
Abstract— Macro cells are used more and more in current

designs as they provide the benefit of reusability directly

resulting in the decrease of design cost and time. However,

there lies a gap in the EDA industry for Macro cell placement

tools. This paper would like to introduce the idea of using

graph-drawing algorithms as the basis for a Macro cell

placement tool in order to obtain successful layouts.

Index Terms— design automation, Macro cell, placement

tool, force directed algorithm, graph drawing

I. INTRODUCTION

The past few years have seen an exponential rise in the

growth rate of the semi-conductor industry. The increase in

usage and demand of electronic devices among consumers

has resulted in the need to provide better and faster design

methods. The designers are pushed to their limits in meeting

these demands whilst juggling the constraints of power and

performance of ever shrinking circuits. To help designers

meet their targets, EDA (Electronic Design Automation)

tools are used to help fully or partially automate the design

processes. One of such important backend processes is the

placement component.

The placement problem simply is the problem of finding the

ideal locations for each cell in a circuit achieving as many or

all of the placement objectives. The two main objectives that

every placement tool has to achieve are,

• overlap free layout

• fit in the given placement area.

Other objectives may include minimization of wirelength,

area, congestion, run time etc. The optimal solution will be

one that satisfies all of the given criteria. Achieving such a

placement solution is far from possible and even the

simplest of cell placement problems are defined to be NP-

hard. The consequence of falling short of a good placement

could result in an unroutable design, a slower and/or larger

chip etc. This will cost time and money to either manually

correct the placement or start the design from the beginning.

The input to the placement component consists of the

description of all the cells including their size and pin

 Manuscript received March 13, 2008. This research is jointly funded by

the Department of Engineering and Technology of Manchester

Metropolitan University, UK, and the ORSAS (Overseas Research Students

Awards Scheme).

Meththa Samaranayake is with the Department of Engineering and

Technology, Manchester Metropolitan University, John Dalton Building,

Chester Street, Manchester M1 5GD, UK (phone: +44 (0) 1612473683; e-

mail: Meththa.t.samaranayake@student.mmu.ac.uk).

Helen Ji is with the Department of Engineering and Technology,

Manchester Metropolitan University, John Dalton Building, Chester Street,

Manchester M1 5GD, UK (e-mail: h.ji@mmu.ac.uk).

John Ainscough is with the Department of Engineering and Technology,

Manchester Metropolitan University, John Dalton Building, Chester Street,

Manchester M1 5GD, UK (e-mail: j.ainscough@ mmu.ac.uk).

locations and a netlist. On successful placement, the output

will hold the locations of the cells that are non-overlapping

and fitted into the placement area.

In the past, designs mainly carried standard cells that were

of uniform height and width. Macro cells were introduced as

an answer to the growing complexity of circuits. Macros can

mainly be seen as black boxes that are designed to carry out

specific tasks such as implementation of a logic function

(e.g. an IP block). Increased use of Macro cells help

designer’s reuse of their designs which in turn helps

minimise design time and cost.

This paper introduces the idea of using graph-drawing

algorithms as the basis of a Macro cell placement tool. Two

force directed algorithms, one authored by Kamada and

Kawai [1] and the other by Fruchterman and Reingold [2]

are the main focus of this research (these will be referred to

as KK and FR respectively within the rest of this paper).

They were chosen mainly for their ability to handle

undirected straight line drawing graphs, their simplicity in

implementation, their speed as well as the criteria they

follow to produce aesthetically pleasing graphs. In many

cases, these criteria are shared by good placements. More

details on these two algorithms will be discussed in section

IV.

Graph theory is widely used in solving problems in subjects

such as electronics, computer science, physics, chemistry

and even geography and more. The different types of graph

implementations allow easy application to different

situations making them a common choice of solution[3]. A

Graph is a collection of nodes and edges where pairs of

nodes will be connected with the edges. Graph drawing

algorithms will take these nodes and edges and represent

them in an aesthetically pleasing graphical manner. Graphs

can have different characteristics; connected or

disconnected, directed or undirected etc [4]. Undirected

straight line drawing graph algorithms are required when

considering placement tools.

