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Abstract—The detection of unknown malicious
executables is beyond the capability of many existing detection
approaches. Machine learning or data mining methods can
identify new or unknown malicious executables with some
degree of success. Feature set is a key to apply data mining or
machine learning to successfully detect malicious executables.
In this paper, we present an approach that conducts an
exhaustive feature search on a set of malicious executables and
strives to obviate over-fitting. To improve the performance of
Bayesian classifier, we present a novel algorithm called Half
Increment Naive Bayes(HIB), which selects the features by
carrying an evolutional search. We also evaluate the predictive
power of a classifier, and we show that our classifier yields high
detection rates and learning speed.

Index Terms—unknown malicious detection; Half Increment
Naive Bayes; classification

1. INTRODUCTION

As network-based computer systems play increasingly
vital roles in modern society, a serious security risk is the
propagation of malicious executables. Malicious executables
include viruses, Trojan horses, worms, back doors, spyware,
Java attack applets, dangerous ActiveX and attack scripts.
Identifying malicious executables quickly is an important
goal, as they can cause significant damage in a short time.
Consequently detecting the presence of malicious executables
on a given host is a crucial component of any defense
mechanism.

Traditional malicious executables detection solutions use
signature-based methods, in that they use case-specific
features extracted from malicious executables in order to
detect those same instances in the future ', Security products
such as virus scanners are examples of such application.
While this method yields excellent detection rates for existing
and previously encountered malicious executables, it lacks
the capacity to efficiently detect new unseen instances or
variants. Due to detect malicious accurately is a NP problem
(31 heuristic scanners attempt to compensate for this lacuna
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by using more general features from viral code, such as
structural or behavioral patterns . Although proved to be
highly effective in detecting unknown malicious executables,
this process still requires human intervention.

Recently, attempts to use machine learning and data
mining for the purpose of identifying new or unknown
malicious executables have emerged. Schultz et al. examined
how data mining methods can be applied to malicious
executables detection ! and built a binary filter that can be
integrated with email servers. Kolter et al. used data mining
methods, such as Naive Bayes, J48 and SVM to detect
malicious executables . Their results have improved the
performance of these methods. Bayes or improved Bayes
algorithm has the capability of unknown malicious detection,
but it spends more time to study. A new improved algorithm
(half-increment Bayes algorithm) is proposed in this paper.

In this paper, we are interested in applying data mining
methods to malicious executables detection, and in particular
to the problem of feature selection. Two main contributions
will be made through this paper. We will show how to choose
features which are most representative properties.
Furthermore, we propose a new improved algorithm and will
show that our method achieve high learning speed and high
detection rates, even on completely new, previously unseen
malicious executables.

The rest of this paper is organized as follows: Section 2 is a
brief discussion of related works. Section 3 gives a brief
description of Bayesian algorithm. Section 4 presents details
of our methods to obtain high learning speed. Section 5 shows
the experiment results. Lastly, we state our conclusions in
Section 6.

II. RELATED WORK

At IBM, Kephart et al. ") proposed the use of Neural
Networks to detect boot sector malicious binaries. Using a
Neural Network classifier with all bytes from the boot sector
malicious code as input, it had shown that 80%-85% of
unknown boot sector malicious programs can be successfully
identified with low false positive rate (<1%). The approach
for detecting boot-sector virus had incorporated into IBM’s
Anti-Virus software. Later, Arnold et al. ! applied the same
techniques to win32 binaries. Motivated by the success of data
mining techniques in network intrusion system "', Schultz
et al. ) proposed several data mining techniques to detect
different types of malicious programs, such as RIPPER, Naive
Bayes and Multi-Naive Bayes. The authors collected 4,301
programs for the Windows operating system and used
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MacAfee Virus Scan to label each as either malicious or
benign. The authors concluded that the voting
naive-Bayesian classifier outperformed all other methods. In
a companion paper '?! the authors developed an Unix mail
filter that detect malicious Windows executables based on the
above work. Kolter et al. ' also used data mining methods,
such as Naive Bayes, J48 and SVM to detect malicious codes.
The authors gathered 1,971 benign and 1,651 malicious codes
and encoded each as a training example using n-grams of byte
codes as feature, boosted decision trees outperformed other
methods with an area under the ROC curve of 0.996. (applied
detectors to 291 malicious executables discovered, and
boosted decision trees achieved a TP rate of 0.98 for a desired
FP rate of 0.05. ) Zhang et al. '"*! used SVM and BP neural
network to virus detection, the D-S theory of evidence was
used to combine the contribution of each individual classifier
to give the final decision. It showed that the combination
approach improves the performance of the individual
classifier significantly. Zhang et al. ''*'") established methods
based on fuzzy pattern and K-nearest neighbor recognition
applying to detect malicious executables for the first time.

