

Abstract—Modern powerful reconfigurable systems are suited
in the implementation of various data-stream, data-parallel,
and other applications. An application that needs real-time,
fast, and reliable data processing is the global positioning
system (GPS)-based vehicle tracking system (VTS). In this
paper, we build on a recently produced VTS (The Aram
Locator) offering a system-on-chip (SOC) replacement of the
current microcontroller-based implementation. The proposed
SOC is built on a field programmable gate array (FPGA)
promising a cheaper design, a more cohesive architecture, a
faster processing time and an enhanced system interaction.
Different designs, and their hardware implementations, are
proposed with different levels of integration. Performance
analysis and evaluation of the investigated designs are
included.

Index Terms—Gate arrays, Global Positioning System,
Performance, Vehicle tracking, Real-time systems.

I. INTRODUCTION

After a great evolution, reconfigurable systems fill the
flexibility, performance and power dissipation gap between
the application specific systems implemented with
hardwired Application Specific Integrated Circuits (ASICs)
and systems based on standard programmable
microprocessors. Reconfigurable systems enable extensive
exploitation of computing resources. The reconfiguration of
resources in different parallel topologies allows for a good
matching with the inherent intrinsic parallelism of an
algorithm or a specific operation. The reconfigurable
systems are thus very well-suited in the implementation of
various data-stream, data-parallel, and other applications.
The introduction of a new paradigm in hardware design
called Reconfigurable Computing (RC) offers to solve any
problem by changing the hardware configurations to offer
the performance of dedicated circuits. Reconfigurable
computing enables mapping software into hardware with
the ability to reconfigure its connections to reflect the

*A. I. Yaqzan is with the Electrical and Computer Engineering
Department, Hariri Canadian University, P.O.Box: 10 Mechref, Damour,
2010 Chouf , Lebanon (email :adnan5884@hotmail.com)

I. W. Damaj is with the Electrical and Computer Engineering Department,
Dhofar University, P.O. Box: 2509, 211 Salalah, Oman, (email:
i_damaj@du.edu.om)

R. N. Zantout is with the Electrical and Computer Engineering
Department, Hariri Canadian University, P.O.Box:10 - Mechref, Damour,
2010 Chouf , Lebanon (email: zantoutrn@hariricanadian.edu.lb)

software being run. The ability to completely reprogram the
computer’s hardware implies that this new architecture
provides immense scope for emulating different computer
architectures [1], [2], [3].

The progression of field programmable gate arrays
(FPGAs) RCs has evolved to a point where SOC designs
can be built on a single device. FPGA devices have made a
significant move in terms of resources and performance.
The contemporary FPGAs have come to provide platform
solutions that are easily customizable for system
connectivity, digital signal processing (DSP), and data
processing applications [4].

As the complexity of FPGA-based designs grow, a need

for a more efficient and flexible design methodology is
required. One of the modern tools (also used in the
proposed research) is Quartus II, started with Altera.
Quartus II is a compiler, simulator, analyzer and
synthesizer with a great capability of verification and is
chosen to be used for this implementation. It can build the
verification file from the input/output specification done by
the user. Quartus II design software provides a complete,
multiplatform design environment that easily adapts to your
specific design needs. It is a comprehensive environment
for system-on-a-programmable-chip (SOPC) design [5],
[6].

An application that needs real-time, fast, and reliable

data processing is GPS-based vehicle tracking. In this
paper, we build on a recently produced VTS (The Aram
Locator) offering a SOC replacement of the
microcontroller-based implementation. Although the
microcontroller-based system has acceptable performance
and cost, an FPGA-based system can promise less cost and
a more cohesive architecture that would save processing
time and speeds up system interaction.

This paper is organized so that Section 2 presents the

currently available existing microprocessor-based VTS and
its proposed update. Section 3 proposes different designs
and implementations with different levels of integration. In
Section 4, performance analysis and evaluation of results
are presented. Section 5 concludes the paper by
summarizing the achievements and suggesting future
research.