The rest of this paper is organized as below. Section II will

look at the different mixed size and macro cell placement

tools. Section III discusses the issues that need to be given

consideration when developing a macro cell placement tool.

The graph drawing algorithms are discussed in Section IV

whilst Section V highlights the experiments conducted on

the algorithms and their performance results. Section VI

gives brief details of the proposed placement tool before

concluding in Section VII.

Meththa Samaranayake

, Helen Ji and John Ainscough

Force Directed Graph Drawing Algorithms for

Macro Cell Placement

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

II. PLACEMENT TOOLS

There are many standard cell placement tools available both

academically and commercially. Several of them are capable

of mixed-mode cell placement i.e. designs that contain both

standard cells and macro cells, but there are only a few

placement tools specifically for macro cells. This is in fact

because standard cells govern most of the circuit designs.

Recent changes have seen designs to contain macro-cell

based designs such as memory blocks and IP blocks

(Intellectual Property), and furthermore, the hierarchical

design methodology intended to tackle design complexity

results in macro-dominated designs at the top level. Even

though mixed mode placement tools can handle macro cells,

for designs that contain a majority of macro cells these tools

may not place the cells in the best interest of the macro cells.

Some leading edge mixed mode placement tools identified

are Capo[5], Dragon [6], FastPlace[7] and APlace[8]. The

Capo tool is mainly based on simulated annealing and it

handles macro cells by shredding them to smaller sub cells.

These sub cells are connected by two pin nets ensuring that

they are placed close to one another. The circuit is then

considered as a standard cell placement problem. FastPlace

and APlace tools are based on analytical techniques and

incorporates macro cell placement in to its normal

placement flow. In FastPlace the macro cells are given

priority during legalization stage where overlaps are

resolved between macros before standard cells. Dragon is a

hybrid placement tool that combines the use of simulated

annealing with min-cut partitioning. To handle macro cells,

it has modified the min-cut partitioning algorithm so that the

partitions can be of different sizes. All these placement tools

were designed for standard cells and later modified to

support macro cells. As a result they do not consider macro

cell pin locations and cell orientation which are important

factors for placing macros.

In [9] a Java based macro cell placer based on a force

directed placement algorithm is described. In this work,

unlike the traditional force directed algorithms, the cell

shapes and sizes have been considered when developing the

force equation. A limitation of this tool is that it does not

handle placement on a fixed placement area and instead

treats the chip as a soft cell with a variable size and aspect

ratio. The pads of the chip are also not fixed; therefore the

positions are found with the use of the force directed

algorithm at a later stage.

A macro cell placement method based on net clustering and

force directed method is proposed in [10]. This approach is

unique such that, it treats the nets as the placement

components. In the graphs they draw, the nodes represent

the nets whilst an edge only exists for the nets that share one

or more cells. The forces on the nets determine the initial

locations for the cells. Pin locations are determined last,

suggesting that this placement tool is mainly focused on soft

cell macros. This work reiterates the importance of the pin

locations and cell orientation in macro cell placement.

Another limitation seen is that the tool only handles

connected graphs, again limiting the type of designs that can

be processed.

III. PLACEMENT CONSIDERATIONS

Macro cell placement is not as straightforward as standard

cell placement. In standard cell placement, the cells are of

uniform height and are restricted to rows in which they must

sit in. These restrictions allow the placement tools to be

more precise in choosing locations for the standard cells.

Macro cells on the other hand do not have such restrictions.

They can be of any height, width and shape and are not

restricted to a specific location of the placement area with

the exception of fixed cells.

When using graph-drawing methods for cell placement, cell

size is an issue needs to be looked at. Work carried out

regarding using different size and shape nodes for graph

drawing has been considered in [11]. This work is mainly

aimed towards general graph drawing algorithms and the

criteria they use for graph drawing include 1) Vertices are

not to overlap 2) Edges are not to cross vertices. For this

research, the first criterion directly applies, as the objective

of the placement tool is to produce a non-overlapping

placement. The second criterion also applies as it tends to

place directly connected cells together, but it could be too

conservative if routing is allowed to be over-the-cell. . One

of the limitations of the work in [11] is that the node

orientation is fixed and cannot be mirrored or rotated.

