

Abstract—Today, there are almost 136 million Internet

users and 500 million mobile users in China. Wireless
networks are striding toward wide band service.
Animations and games are urgent to seize hold of both
Internet and wireless market simultaneously, i.e., to
attract more users. However, this is a difficult task
indeed, because animation and game designers must take
environments of both Internet and wireless network and
consistency across devices in consideration. A scheme to
solve above design problems with minimum labor cost is
proposed. Also, many practical solutions to problems
posed by limit physical resources of mobile are discussed.

Index Terms—Interactive Animation, Mobile Game,
Heterogeneous networks, Device independent design.

I. INTRODUCTION
 IT and communication are developing rapidly. The
growth rate of IT industry in China keeps above 20% every
year. Today, among 136 million Internet users in China,
above 2/3 is using high-speed internet. In America, more and
more high-speed internet users are watching movies, playing
games to kill time via stream video/audio platform. The
community predicts, by 2010, the wide band users in world
will rise to 500 million. In the world, the increase of mobile
user exceeded 638 million in 2006. In China, there are more
than 500 million mobile users using UMPC, PDA and mobile
phone to meet their needs.

The combination of wireless business with wideband
networks is inevitable and can’t be hindered. Producers of
popular recreational applications, such as animations, games,
wish more and more users would adopt their software,
whether through Internet service or wireless access. They

This work was supported by National High Technology Project

(2005AA114090).
Li Xinyu is the general manager of Hunan Talkweb Information System

Corp. He is a senior architectural designer and interested in system
architecture, mobile communication, etc.

Song Ying is the vice general manager of Hunan Talkweb Information
System Corp. He is interested in mobile communication, multimedia, etc.

Huang Xia is the assistant of general manager of Hunan Talkweb
Information System Corp. She is also an International Financial Manager.
She is interested in demand analysis, product design, etc.

Xiang Lisheng is a vice technical supervisor in Hunan Talkweb
Information System corp. He is interested in MM, animation, etc. E-Mail:
13974838381@hnmcc.com

Shen Qing was a professor in the Institute of Computer Science at
National University of Defense Technology, China. Now he is the first chief
technical consultant of Hunan Talkweb Information System corp. He is
interested in pattern recognition, AI, MM, animation, etc.
E-Mail:sq1950224@yahoo.com.cn

wish that they could hold both Internet and wireless markets
and possess all potential consumers, including users with
mobiles and TVs, in addition to PC users. However, it is also
a difficult task indeed. Since animation and game designers
must take different factors into account, such as runtime
settings, Internet or wireless network. It is troublesome for an
application to adapt to diverse physical facilities with various
functions and capabilities. That is, if mobile phone and
personal computer solve same calculation problem, the
difference of physical resources and I/O operations between
them will lead to heavy burden in program design and
implementation.

Facing such challenges, we present a scheme on the
premise that labor cost is minimum and attain much better
results.

We need to introduce some definitions in order to state
the main idea.

Definitions 1: If an application program can allocate
and use a certain device’s physical resources to implement
desired capacities and functions, we call it a special program
oriented to a specific device (or a device-dependent
program). And if an application program can allocate and use
the physical resources through a general operating system,
we call it a device-independent program.

Definitions 2: Say “←→”as “…is equivalent to …”, “
→” as “is a”, while “+” and “|” are connectors who connect a
required component, an optional component, respectively.
More specifically,

<Device-independent interactive animation/game >
←→ <physical device> + <leading OS> +<application> +
<interaction>

<Physical device > → <PC> | <laptop> | <UMPC> |
<PDA> | <mobile phone>

<Leading OS> → <Windows> | <UNIX> | <Linux>|
<Symbian>

<Application>→<animation>| <game>
<Interaction> → <The interactions controlled by user >

| < The interactions controlled by system>
That is, a device-independent interactive animation

(game) is an (a) animation (game) to be played with different
physical devices, under diverse operating systems, and be
interacted with various interactions.

Physical device can be a PC, a laptop, a UMPC, a PDA,
or a mobile phone.

A Device-independent Design Scheme on
Interactive Animation and Game

LI Xin-yu, SONG Ying, HUANG Xia, XIANG Li-sheng, SHEN Qing

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

A Leading OS can be one of these operating systems,
Windows, UNIX, Linux, or Symbian.

Application can be an animation or a game.
Interaction may be controlled by a user or by a system.