Adnan I. Yaqzan, Issam W. Damaj, and Rached N. Zantout*

GPS-based Vehicle Tracking System-on-Chip

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

II. UPGRADING THE ARAM LOCATOR GPS SYSTEM

One recently implemented VTS is the Aram Locator [5],
[7]. It consists of two main parts, the Base Station (BS) and
the Mobile Unit (MU). The BS consists of a PIC
Microcontroller based hardware connected to the serial port
of a computer. The MU is a self-contained PIC
Microcontroller based hardware and a GPS module. The
latter would keep track of all the positions traversed by the
vehicle and records them in its memory. The system has a
great storage capacity, and could perform a significant
recording with a considerable sampling rate. The mobile
unit (MU) of the addressed Aram Locator consists of two
communicating microcontrollers interfaced with memory.
There is also a GPS unit and RF transceiver (simply
sketched in Figure 1) [7], [8].

Fig. 1: Modules of the FPGA System.

The processor of the Aram follows a sequential

procedure of different parallel components. For instance,
although two processes P1 and P2 hardware both exist
parallel, these processes run sequentially. An interrupt, sent
by the I2C controller, is used to activate one of the
processes (P1 or P2). But the inner part of the processes
contain several parallel operations like bit assignments and
selectors (corresponding to if-statements). Figures 2, 3, and
4 explain the general behavior of the different components
of the Aram. The sequence diagram shows the sequence of
messages exchanged by the set of objects performing a
certain task (see Figure 2). The state diagram describes the
behavior of a system, some part of a system, or an
individual object (see Figure 3). The Collaboration diagram
in Figure 4 emphasizes how the objects interact.

III. THE FPGA-BASED ARAM SYSTEM

The microcontrollers make use of the same memory
using a specific protocol. The system is performing
properly and has a big demand in the market. However,
FPGAs promise a better design, with a more cohesive
architecture that would save processing time and speeds up
system interaction. The two microcontrollers along with
memory would be incorporated into or better supported
with a high-density PLD. This will transform the hard slow
interface between them into a faster and reliable
programmable interconnects, and therefore makes future

updates simpler. This design estimated to save a
considerable percentage of the overall cost of one working
unit. For a large number of demands, there would be a
significant impact on production and profit. Hence, PLDs
such as FPGAs are the way, for a better design in terms of
upgradeability and speed, and it is a promising
advancement for the production cost and revenue. The
block diagram of the FPGA system is depicted in Figure 5.

Fig. 2: The sequence diagram of the FPGA system.

Fig. 3: The state diagram of the FPGA system.

Fig. 4: The collaboration diagram of the FPGA system.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Fig. 5: Block Diagram of the FPGA System

Hiding the detailed architecture of the underlaying
FPGA, The proposed system is of two communicating
processes, P1 and P2, along with a shared memory. In
addition to the FPGA-based system, the GPS antenna and
the mobile unit play significant roles. The memory block of
the microcontroller-based design is replaced by hardware
entity controlled by the I2C.

A. Process I
This process has to deal with the message received from

the GPS. The default communication parameters for NMEA
(the used protocol) output are 9600 bps baud rate, 8 data
bits, stop bit, and no parity. The message includes
information messages as shown in Table 1.

$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.
0,9.0,M, , , ,0000*18
$GPGLL,…$GPGSA,…$GPGSV,…$GPGSV,…
$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,
309.62,120598 ,*10, $GPVTG,…$GPMSS,…$GPZDA,…

From these GPS commands, only necessary information
is selected (i.e. longitude, latitude, speed, date, and time).
The data needed are found within the commands RMC and
GGA; others are of minor importance to the FPGA. The
position of the needed information is located as follows:

$GPRMC: <time>, <validity>, <latitude>, latitude
hemisphere, <longitude>, longitude hemisphere,
<speed>, <course over ground>, <date>, magnetic
variation, check sum [7], [8], [9].

$GPGGA, <date>, latitude, latitude hemisphere, longitude,
longitude hemisphere, <GPS quality>, <# of satellites>,
horizontal dilution, <altitude>, Geoidal height, DGPS data
age, Differential reference, station Identity (ID), and check
sum. This information is stored in memory for every
position traversed. Finally and when the VTU reaches its
base station (BS), a large number of positions is
downloaded to indicate the route covered by the vehicle
during a time period and with a certain download speed.
The sequential behavior of the system appears in the flow
chart of Figure 6.