However, [11] has been able to successfully implement

nodes of different sizes and shapes and place them in a

visually pleasing manner.

As the cell size can be a significant amount of the total area,

sometimes even up to half of the placement areas, the pin

positions play a key role in generating a placement. Unlike

in standard cell placement, pin locations can have a

significant impact on wirelength, routability and congestion

of the chip as seen in Figure 1. To overcome this, the

placement tool will need to handle extra features such as cell

mirroring and cell rotation to consider the best possible

orientation in order to minimize costs.

Another difference between standard cell and macro cell

placement is that macro cells do not have rows in which

they should be placed in. The macro cells can be placed

anywhere within the placement area.

Fixed cells are also an important factor that needs to be

looked at during cell placement. There are designs that may

want one or more cells to be placed in a fixed position

within the placement area. In force directed algorithms, it

should be noted that even the fixed cells exert a force even

though the forces it encounters by others will not make any

changes to its placement.

Figure 1 Effect of pin locations to wirelength (a) before cell

mirroring wirelength includes the cell width (b) after cell-mirroring

wirelength is reduced

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

IV. FORCE DIRECTED GRAPH ALGORITHMS

Force directed algorithms generally tend to be analogous to

the classic problem of Hookes law for a spring system. Most

of the current force directed algorithms follow the foot steps

of Eades’ spring embedded algorithm[12]. Hooke’s law

simply stated that the force exerted by an extended spring is

proportional to the length of the spring. Eades modelled the

graph as a system of rings in place of the nodes and springs

for edges. His formula for the forces exerted by the springs

differed Hooke’s law by the former taking both attraction

and repulsion forces in to consideration as seen in Figure 2.

The aim of all the force directed algorithms is to find zero-

force locations for all nodes – i.e. state of equilibrium for

that system.

Traditional force directed algorithms tend to treat the cells

as points that do not posses any size or shape. The edges do

not connect to any pins but to the nodes that represents the

cell. This method may be acceptable for standard cell design

as identified in [9] but in Macro cell placement it can cause

inaccuracies of positions, wirelength, area, congestion etc.

due to the cell dimensions.

In [13] a comparison of several Force directed algorithms

has been carried out where KK and FR algorithms were the

two main contenders. It was identified that KK is successful

in achieving high computation speed, minimising the

computation time. Even though FR is quick in giving

aesthetically pleasing layouts, it does suffer from long run

times when the number of nodes/edges exceeds 60. As

mentioned in [13] one cannot declare a certain algorithm to

be the best. Each has its pros and cons and what is important

is how relevant each algorithm is, to the work that needs to

be done. The implementations for both algorithms used for

this research work were taken from the Boost C++

library[14].

KK Algorithm[1] is concerned about general undirected,

connected graphs. It has the ability to handle weighted

graphs though it was seen that the weights had an opposite

effect than what would be generally expected i.e. the higher

the weight the closer the nodes should be. One advantage in

this algorithm is that it introduces a “graph theoretic

distance” which defines a minimum edge length ensuring

the nodes do not overlap each other at any point. The main

objective of the algorithm is to find a balanced formulation

of the spring forces within the system. This algorithm

though based on Eades work also makes use of Hooke’s law

in order to produce an optimized layout.

The graph drawing criteria followed by [1] are, 1) reduce

number of edge crossings 2) distribute the vertices and

edges uniformly. Comparing these criteria with those of the

macro-cell placement tool, it can be seen that both are

related to the ‘good placement criteria’. Reducing number of

edge crossings results in directly connected cells being

placed close to each other. The second criterion allows the

nodes to be evenly distributed within the placement area as

well as show any symmetry within the layout. This not only

is an advantage for graph drawing where the aesthetics are

improved, but for cell placement, by illustrating the cell

connections in an uncomplicated manner. It is worth

Figure 2 Attraction and Repulsion forces between masses

pointing out that symmetry is a very important heuristic for

placement. While most of placement tools have difficulty in

incorporating it into their algorithms, the KK algorithm

handles it neatly.