II. EXTEND SMIL TO REALIZE INTERACTIVE FUNCTIONS

SMIL is a multimedia manipulation language
recommended by W3C. It can synchronize and combine
multimedia components. SMIL 2.1, W3C recommendation
13 December 2005, includes many new features, such as tiled
background picture in visual presentations, fades in audio
presentations, etc. But so far it cannot process backtracking
in media, which is the basis of switch in tree structure and
backtracking in graph structure, and only supports media to
play in stream format. Backtracking is a required function in
interaction between human and machine/human.

We extend SMIL compliant with XML specification
and add some elements/attributes, such as Select, Parents,
Option, Getinfo, to realize interactive SMIL links. This is
so-called TW-SMIL, which can implement interaction
between human and machine/human. In client, such as a
mobile phone, decoder, developed in J2ME, fulfils media
playing.

TW-SMIL 1.0 indicates a SMIL document as selectable
by adding a Meta statement “selectable” in “head” tags. For
example,

<head>
<meta name="selectable" content="TW-SMIL"/>
</head>
Note that a general SMIL document contains no such

Meta element.
Select element
Name attribute of select element can be used as

common identifier of all options in player menu. The related
attributes include parents, option, and Getinfo:

1) Parents (support backtracking)
Parents are the immediate predecessor option through

which one can arrive at this Select and which can be used in
navigation backtracking. Parents may have 0 or many
options. If the value of parents is 0, it represents a root; and if
value of parents is greater than 1, it may implement the reuse
of SMIL and present a navigation graph to a user. “src” of
parents indicates the location of SMIL navigation file.

2) Option (support branching)
Select element may have 2 or above option attributes.

Option id is used in interaction of systems, option name is a
description of player menu, and option src indicates location
of corresponding SMIL file.

3) Getinfo
Getinfo provides an easy access to information needed

for implementing interaction between human and

machine/human from system or user. Getinfo itself possesses
id, name, value, from, src, etc.

For example, when getinfo is used to represent “ratio of
current popularity”, it will have the following descriptions,

<getinfo id=1 name=”excellent” value=”XX”
from=”system_dbms” src="..\dbms\statistics\select percent
from XXXX where …… =xx”</getinfo>

<getinfo id=2 name=”good” value=”YY”
from=”system_dbms” src="..\dbms\statistics\select percent
from XXXX where ……=yy”</getinfo>

<getinfo id=3 name=”bad” value=”ZZ”
from=”system_dbms”

III. A SCHEME TO REALIZE DEVICE-INDEPENDENT
PROGRAMMING

Definition 1 and Definition 2 imply that a
device-independent application can implement the same
predefined function with different physical devices under
various operating systems. Specifically, Definition 2 requires
that applications be able to run at 2 entirely different kinds of
computing machines, PC and mobile phone, which may be
equipped with Windows or Symbian. We shall present the
state-of-art technology in mobile phone.

It is known to all, Java Virtual Machine technique is
ubiquitous and pervasive in high-end office and amusement
equipments. Contrarily, C, C++ and C# still have not widely
used in these products. From the evolution process of
numerous cell phones, such as Nokia, Motorola, we can
estimate computation power, development trend and
compatibility to Java of current mobile phones.

While CPU used in these new-style phones is mainly
ARM4T at 104/123/165/220 MHz, sometimes ARM5 at 220
MHz is also used. Main memory of a phone is 2.3~8 MB. The
computation power of a phone configured as above may only
be equal or sometimes inferior to, a Pentium III PC
pre-installed with Windows 95. But these phones still can do
many calculating works in addition to human
communication. Not only can they support data service of
GPRS Class 10, but also support all built-in JAVA Virtual
Machine service, CLDC1.1 and MIDP (Micro Information
Device Profile) of J2ME. The Nokia intelligence phones
pre-install a Symbian 6.0/7.0/8.0 OS, while Motorola
intelligence phones pre-install Linux. More and more mobile
phones support MIDP, and are ready for "intelligence
phone".

Until now, the technical scheme to accomplish
device-independent application program is clear. That is,
using JAVA calculation fulfills all “device-independent”
application programming. Concretely, fulfill server platform
in J2EE, implement web-based client’s program (Applet)
running in PC (and UMPC) in J2SE, and accomplish client’s
program (MIDP) running in a mobile phone in J2ME.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Since the J2EE and J2SE have already been admitted
and employed extensively by the community, they are not
discussed more, and it is J2ME that will be focused on.

IV. KEY POINTS IN J2ME DEVELOPING
According to our practice, when Java architecture is

deployed, a smart global scheme must be designed first. We
must solve the problem in two directions: while we keep
kernel routines device-independent, we should also provide
effective ways to make it fit a device-specific platform. Thus,
software components division and standardization, module
or subroutine design is done first. Then, write kernel routines

and place them into module with meticulous care, so as to
realize the reuse of kernel routines as much as possible at
Applet level and MIDP level. Thirdly, write the I/O routines
respectively, which cannot be reused.