Initially, a flag C is cleared to indicate that there’s no yet

correct reception of data. The first state is “Wait for GPS

Parameters”, as mentioned in the flow chart, there’s a
continuous reception until consecutive appearance of the
ASCII codes of “R,M,C” or “GGA” comes in the sequence.
For a correct reception of data, C is set (ie. C= “1”),
indicating a correct reception of data, and consequently
make the corresponding selection of parameters and saves
them in memory. When data storing ends, there is a wait
state for the I2C interrupt to stop P1 and start P2, P2
download the saved data to the base station (BS). It is noted
that a large number of vehicles might be in the area of
coverage, and all could ask for reserving the channel with
the base station; however, there are some predefined
priorities that are distributed among the vehicles and
therefore assures an organized way of communication. This
is simply achieved by adjusting the time after which the
unit sends its ID when it just receives the word “free”.

Table I: The parameters sent by the GPS.

NMEA Description
HPGGA Global Positioning system fixed data
GPGLL Geographic position-latitude/longitude
GPGSA GNSS DOP and active satellites
GPGSV GNSS satellites in view
GPRMC Recommended minimum specific GNSS data
GPVTG Course over ground and ground speed
GPMSS Radio-beacon Signal-to-noise ratio, signal strength,

fGPZDA PPS timing message (synchronized to PPS)

B. Process II
As mentioned earlier, the Base station is continuously
sending the word “free”, and all units within the range are
waiting to receive it and acquire communication with the
transceiver. If the unit received the word “free”, it sends its
ID number, otherwise it resumes waiting. It waits for
acknowledge, if Acknowledge is not received, the unit
sends its ID number and waits for feedback. If still no
acknowledgement, the communication process terminates,
going back to the first step. If acknowledge is received,
process 2 sends Interrupt to process 1, the latter responds
and stops writing to memory.

Process 2 is then capable of downloading information to the
base station. When data is transmitted, the unit sends the
number of points transmitted, to be compared with those
received by the base station. If they didn’t match, the unit
repeats downloading its information all over again.
Otherwise, if the unit receives successful download, it
terminates the process and turns off.

Initially, the circuit shown in Figure 7 is off. After car
ignition, current passes through D1, and continues its way
towards the transistor. This causes the relay to switch and
supports an output voltage of 12V. The circuit (C*) is now
powered and could start its functionality. Using the 2
regulators, it becomes feasible to provide an adequate

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

voltage to the FPGA, which in turn navigates the whole
switching technique of the system. In other words, the
FPGA adapts itself so that it can either put a zero or 5V at
the side connecting D2. For the 5V, the circuit is all on, and
the vehicle is in normal functionality. When data download
ends, the FPGA perceives that, and changes the whole
circuit into an idle one, and waits for another car ignition.
So, it is well known now that the FPGA will be the
controller of the behavior of the VTS system.

C. Memory
The suggested memory blocks are addressed by a 12-bit

address bus and stores 8-bit data elements. This means that
the memory can store up to 4 KB of data. The memory
controller navigates the proper memory addressing.
Multiplexers are distributed along with the controller to
make the selection of the addressed memory location and
do the corresponding operation.

Fig. 6: The flow chart governing the main part of the FPGA-based System.

Fig. 7: The electric components driving the FPGA.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

D. Communication Protocols: I2C and UART
The I2C bus is a serial, two-wire interface, popularly used

in many systems because of its low overhead. It is used as the
interface of process 1 and process 2 with the shared memory.
It makes sure that only one process is active at a time, with
good reliability in communication. Therefore, it writes data
read from the GPS during process 1, and reads from memory
to output the traversed positions into the base station. The
Universal Asynchronous Receiver Transmitter (UART) is the
most widely used serial data communication circuit ever.
UART allows full duplex communication over serial
communication links as RS232. The UART is used to interface
Process 1 and the GPS module from one side, and Process 2
and the Base Station (BS) from the other side.

IV. PERFORMANCE ANALYSIS AND EVALUATION

Three different systems are to be tested for the FPGA
implementation. The suggested systems gradually add more
parts to the designed FPGA implementation till we reach a
complete stand alone system. The three suggested
implementations are as follows:

1) process 1, process 2, and I2C
 2) process 1, process 2, I2C, and memory

3) process 1, process 2, I2C, UART, and memory
(standalone FPGA).