The algorithm is implemented by connecting all the nodes

on a plane with springs with strength of kij. Other important

variables within the algorithm are, lij, the desirable or ideal

length between nodes and dij, the shortest distance between

the nodes vi and vj. lij is calculated by the user providing the

side length (side_length) of the placement area. The value

for the ideal edge length can be directly provided by the user

if needed. The algorithm assumes that the initial layout of

the graph is one where all the nodes are placed in a circle

and during graph drawing only considers one node at a time.

As mentioned above, the KK algorithm defines the

placement area using the side_length variable that gives the

length of the side of the area. Unfortunately, this does not

guarantee that the placement will be bounded to a bounding

box of height and width equal to the side_length. Through

direct experimentation, it was seen that at times the nodes

can be placed out of the placement area, however it was

noted that this was rare and the amount of displacement is

quite small compared to the overall placement area. It is

believed that limitation on placing components within the

placement area can be imposed upon in later stages when

being used in the placement tool.

The main difference between the FR algorithm and KK

algorithm is that the FR algorithm can handle disconnected

graphs. Even though this is not an absolute requirement

compared to the objectives of the placement tool, it does

give an advantage as to the type of designs the algorithm

will be able to handle. In [1] it is pointed out that even

though KK algorithm does not support disconnected graphs,

it can be easily extended to do so without a significant delay

in time.

The main objectives of the FR algorithm are to achieve a

visually pleasing graph with increased speed and simplicity.

Following Eades work, the FR algorithm also makes use of

both attraction and repulsion forces, but takes it one-step

further by defining that the attraction forces are only

calculated for neighbouring nodes whilst repulsion forces

are calculated for all nodes within the graph.

A main feature of the FR algorithm is that it uses a method

similar to simulated annealing to control the ‘cooling

schedule’ of the algorithm. This is to help limit the

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Table 1 Performance results of KK vs FR algorithm for a subset of graphs

Run time HPWL Avg. Edge length Graph No. of

Edges

No. of

Nodes KK FR GRID KK FR GRID KK FR GRID

1 10 5 0.016 0.109 0.110 1200.59 541.11 541.11 94.72 42.51 42.50

2 6 4 0.015 0.078 0.093 724.27 369.89 369.89 97.14 48.48 48.48

3 15 6 0.031 0.156 0.171 1737.83 734.44 734.44 92.85 38.12 38.11

4 1 2 0 0.031 0.031 100.0 98.81 98.81 100.0 98.81 70.60

5 7 6 0.046 0.109 0.140 217.83 331.77 331.77 25.21 38.55 38.55

6 18 10 0.094 0.281 0.328 801.97 859.92 859.92 34.68 38.16 38.16

7 60 36 2.578 - 24.328 975.79 - 1210.15 11.90 - 20.00

displacement prohibiting the algorithm to be trapped in local

minima. The authors of FR algorithm had also been

successful in implementing a placement border in order to

keep the nodes within the given area. Unlike the KK

algorithm, FR implements support for a customisable

placement area. This is quite a useful attribute in cell

placement as this defines the placement area and ensures

that the cells will be placed within the placement area.

In order to handle disconnected graphs, FR algorithm[2]

introduces a separate method which is based on the idea of

Kamada and Kawai[1]; partition the graph to its connected

components giving each component a region of area

proportional to its size, with each component laid out

independently. The implementation of a grid variant option

is used by FR where the placement area is divided into a

grid and nodes are given locations within the grid. Changes

are made to the method of calculation of the repulsion

forces; it is only calculated for those nodes that are in the

neighbouring grids.

Looking at the criteria followed by [2] when drawing

graphs, it is seen that two main points are considered. 1)

Vertices connected by an edge should be drawn near each

other 2) Vertices should not be drawn too close to each

other. The first criteria does apply for the cell placement tool

as the cells connected to one another will need to be close to

each other in order to minimise wirelength. This can be

further enhanced by edge weights to ensure that cells

connected to edges with higher weights are as close as

possible. Unfortunately, the current implementation of the

FR algorithm does not contain support for edge weights.