There are other methods of guarding against malicious
code. Static analysis, where analysis of program is done
without executing it, is attempted in [12,13]. Dynamic
analysis which combines testing and debugging to detect
malicious activities by running a program includes wrappers
14 sandboxing '), etc. Inspired by the phenomenon in the
mid-1990s, some computer-virologist proposed an immune
strategy on single-chipped computers, which uses virus
protection software to simulate immune phenomenon "®'",
These approaches are not based on data mining, although one
could imagine the role such techniques might play.

III. NAIVE BAYESIAN AND APPLICATION

The goal of our work was to improve a standard data
mining technique to compute accurate detectors for new
binaries. We gathered a large set of programs from public
sources and separated the problem into two classes: malicious
and benign executables. We split the dataset into two subsets:
the training set and the test set. The data mining algorithms
used the training set while generating the rule sets. We used a
test set to check the accuracy of the classifiers over unseen
examples.

In a data mining framework, features are properties
extracted from each example in the data set—such as strings
or byte sequences. A data mining classifier trained with
features can use to distinguish between benign and malicious
programs. We used strings that are extracted from the
malicious and benign executables in the data set as features.

We propose an exhaustive search for strings. Typically
there are many “disorder-words” when files are read as ASCII
code, like “autoupdate.exe i [EfEIE?software*abbbbbbjiE 55
download”, etc. The string selection program extracts
consecutive printable characters from files. To avoid yielding
a large number of unwanted features, characters are filtered
before they are recorded. Our feature selection involves an
extraction step followed by an elimination step.

ISBN:978-988-98671-9-5

A. String Extraction and Elimination

In string extraction step, we scan files and read character
one by one, record consecutive printable characters (like
English letter, number, symbolic and etc.), and construct lists
of all the strings. The character string extraction algorithm is
shown in Algorithm 1, by adjusting string length. The length
of the string is specified as a number of characters. The
shorter the length, the more likely the feature is to have
general relevance in the dataset. But a short length will yield
a larger number of features.

Algorithm 1. String extraction (B, V, len)

Input: A non-empty set of benigns, B.

Input: A non-empty set of malicious executables, V.
Input: The word set, ¥, as a filter.

Input: A non-zero length, /en.

Output: A set features, S/, representing common
characteristics of malicious executables in V'
Output: A set features, S2, representing common
characteristics of benign executables in B

1: for (each malicious V; in V) do

2. for (each character in V;) do

3: record a character found in W, otherwise discard off.

4. record consecutive printable characters in a buffer.

5:  record all strings of length less than /en found in V;

6: build the set of features S/ of strings with length less than
len

7: return S/

8: for (each virus B; in B) do

9:  for (each character in B;) do

10: record a character found in W, otherwise discard off.

11: record consecutive printable characters in a buffer.

12:  record all strings of length less than /en found in B;

13: build the set of features S2 of strings with length less than
len

14: return S2

Extracted strings from an executable are not very robust as
features because some strings are unmeaning, like “abbbbbb”,
so we select a subset of strings as feature set by an eliminate
step.

Many have noted that the need for a feature filter is to make
use of conventional learning methods!*'¥, to improve
generalization performance, and to avoid over-fitting.
Following the recommendation of those, the glossary filter
criterion is used in the paper to select a subset of strings.

The glossary is a computer glossary which includes 7,336
items:

¢ Computer words, such as function name, API
name.

¢ Abbreviations on computer networks, like “QQ”,
“msn”, etc.

¢ Postfixs, like “.dll”, presenting dynamic link
libraries.