According to the local market cost, around %9.6 could be

saved per unit if the FPGA-based all-in-one system is adopted.

For the kind of memory implemented in the system, the
vehicle cannot store many locations, so the Vehicle Tracking
System (VTS) is to be used within a small city. If the sampling
rate is to be set one reading every two minutes, one could get
a general but not very specific overview of the tracks
traversed.

The vehicle tracking needs 344 bits of data to store the 5

important parameters (longitude, latitude, speed, date, and
time). Consequently, this would need 43 memory locations. In
other words, the system needs 43 locations for one reading
lapsed 2 minutes.

With 4096 memory locations, the system makes 95.25

readings, meaning that the vehicle should come back to its
base station every 3 hours and 10 minutes to download its
information. This would be 4 hours and 45 minutes if the rate
is one reading every 3 minutes. This is not very satisfactory
but is tolerated as long as the intended area has a small range.
However, this is one problem subject to upgradeability. One
solution is to use an FPGA with a large memory.

Table 2 shows the results of simulation done on integration

of parts (modules) forming the FPGA-based system. Each
integrated system is tested on the component, integration, and
system levels.

The 1st design used 1910 logic elements out of 10570
(STRATIX EP1S10F484C5, 175.47 MHz) , and a maximum
operating frequency of 8.149 MHz, leaving 82 % free space of
the FPGA capacity. However, after adding memory to the
integration, the number of logic elements increased to 5303,
with 50% usage of the capacity. The propagation delay
decreased slightly inside the FPGA, The decrease in
propagation delay means that the optimizer found a better way
to reduce its critical path.

Table II: Results summary taken from the syntheses of

integrations on STRATIX EP1S10F484C5. The execution
time in some cases varies according to“RMC”, “GGA”, or

“free”.
Integ. % Area in

logic Elem.
Prop.
Delay
(ns)

Execution
Time (ns)

Max.
Op. Freq.

(MHz)
1 18% 118.77 Varies 8.149
2 50% 116.00 Varies 8.62
3 50% 94.47 Varies 10.58

Similar results are shown when the UART part is added

(standalone FPGA), with an improvement in propagation
delay. Although the number of logic elements has increased, it
contributed to better interaction among the parts and raised the
operating frequency to 10.58 MHz. Therefore, integration of
parts has enhanced the delay with an expected increase in
number of logic elements positively affects the processing
speed when propagation finds its paths among combinations
of gates. Suppose that the GPS message “M” received by the
UART has come in the following sequence:

$GPGGA,161229.487,3723.2475,N,12158.3416,W,1,07,1.0,9
.0,M, , , ,0000*18
$GPGLL,3723.2475,N,12158.3416,W,161229.487,A*2C
$GPRMC,161229.487,A,3723.2475,N,12158.3416,W,0.13,30
9.62,120598 ,*10

”M” is to be tested on the three obtained integrations (Table
3)), taking into account that the GPS parameters needed for
the application come as represented in Section 3. The system
takes selective parameters according to their position in the
sequence, and checks if they correspond to the desired
information. Every character is represented by its 8-bit ASCII
representation. Table 3 shows an exact interpretation of data
when received from the GPS and processed via several
modules of the integration. After integrations have been
inspected, the proposed system synthesized on different
FPGAs, and the results appear in Table 4 [7], [8].

From the readings of Table 4, the following could be
concluded testing the all-in-one system:

• STRATIX EP1S10F484C5 (175.47 MHz) has enough

number of logic elements, and the capacity taken by the
project is one half its total capacity. The propagation delay
is 94.474ns, thus, the system runs with a frequency of
10.58 MHz

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

• STRATIX-II EP2S15F484C3 (420 MHz) has a larger
number of logic elements, so the project took lesser
capacity (36%), and caused more propagation delay.

• The project fits 90% in Cyclone EP1C6F256C6 (405

MHz), but with minimum propagation delay of 90.371ns
and thus 11.065MHz operating frequency.

• APEXII EP2A15B724C7 (150 MHz) has the largest

capacity among the listed devices allocating 30% only for
the ARAM project with a largest propagation delay
(181.418ns) and minimum frequency (5.512MHz).