The second criteria is set quite vaguely and according to [2]

it depends on the number of nodes and the placement area.

Literally, this should mean that the nodes do not overlap

each other, which is directly applicable to the objectives of

the placement tool.

V. EXPERIMENTATION

Using the Boost implementation of the two algorithms, they

were simulated under different conditions to identify their

strengths and weaknesses. The inability to handle

disconnected graphs of the KK algorithm has proven to be a

minor setback in the type of simulations that could be

carried out. To start, the two algorithms were subjected to a

subset of graphs taken from [1, 2]. The simulations were

run on an Intel Pentium IV PC running at 3.2GHz and with

2 GB of RAM.

Table 1 shows the performance results of the two algorithms

for the subset of graphs. The runtime, HPWL (half perimeter

wire length) and the average edge length are the statistics

Figure 3 placement of graph7 (a) by FR algorithm with grid variant

option (b) by KK algorithm

used in comparing the performance of the two algorithms.

Average edge length can be defined as,

edges ofnumber

length edge
length edge average

∑
= .

The KK algorithm used in these simulations is a modified

version of the boost implementation. One such modification

made was to define the initial layout circle to have a radius

equal to half the size of the side length. Another was to give

a smaller value for the convergence precision in order for it

to iterate more. For both algorithms, the placement area was

defined to be a square with the dimensions of 100x100 units.

When simulating graph7 the FR algorithm was unable to

place it in a visually pleasing manner using the general

algorithm. With the grid variant option, it was seen that the

algorithm needed to be iterated 15 times before obtaining a

pleasing layout. It was observed that for graphs with higher

number of nodes and edges, an iteration stage needed to be

performed in order to produce aesthetically pleasing layouts.

From the results of Table 1, it can be seen that FR algorithm

tends to condense the overall graph resulting in a lower

wirelength than the KK algorithm. This condensation would

indirectly reduce the overall area when used by a cell

placement tool. From the runtime data, it can be observed

that KK performs far better, particularly when the number of

nodes and edges are higher as can be seen for graph7. As

the graph-drawing algorithm will be the basis of the

placement tool, its speed in generating a layout is very

important in ensuring that the overall tool performs just as

quickly.

A disadvantage identified with the KK algorithm with

respect to the results obtained is shown in Figure 3. It can be

seen that the layout produced by the KK algorithm for

graph7 is somewhat tilted. For a cell placement algorithm,

this introduces an additional obstacle.

Similarly, it was observed that the FR algorithm tends to

overlap nodes at times. This is thought to be solvable by

introducing a minimum distance between nodes as

accomplished by the KK algorithm.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

(a)

Cross benchmark

simulated with

side_length = 60

(b)

Movable Peripheral

IO benchmark

simulated with

side_length = 60

(c)

Peripheral IO

benchmark with

side_length = 100

Figure 4 Results from simulating a set of designs from Feature

benchmarks on the KK algorithm

 The authors have also modified the KK algorithm to

implement support for fixed-point nodes. The algorithm was

modified with the intention that positional updates are not

carried out for the fixed nodes, but the forces of attraction

and repulsion are still exerted by them on to the movable

nodes. Simulations were run on a set of designs based on the

widely used Feature benchmark set which is designed to

compare placement quality [15], and the results are shown

in Figure 4. The modified designs did not contain the cell

dimensions or the initial placement locations that the

Feature benchmarks contain. The fixed cells are shown in

the nodes represented by a square shape in the results. The

peripheral_IO design was further modified so that all the

fixed cells are interconnected, as KK algorithm does not

support disconnected graphs.