B. Naive Bayes

The naive Bayes classifier computes the likelihood that a
program is malicious given the features that are contained in
the program. We treat each executable’s features as a text
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document and classified based on that. Specifically, we want
to compute the class of a program given that the program
contains a set of features F. We define C to be a random
variable over the set of classes: benign, and malicious
executables. That is, we want to compute P(C|F), the
probability that a program is in a certain class given the
program contains the set of features F. We apply Bayes rule
and express the probability as:

P(F|C)xP(C)
P(F)

To use the naive Bayes rule we assume that the features

occur independently from one another. If the features of a

program F include the features F|,F,,F,....F , then

P(C|F)= M

equation (1) becomes:
P(C|F)- Hi:lP(ﬂE C)xP(C)
H»/‘:IP(F/.)

Each P(F]|C) is the frequency that string F; occurs in a

)

program of class C. P(C) is the proportion of the class C in the
entire set of programs.

The output of the classifier is the highest probability class
for a given set of strings. Since the denominator of (1) is the
same for all classes we take the maximum class over all
classes C of the probability of each class computed in (2) to
get:

Most Likely Class= mCaX(P(C)H P(F, | C)] (3)
i=1

In (3), we use max to denote the function that returns the
class with the highest probability. Most Likely Class is the
class in C with the highest probability and hence the most
likely classification of the example with features F.

IV. INCREMENT NAIVE BAYES

A. Naive Bayes(NB)

To train the classifier, we record how many programs in
each class contained each unique feature. We use this
information to classify a new program into an appropriate
class. We first use feature extraction to determine the features
contained in the program. Then we apply equation (3) to
compute the most likely class for the program.

The Naive Bayes algorithm requires a table of all features
to compute its probabilities. This method requires a machine
with one gigabyte of RAM, because the size of the binary data
was too large to fit into memory.

To update the classifier, when new programs are added to
the training set, we update feature set at first, and apply
equation (3) to compute the most likely class for the program
again. So it is time-consuming to update the classifier by NB
algorithm.

B.  Multi-Navie Bayes(MNB)

To correct NB algorithm problem the training set is divided
to smaller pieces that would fit in memory. For each set we
train a Naive Bayes classifier. Each classifier gives a
probability of a class C given a set of strings F' which the
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Multi-Naive Bayes uses to generate a probability for class C
given F over all the classifiers.

For each classifier, the probabilities in the rules for the
different classifiers may be different because the underlying
data the each classifier is trained on is different. The
prediction of the Multi-Naive Bayes algorithm is the product
of the predictions of the underlying Naive Bayes classifier.

P(CF)=TT. &(cF) @

When new programs are added to the training set, these
new programs as a subset and train a Naive Bayes classifier
over the subproblem. Based on the equation (4), we update the
probability. The Multi-Naive Bayes algorithm does not need
to compute its probabilities over all the training set, but the
accuracy of the classifier will be worsen.

C. Half Increment Bayes(HIB)

The above NB and MNB algorithms obtain feature set over
all training set or subset at first. Once the final feature set was
obtained, we represent our positive and negative data in the
feature space by using, for each feature, “1” or “0” to indicate
whether or not the feature is present a given executable file.
The probability for a string occurring in a class is the total
number of times it occurred in that class’s training set divided
by the total number of times that the string occurred over the
entire training set.

We can derive a method purely from the NB algorithm for
increment update. In our method, feature set is increased with
studying of classifier. That is, composed there are k; string
features extracted from the first sample, so k; strings are
elements of set F. If there are S, strings extracted from the
second sample, k; elements are not found in F, these elements
should be added in feature set F. Set F will includes k; + k;
elements. Classifier is trained based on the evolutional feature
set.