Table III: The readings obtained from the integrations

compiled on STRATIX EP1S10F484C5.

Integ. Size
(bits)

Number
of clock
cycles

Prop. Delay
(ns)

Speed of
Processing

(μs)

1 1448 181 118.773 21.497

2 1448 181 116.003 20.996

3 1448 181 94.474 17.099

The best implementation happens when a device suits the

project with maximum percentage, since it induces lower
propagation delay and higher frequency. However, this does
not always perfect the implementation. This depends on the
real operation of the project when downloaded to the FPG.
Also, the purpose of the design is significant to the decision,
with FPGAs that have much memory remaining; one could
use it if the purpose it to make future updates like data
compression and optimization related to power dissipations.
On the other hand, processing speed is another point of
discussion where memory space appears to be inversely
proportional. Finally, one can setup his mind on the device
best suitable for his implementation. From the readings above,
it’s shown that STRATIX family has the best compromise of
capacity, propagation delay, and frequency. Moreover, it
delivers better cost and performance attributes.

V. CONCLUSION

In this paper, we have presented an alternative design of an
existing modern GPS-based VTS using FPGAs. The
performance of the proposed implementations is evaluated on
different FPGAs. The suggested designs show enhancement in
terms of speed, functionality, and cost.. Future work includes
refining the proposed designs in order to eliminate the
sequential alternation of the two main internal processes, and
investigating larger buffering by providing more memory
elements and using state-of-art FPGAs.

Table IV: Syntheses of the VTS on different FPGAs. The
execution time in some cases varies according to“RMC”,

“GGA”, or “free”.

FPGA Logic
Area in
Logic
Elemen
ts

Prop.
Delay
(ns)

Exec.
Time
(ns)

Max.
Freq.
(MHz)

STRATIX
EP1S10F484C5

50% 94.474 Varies 10.58

STRATIX-II
EP2S15F484C3

36% 151.296 Varies 6.609

MAX3000A
EPM3032ALC44-4

Does
not Fit

NA NA NA

Cyclone
EP1C6F256C6

90% 90.371 Varies 11.06

FLEX6000
EPF6016TI144-3

Does
not Fit

NA NA NA

APEXII
EP2A15B724C7

30% 181.418 Varies 5.512

REFERENCES
[1] Chughtai, M. Ashraf; Yaqoob, Arjumand, “An Approach to Task

Allocation for Dynamic Scheduling in Reconfigurable Computing
Systems,” 9th International Multitopic Conference, Dec. 2005, pp. 1–6.

[2] V. Subramanian, J. G. Tront, S. F. Midkiff, C. W. Bostian, “A
Configurable Architecture for High Speed Communication Systems”,
Military and Aerospace Applications of Programmable Logic Devices
International Conference, Vol.3, Sept. 2002, pp E11 1-9.

[3] M. Mason, Director, “FPGA Reliability in Space-Flight and Automotive
Applications Flash Product Marketing”, Military and Aerospace,
Product Marketing, Actel Corporation and Ken O’Neill. Available:
http://www.fpgajournal.com.

[4] I. Damaj, “Parallel Algorithms Development for Programmable Logic
Devices”, Advances in Engineering Software, Elsevier Science, 2006. I 9
V 37, pp. 561–582.

[5] Michael A. Shanblatt, Brian, Foulds, “A Simulink-to-FPGA
Implementation Tool for Enhanced Design Flow," IEEE International
Conference on Microelectronic Systems Education, 2005, pp. 89-90.

[6] F. Vahid, T. Givargis, “Embedded System Design”, A Unified
Hardware/Software Introduction, 2002.

[7] Ziad A. Osman, Mazen Jrab, Souleiman Midani, Rached N. Zantout,
Implementation of a System for Offline Tracking using GPS,
Mediterranean Microwave Symposiu, Ain Shams University, Cairo,
Egypt, May 2003, pp. 2003.

[8] NMEA Reference Manual SiRF Technology, Inc.148 East Brokaw
RoadSan Jose, CA 95112 U.S.A. Available: http://www.nmea.org.

[9] EDM company, Beirut, Lebanon. Available:

http://www.edm.com

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