Figure 5 looks at a few more simulation results after setting

selected nodes to have fixed coordinates. It can be observed

from the above figures that the resultant placements have the

intuitively correct overall topology. One point to note is that

the edge lengths between fixed nodes were smaller than the

ideal edge length calculated by the algorithm. This has

resulted in the slight change in shape of the designs as can

be seen in Figure 5 (b) and (c). Due to the nature of the

algorithm in distributing the nodes over the placement area,

the movable nodes of Figure 5 (b) have been placed quite far

apart. This is not seen as an obstacle for using this algorithm

to be integrated in to a placement tool. The distribution of

nodes can be limited by, 1) giving a smaller placement area

2) bringing the minimum edge length to be smaller or 3)

having a separate stage in the placement tool to remove

whitespace and reduce the wirelength.

Figure 5 Simulation results of (a) graph7 (b) graph2 (c) graph6

with a selected number of nodes fixed (circled nodes)

Table 2 HPWL calculations for a subset of graphs

Graph No. Ideal HPWL Actual HPWL

2 600 724.27

5 212.62 217.83

6 750.79 801.97

7 600 975.69

9 469.59 609.55

10 166.67 341.73

11 372.94 413.352

Ideal HPWL vs Actual HPWL for KK algorithm

0

200

400

600

800

1000

1200

2 5 6 7 9 10 11

Graph Number

H
P

W
L

Ideal HPWL Actual HPWL

Figure 6 Ideal HPWL and Actual HPWL plotted for a subset of

graphs using KK algorithm

Table 2 looks at the variation of HPWL of several graphs as

calculated by KK algorithm. Figure 6 displays the data in a

graphical format to appreciate the deviation of data. Ideal

HPWL was calculated first using a generalised formula for

each of the graphs resulting in a unit length HPWL value.

This was then multiplied by the minimum edge length

calculated by the KK algorithm to give the ideal HPWL. For

all the graphs, side_length was set to be 100 units. It can be

seen for graph7 the deviation is a significant value. It can be

identified that this is due to tilting of the graph as was seen

in Figure 3 that causes the increase in wirelength. The same

can be said for graph9 and graph10; both hold a grid like

topology.

Overall, it was seen that both algorithms were successful in

generating a layout with a good topology. The preliminary

results obtained from these algorithms suggest that they will

be successful in being used as a tool to give a good initial

placement for the overall placement tool.

VI. PROPOSED PLACEMENT TOOL

The main aim of this research is to pave the way for an

improved macro-cell placement tool. The force directed

graph-drawing algorithm is to be used for the first stage of

the placement tool in determining good topology for the

cells. A brief overview of the proposed method is given in

Figure 7 and is discussed more in detail below.

Stage 1

The first stage of the placement tool is to construct the graph

using the netlist. The necessary data will be extracted from

the LEF/DEF netlist files. Important information such as

initial cell positions (if any), cell dimensions, nets and net

weights etc. will be extracted and stored in a database

enabling quick recall of the data at necessary times.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

The netlist is given as the input

The graphs is placed

using the force

directed algorithm.

The nodes are

replaced by the

cells giving them

heights and widths

Overlap is removed and

the pin positions and

their connections are

now given

consideration. Further

improvements are

made.

Final Placement

Figure 7 the placement tool overview

In constructing the graph, one of two methods can be used.

The first is to consider the cells as zero size points. The pins

will be disregarded at this stage and an initial placement will

be found by applying the force directed algorithm. In order

to minimise the amount of overlap that will be introduced in

the later stages it will be needed to introduce a minimum

distance between vertices. It is believed that creating

individual ‘halo’ effects will help minimise overlaps as well

as obtain more realistic values for the wire lengths. Ref [11]

discusses the possibility of ending up with a distorted graph

when scaling zero size points to have dimensions. With this

in mind, it is suggested that cell sizes should be taken into

account when calculating the ‘halo’ of a given cell.

The second method is to follow the footsteps of [11] and to

consider the cell size at the initial placement removing the

need for Stage 2 in this overview. A cause for concern of

this method is the runtime due to the increased number of

calculations when considering cell sizes. Another

consideration at this stage is the edge weights. The higher

the edge weight the smaller the edge length should be.

