

Lhs               microchannel heat sink length, m 

Lch                     microchannel depth, m 

N                 number of microchannels of heat sinks 

Net                 scalar product of weight vector and input vector 

Nu               Nusselt number 

Pow             pumping power of microchannel heat sink, W 

Ped               nanoparticle Peclet number 

Prnf                    nanofluid Prandtl number 

Q                  Heat to be dissipated, W 

Re               Reynolds number based on hydraulic diameter 

Renf                  nanofluid Reynolds number 

Rcap                  capacitive thermal resistance, K/W 

Rcon             thermal resistance due to base thickness, K/W 

Rfin                    fin thermal resistance, K/W 

Rth                     heat sink thermal resistance, K/W 

SH              particle shape factor 

Tw,max              maximum heat sink surface temperature, K 

Tf,in                   coolant inlet temperature, K 

um               averaged velocity in microchannel, m/s 

/0                    coolant volumetric flow rate, m3/s 

w                    multiplicative weight vector 

wi                        multiplicative weight for ith input 

Wch                   width of microchannel, m 

Wfin                   width of fin, m 

Whs                   width of microchannel heat sink, m 

xn                 input vector to neuron 

xni                        ith input to neuron 

 

Greek symbols 

αnf                    nanofluid thermal diffusivity 

λ                  friction factor of microchannel 

υ                  viscosity of coolant, kg/ms 

υnf                      nanofluid viscosity, kg/ms 

ρf                  density of coolant, kg/m3 

η                 fin efficiency 

φ                  particle volume fraction 

(ρCp)p                particle thermal capacity, kg/m3K 

(ρCp)f                 pure fluid thermal capacity, kg/m3K 

(ρCp)nf           nanofluid thermal capacity, kg/m3K 
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