Under such a technical scheme, we estimate that at least
50~70% labor cost could be saved. Table 1 shows the labor
savings in developing an application, Bridge. The rate of
reduced cost depends closely on the manifestation of a work,
the complexity of picture and the switching density
(frequency) between keyboard and screen display. In other
word, when routines contain more and more I/O operations,
the saved labor cost is less and less.

Table 1 One example of labor savings in program development

Module Main Functions JAVA Swing
Lines of Code

Reusable in
J2ME Lines

Reusable
Ratio

Function Sequence, whoNeeds, etc, 159 159 100％
Engine mousePressed, actionPerformed, etc, 473 330 69%
Paint drawCa, showCard, showPushedCa, showContract,

etc,
785 0 0%

Dispatcher AIPushCa, dispatcherAttack, distributer, etc, 1004 804 80%
prepare disArrangeCa, prepareCa isSupportFileSystem, etc, 213 213 100%
rule calcuValue, findLowest, roleAAttack, roleBDefence,

roleCAttack, roleDDefence, etc,
1125 1125 100%

calcuAndDraw
Points

calcuPoints, updateTable,etc, 254 52 20%

MakeContract makeAContract, setContract, etc, 398 398 100%
Total 4411 3081 69%

Some problems related with J2ME developing closely
will be discussed below:

1. Similarities and differences between J2ME and J2SE
Essential contents in J2SE are still used in J2ME,

mainly including: 1) Basic idea of OO: concept of class and
object, inheritance, polymorphism, etc; 2) Syntax
foundation: data types, key words, and operators, etc; 3)
Exception handling; 4) Multi-thread and multi-session
processing.

The contents not used in J2ME mainly include: 1)
“javac” and “java” command in JDK; 2) some classes are not
included in J2ME, and even if they are included, the methods
of them are reduced. For example, the Applet, AWT, Swing,
can't be used at all. Table 1 shows only 69% of source code in
JAVA Swing may be reused in J2ME.

The currently unfulfilled functions of J2ME include:
1) To migrate source code from J2SE to J2ME directly

(without rewritten), especially some special methods (written
in J2SE to show some scenes) used frequently in cartoon,
game, etc. In such case, almost 30~50% labor cost should be
increased to achieve device-independent programming.

2) To modify content in buttons dynamically.
3) To accept Chinese input on canvas.
4) To operate local resources, such as address/phone

dirctories, received messages, etc.

2. To deal with the limited calculating resources of
mobile phones

J2ME application program uses two kinds of memory
management, global and peak memory management. Global
memory management is used to decrease the total memory
requirements, while peak memory management is used to
decrease the memory requirement when the memory
requirement of a certain program is increasing.

In terms of safety, the CLCD’s garbage collector is not
so good as J2SE’s. When overloading or assigning object too
fast, the collector won't collect garbage in time and the
efficiency of application will undermine. Considering such a
limit in J2ME, we should decrease the memory requirement
as much as possible. There are several efficient ways.

A. The simplifier the program, the better the application
According to J2EE design principle, an application

should be divided into a lot of objects (classes), and all
subroutines are defined as methods of corresponding classes
(In fact there are no standalone functions or procedures in
Java.) But J2ME design requests a program as simple as
possible to improve efficiency. Under such a consideration,
we declare each module or subroutine with Midlet if possible,
and pack several Midlets into a Midlet package. In this way,
the application manager can manage Midlet and its
corresponding resource efficiently.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

B. The smaller the program, the better the application
The size of the J2ME program is very important to valid

deployment. We should delete those unnecessary modules or
subroutines inside the class which may not be used currently,
to reduce the whole size of an application. When an
application is deployed in a wireless network, the smaller
application needs less time to be downloaded and deployed.
And the compatibility of a smaller program with other
applications is much better than a larger one.

C. To reduce the total memory needs for the program as
far as possible, mainly:

1) Adopt a simple data type (scalar type) if possible,
instead of a complex type such as an object, array, etc.

2) Declare less objects if possible. While declaring an
object, the system should allocate corresponding space on
running heap memory. So it is a good idea to declare an
object only when it is used instead of declaring many objects
long before they are used. Also, don’t relate a class with
excessive number of instances. And if an object is not used in
program any more, its identifiers should be assigned as null
immediately.

3) Declare a data type according its true accuracy needs.
Declare shorter data type, such as Boolean, byte, short, etc.
instead of int, if possible. Of course, these trivial tricks have
less impact on the programs than on J2ME.