Claim 1: We can obtain the class-conditional probability

P(F(nH)

C) over n+l samples by that of former n

samples and the (nt1)th sample, that is
0! (n+1)
()= [ P(E”]C,)xn+ P(x0]C,)]
' / n+l

Where, P(F‘””)

C) is the class-conditional probability

over n+l samples, P(F ™ C) is class-conditional

P(x(m)

class-conditional probability over the (r+1)th sample.
Proof:
Composed there are a features obtained from » samples,

thatis F" ={F,F,..,F,}, then

c)=T1.,P(Elc,)G=1.2)
C )= P(Ficj) : count(F = F, AC:C_/.)
)= P(C,)  count(C=C))

Where, count(F =F AC=C;) is sample number for

probability over n  samples, C) is

P(F®

P(F,

i

F =FandclassC =C,, count(C = C;) is sample number for
classC=C,.
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If there are n samples with C = C; in training set, then the

class-conditional probability P(F ) C) for n samples is:

_ count((F = F"™YA(C=C)))

n

P(F;.(n)

¢
If the (n+1)th sample for class C = C; was added, there are

two cases.
Case 1: the strings in the (#+1)th sample are all found in F,
then
count(F = F")A(C = ()]
N n+l1
Case 2: there are b strings in the (n+1)th sample are not
found in F, then these strings are added in F, that
is F"V ={F,F,..,F,,F,, . F,} .

a

P(Fi(m)

C.)

J

For those new b

probabilities, due to P(E(”) C_,.) =0 a<i<a+b ,then
P(F.‘”*‘) C.):L a<i<a+b (8)
! o+l
We rewrite (7) and (8) as (9):
B (n+1)
" [ P(E7]C,)xn+ P(x0]C,)]
P(E C, ) = 9)
: n+l

Therefore, information of n+1 samples can obtained from
those of former » samples and the (n+1)th sample. o
Claim 2: For NB and HIB, based on same training set,
same feature sets can be obtained by same string
extraction and elimination methods, that is Fn=Fy. Where
Fy is feature set obtained by half increment algorithm, Fy
is feature set obtained by naive bayse algorithm.

Proof:
Composed there are a features obtained from n samples,

that is F, ={F,F,...F,}, Set Fy is made of strings that

extracted from »n samples and eliminated based on computer
dictionary.

Fy is increased as training samples. When all of training
samples are all extracted, Set Fy is made of strings that
extracted from z samples and eliminated based on computer
dictionary. So Fx=Fy. ]

Based on Claim 1 and 2, we can obtain Theory 1.

Theory 1: Most Likely Classes computed by half
increment classification and Naive Bayes classification
are same, that is C;, = C,. Where C; is the most likely
class obtained by naive Bayes, and C, is the most likely
class obtained by half-increment classification.

Proof: Composed a features were obtained from »n samples,
thatis F, ={F,F,..,F,}, Based on equation (3),

C, = max [P(C)li[ P(F | C)) (10)
i=l
When a new sample is added,
Fy ={F.,F,..,F, F,_ - F,} the most likely class
computed by naive Bayes is
¢ =argmax P(C )x[ [ P(FC) (11)
As Fy=Fy, based on equation (9)
C, =argmax P(C)x[[ "' P(F|C) (12)
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Therefore, the C, = C, .
The HIB algorithm is shown in Algorithm 2.

m)gorithm 2. Half Increment Bayes Algorithm (D)

Input: A non-empty training set, D.
Input: A Feature set, F.
Output: A classifier
1: for (each sample D; in D) do
?7) for (each string s))
7 if found in F go to 4, otherwise record unrepeated
Strings and update set F.
4. Training classifier
5: return classifier

D. Complexity

Based on former algorithm, time-consuming of NB and
HIB are made of two parts:

(1) extract unrepeated strings from samples.

(2) fix on feature set and training set, build up classifier.

For step (1), time-consuming of two algorithms are same.
But for step (2), they are different.

For HIB, feature set is increased with studying of classifier.
That is, composed there are S; strings in the first sample, and
k, strings are unrepeated, so k; strings are elements of set F. If
there are S, strings in the second sample, the time-consuming
of computing whether k; elements are found in S, or not is

T,,, = O(S, xk,) . If k, elements are not found in F, these

elements should be added in feature set F. Set F will includes
k; + k, elements. For n samples, the all time-consuming of fix
on set F'is
T, =0(S, <k +S;x(k, +ky)+...+ S, x(k; + k, +...+ k,)) (13)
For NB, the set F' are obtained before classifier study.
Composed there are K elements in F, the time consuming to
indicate whether or not the feature is present a given
executable file is

T, =0(Kx(S,+S,+..+S)))
Based on Claim 2, Fn=Fy, K =k +k, +..+ k..
Based on equation (13),
T, =0(Kx(S,+S,+...+S )-8, x(k, +...+ k. )—...— S, xk,)
(15)
If ky=k;=..=k. =0, or K=k ,T,=T,, the
time-consuming of two algorithm are same. But malicious
executables include viruses, Trojan horses, worms, back

doors, spyware, Java attack applets, dangerous ActiveX and
attack scripts, a sample cannot include all feature elements.