Stage 2

In the next stage of the tool, the nodes will be replaced by

the actual cell dimensions. As can be seen in Figure 7 there

can be some overlap that will be removed at this stage. In

[11] this method is described to have the disadvantage of

edges not being of uniform length in addition to the

possibility of edges being very long. It should be noted that

for a placement tool, the edges need not be uniform and

since routing can be performed at different layers, the wires

will not be routed around the cells.

The pins will be introduced in the placement area to be used

for further improvements.

Stage 3 and 4

Once the initial placement with good topology is achieved,

the cell placement can be further improved using traditional

methods for minimising wirelength and area. Possibility of

changing the cell orientation in order to reduce wirelength

and congestion will be investigated. Another feature that

may need to be investigates is overlap removal.

VII. CONCLUSION

In this work, a method of using graph-drawing algorithms as

a building block for a Macro cell placement has been

proposed. Future work will focus on implementing further

capabilities on to the graph drawing algorithms. Further

simulations will be conducted in order to finalise fine details

such as values for the various options presented by the

algorithms as well as the different variables that allow

tweaking the algorithm to maximise performance. The

experiment has demonstrated that force directed graph-

drawing algorithm can achieve successful provisional

placement, and by subsequently applying traditional

wirelength minimisation techniques such as simulated

annealing, min-cut partitioning and greedy optimisation

techniques, it is believed that this will lead to a high-quality

macro-cell placement tool.

REFERENCES

[1] T. Kamada and S. Kawai, "An algorithm for drawing general

undirected graphs," Information Processing Letters, vol. 31, p. 15,

1989.

[2] T. M. J. Fruchterman and E. M. Reingold, "Graph drawing by force-

directed placement," Software- Practice and Experience, vol. 21, pp.

1129-1164, 1991.

[3] N. A. Sherwani, Algorithms for vlsi physical design automation, 3rd

ed.: Kulwer Academic, 1999.

[4] R. J. Wilson, Introduction to graph theory, Fourth ed. Essex: Prentice

Hall, 1996.

[5] J. A. Roy, J. F. Lu, and I. L. Markov: 'Seeing the forest and the trees:

Steiner wirelength optimization in placement'. International

Symposium on Physical Design, California, USA, 2006, pp. 78-85.

[6] B. K. Choi, M. Sarrafzadeh, T. Taghavi, M. Wang, and X. Yang:

'Dragon2005: Large scale mixed-sized placement tool'. International

Symposium on Physical Design, April, 2005, pp. 42-47.

[7] N. Viswanathan, M. Pan, and C. Chu: 'Fastplace 3.0: A fast multilevel

quadratic placement algorithm with placement congestion control'.

Asia and South Pacific Design Automation Conference, 23-26 Jan

2007, pp. 135-140.

[8] A. B. Kahng, S. Reda, and Q. Wang: 'Aplace: A general analytic

placement framework'. International Symposium of Physical Design,

California, USA, April 2005, pp. 233-235.

[9] F. Mo, A. Tabbara, and R. K. Brayton: 'A force-directed macro-cell

placer'. IEEE/ACM International conference on Computer-aided

design, November, San Jose, USA, pp. 177-180.

[10] S. Alupoaei and S. Katkoori, "Net-based force-directed macrocell

placement for wirelength optimization," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 10, pp. 824-835,

December 2002 2002.

[11] D. Harel and Y. Koren: 'Drawing graphs with non-uniform vertices'.

Proceedings of Working Conference on Advanced Visual Interfaces,

pp. 157–166.

[12] P. Eades, "A heuristic for graph drawing," Congressus Numerantium,

vol. 42, pp. 194-202, 1984.

[13] F. J. Brandenburg, M. Himsholt, and C. Rohrer, "An experimental

comparison of force-directed and randomized graph drawing

algorithms," in Proceedings of the Symposium on Graph Drawing,

1996, pp. 76 - 87

[14] Boost,http://www.boost.org/, accessed Sep 2007

[15] D. A. Papa, A. Saurabh, and I. Markov, Feature benchmarks for

placement,http://vlsicad.eecs.umich.edu/BK/FEATURE/, accessed 03-

01-2007

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