4) Reuse any thing as far as possible. Let many
identifiers from the same object be reused in different periods
of a program’s lifecycle, for example, the reuse of some large
arrays, allocated memory, “lazy initialization” of instances,
etc. Although this contradicts with the principle of software
engineering design, but it benefits smaller equipments, such
as mobile phones, severely.

5) Avoid creating an object inside iteration.
6) Check the current usage of memory frequently. The

related methods include FreeMemory and TotalMemory. For
example, when the memory overflows, handle the
OutMemoryError exception by program and don't wait the
operate system to do it.

7) Release the resources just in time. You’d better
release the resources such as file, server connection, etc,
immediately while it’s no longer used. Program should
implement a necessary garbage clear itself, rather than
depend on garbage collector or host environment.

8) Use local variables if possible. In J2EE developing, a
programmer is accustomed to setting data members as global
data type in a class but using fewer local variables. These
global data members should be supported by data
management and stack operation from system. This will lead
to unnecessary waste of CPU. Assigning value to local
variants can bypass several steps to get values from a class’
data member, thus leading to the decrease in CPU
consuming. Although this will abandon the advantage of data
encapsulation in an object, when the program runs in a small

machine such as a mobile and deals with a great deal of data,
the processing speed should be preferred.

3. The necessity of test on real mobile phone and its
implementation

Various J2ME emulators on PC bring great convenient
for the J2ME application development. We can not only set a
series of break points and watch/set the values of every
global/local variant, implement debugging with emulator, but
also inspect the program’s current running result on the
emulator screen (including appearance, color, etc.) But the
physical capacity of a true mobile phone is far inferior to PC.
Especially, when animations or fighting games run on a
mobile with limited CPU speed and memory size, we always
feel the speed is too slow, and the frame refresh delay is too
long, etc. Further, if the mobile phone can't provide a
dynamic adjustment to memory while the program requests a
larger memory, it will cause a machine down. So testing the
application on a real mobile is a necessary.

The main test items include: 1) function, 2) operability,
3) Whether the package size of Jad plus Jar can be supported
by most cellular phones? (For example, the acceptable size of
a Nokia S40 is only 64KB.) 4) Whether the speed of a
program running can be accepted or not?

Delivering a Jad+Jar package to the machine may take
one of the ways as below: 1) OTA, 2) A data line, 3) Infrared
transducer, 4) Blue tooth.

4. A reasonable appearance design
Compared with the resources such as memory and CPU

etc., the screen of a mobile phone is the most precious
physical resource. Whether how large a screen of a mobile
phone reaches, it can’t be compared with UMPC. The first
important design principle for pictures shown on a mobile
phone is “brief and appropriate”. Nice or elegant only is a
second consideration. In other words, first you must let the
player get a complete, fluency playing, and then pursue
elegant pictures. Efficient methods include: turning graphic
elements to vectors, appropriate description, and frames
switching just on time…

It is noted that the MIDP only supports the PNG format
in 256 color resolutions currently. More color layers are not
available yet.

Figures 1 a) and 1 b) show the picture designed for an
interactive Chinese mahjong in mobile phone developed in
MIDP and an interactive game of bridge in UMPC developed
in Java Swing respectively. As any card in bridge can’t be
inversed (even in a mobile phone or Web), so we design all
pictures in one direction only and set another suit beside the
digital (Fig. 1b). In this way, you can see the card clearly in
two directions (in row or in column). Thus, we get a brief and
appropriate expression.

As the more detail technology scheme for Interactive
playing in GPRS, one can see reference [1].

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

a) Chinese mahjong on mobile phone b) Bridge on UMPC

Fig 1 Examples of device-independent application

V. CONCLUSION

This paper provides two definitions to restrict problems
discussed in a limited scope and points out the general
requirement for creating, testing, and deploying an
interactive popular application adapted to different networks
and different devices simultaneously. Focusing on this
requirement, we provide design scheme to solve the
real-world problems caused by mobile phone with very
limited physical resources.

References
[1] Li Xinyu, Song Ying, Xiang Lisheng, Shen Qing, A New
Fashion of Digital Animation--Interactive Mobile
Animation, the 2007 International Conference on Wireless
Networks (ICWN'07)
[2] Loren Terveen, Elena Papavero, Mark Tuomenoksa,
DynaDesigner: A Tool for Rapid Design and Deployment of
Device-Independent Interactive Services.
http://www1.acm.org/sigchi/chi95/proceedings/workshop/lg
t2bdy.htm

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