(14)

V. EXPERIMENTAL RESULTS

A.  Experimental Design

Our experiment are carried out on a dataset of 2995
examples consisting of 995 previously labeled malicious
executables and 2000 benign executables, collected from
desktop computers using various versions of the Windows
operating system. The malicious executables are taken from
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an anti-Virus software company.

For each run, we extract strings from the executables in the
training and testing sets. We select the most relevant features
from the training data, apply elimination method, and use the
resulting classifier to rate the examples in the test set.

B.  Performance Analysis
1) Time—consuming

In our experiments, we used VC++ implementation of the
NB, MNB and HIB classifiers. In this section, we evaluate the
performance of NB, MNB and HIB three algorithms in
comparison.

For HIB algorithm, increasing rule of feature elements is
based on order of studied samples. Figure 1 is the curve
between number of studied samples and number of feature
elements. In Figure 1, the slope of the curve is steep at some
points. When classifier begins to study some type sample, the
slope of the curve is steep, that is, the number of feature
elements increase quickly. After classifier has studied some
samples, the slope of the curve is smooth.

Figure 2 is the curve of three algorithm’s time-consuming.
The slope of NB algorithm is initially much steeper than the
HIB and MB algorithms. HIB algorithm has better efficiency.

The ROC curves in Figure 3 show a more quickly growth
than the NB and MNB until the false positive rate climbed
above 4%. Then the three algorithms converged for false
positive rates greater then 6% with a detection rate greater
then 95%.

2) Comparison Against Benchmark Model

To evaluate our system we are interested in several
quantities:
1. True Positives (TP), the number of malicious executable
examples classified as malicious code
2. True Negatives (TN), the number of benign programs
classified as benign
3. False Positives (FP), the number of benign programs
classified as malicious code
4. False Negatives (FN), the number of malicious codes
classified as benign.

TP
The Detection Rate is defined as Ti , False

P+ FN
Positive Rate as ————— , and Overall Accuracy as
TN + FP
TP+TN
TP+TN+FP+FN

We compare our method with a model used in previous
research [""'*!. The results, displayed in Table 1, indicate that a
virus classifier can be made more accurate by using features
representative of general viral properties, as generated by our
feature search method. With up to 97.9% overall accuracy,
our system outperforms NB and MNB algorithms and
achieves better results than some of the leading research in
the field, which performs at 97.11%.
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Table 1 Experimental results using our method and

traditional methods

Method Feature Classifier Accuracy
Our method Strings NB 96.8%
Our method Strings MNB 93.3%
Our method Strings HIB 97.9%

Schultz String NB 97.11%

Schultz Bytes MNB 96.88%

Kolter 4-gram SVM 93%

Henchiri 8-gram J48 93.65%

VI. CONCLUSION

The naive Bayes classifier is widely used in many
classification tasks because its performance is competitive
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with state-of-the-art classifiers, it is simple to implement, and
it possesses fast execution speed. In this paper, we discussed
the problem of how to classify a set of query vectors from the
same unknown class with the naive Bayes classifier. Then,
we propose the method HIB algorithm and compare it with
naive Bayes and multi-naive Bayes. The experimental
results show that HIB algorithm can take advantage of the
prior information, can work well on this task. Finally, HIB
algorithm was compared with a model used in previous
research """*]. Experimental results reveal that, HIB can reach
a higher level of accuracies as 97.9%. HIB’s execution speed
is much faster than MNB and NB, and HIB has low
implementation cost. Hence, we suggest that HIB is useful in
the domain of unknown malicious recognition and may be
applied to other application.
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