

Abstract-- In this paper, a new algorithm for mining frequent
closed itemsets from large volumes of data is implemented. A
frequent itemset is maximal if none of its proper supersets is
frequent. The total number of maximal frequent itemsets M is
much smaller than that of frequent itemsets F, and we can derive
each frequent itemset from M. However, M does not contain
information of the support of each frequent itemset unless it is a
maximal frequent itemset. Thus, mining only maximal frequent
itemsets causes loss of information. However, when a transaction
database is very dense and the minimum support is very low, i.e.,
when the database contains a significant number of large
frequent itemsets, mining all frequent itemsets might not be a
good idea. The concept of closed frequent itemsets solves this
problem. This approach, uses a tree based data structure called
Reduced Pattern Count Tree, and discovers all closed frequent
itemsets in one scan of the database. On the other hand, the
current algorithms need at least two scans of the database except
Pattern Count Tree based algorithm, which requires a single
scan of the database, but uses Lexicographical Ordered FP-tree
to discover all frequent patterns.
Index Terms-- Closed frequent itemsets, Path, RPC-tree,
Support, Transaction head

I. INTRODUCTION
An itemset is closed if none of its proper supersets has the
same support as it has. The total number of closed frequent
itemsets C is still much smaller than that of frequent itemsets
F. Furthermore, we can derive F from C, because a frequent
itemset I must be a subset of one or more closed frequent
itemsets, and I’s support is equal to the maximal support of
those closed itemsets that contain I.

Geetha M is Selection Grade Lecturer in the Computer
Engineering Department of Manipal Institute of
Technology, Manipal, 576104, Karnataka India (Phone : 91-
9845784282
E-mail maiya_geetha@yahoo.com).

R.J. D’Souza is Professor in the Department of Mathematical
and Computational Sciences, National Institute of Technology
Karnataka, Surathkal, India

In summary, the relation among F, C, and M is M ⊆ C ⊆ F.
The discovery of association rules is the most well studied
problem and is an important problem in data mining. Let I=
{i

1
, i

2
, i

3
,….., i

m
} be a set of items. Let D be a set of

transactions, where each transaction T contains a set of items.
A transaction t is said to support an item ii , if ii , is present in
t. t is said to support a subset of items X contained in I, if t
supports each item in X. An itemset X contained in I has a
support s in D, if s% of transactions in D supports X. An
itemset with at least the user defined minimum support is
called a frequent itemset. In order to discover all frequent
itemsets for a given database, it is enough to find all its closed
frequent itemsets since M ⊆ C ⊆ F.
An association rule [2] is an implication of the form X⇒Y,
where X⊆ I, Y⊆ I and X∩Y=φ. The association rule X⇒Y
[2] holds in the database D with support s if s% of
transactions in D contains X∪Y. The association rule X⇒Y
[2] holds in the database D with confidence c if c% of
transactions in D that contains X also contains Y. Mining of
association rules is to find all association rules that have
support and confidence greater than or equal to the user-
specified minimum support and minimum confidence
respectively [1]. The first step in the discovery of association
rules is to find all frequent itemsets with respect to the user
specified minimum support. The second step in forming the
association rules from the frequent itemsets is straight forward
as described in [1]. There are many interesting algorithms for
finding frequent itemsets. The FP- Tree Growth algorithm [2]
as proposed by Han et al requires two scans of the database to
discover all frequent itemsets. The Pattern Count tree (PC-
tree) is the contribution of V.S.Ananthanarayana et al, which
is a complete and compact representation of the database.
They discovered frequent itemsets by converting PC-tree to
LOFP tree [4] in a single database scan. PC-tree [3] is a data
structure, which is used to store all the patterns occurring in
the tuples of a transaction database, where a count field is
associated with each item in every pattern, which is
responsible for a compact realization of the database. The

Geetha M R.J. D’Souza

Discovery of Frequent Closed Itemsets using
Reduced Pattern Count Tree

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

completeness property of the PC-tree [3] motivated us to
discover all closed frequent itemsets using Reduced Pattern
Count-tree.

II PROPOSED ALGORITHM

The Reduced Pattern Count -tree algorithm (RPCA) does not
generate any candidate itemsets, and through this algorithm it
is possible to discover all closed frequent itemsets. The steps
to be followed for finding the closed frequent itemsets using
Reduced Pattern Count tree (RPC –tree) are
Step 1: Construction of Pattern Count tree [4].
Step 2: Reduction of Pattern Count tree to contain only
frequent items:
A. Removal of Infrequent items:
The items, which are not frequent, are removed from the PC -
tree.
for all items I in the PC –tree do begin
 if I is not frequent , delete node I from the PC -tree
end.
B. Removal of Repeated Transactions heads:
It is assumed that the transaction head in the tree is the node
through which one or more transactions originate and there
are n transactions heads in the PC –tree. The above step may
leave PC-tree with repeated transactions heads. The merging
algorithm removes such transactions heads.
for all transactions head h from 1 to n-1 do begin
 for all transactions head j from 2 to n do begin
 if (h = = j)
 append(h, j); // Appending the transactions head h to j.
 end
 end
C . Removal of repeated Siblings:
 The PC-tree, which is reduced in the above step, may contain
repeated sibling heads. i.e. even though the PC–tree possesses
different transaction heads, for a particular head any two
siblings may have same labels. The following algorithm
removes repeated siblings.
for all transactions head h from 1 to n do begin

Remove a transaction head h from PC–tree, which results in
a tree called XPC –tree.
Append all transactions beginning with h from the removed
branch of PC-tree, to the transaction head h1 having the label
of h.
The transaction head h1 which is obtained in the above step
is attached to XPC –tree.

end.
The resulting tree at the end of this step is called Reduced PC
–Tree (RPC -tree).
Step 3: Discover closed frequent itemsets by finding all
possible paths and its frequency for all one large frequent
itemsets.
This step involves several sub-steps.
Reverse the set of frequent 1-itemsets f in descending order of
their item number. It is assumed that there are n one frequent

itemsets in f; p is a path structure to store all possible paths; h
a transactions head in a reduced PC -tree; I an item in the set f;
T holds the elements which are frequent with I; m the number
of elements in T; Count[I] contains frequency of an item I; r
is a path structure to store closed frequent itemsets; fcount[k]
represents the frequency of reduced path rk; N the number of
reduced paths in r and s a user defined support.
 for every item I in f do begin

Do a preorder scan of the Reduced PC-tree to get all
possible paths ending with item number I.

for all transactions heads h in the reduced PC-tree do
begin

 if (h> = I) remove h from the reduced PC -tree;
 else {store count[I] as first element, all other elements
 before I and element I, as next in path p }
continue search for I in Reduced PC –tree until the end of the
tree
 end.
/*Reduce all the paths in p to contain only frequent itemset
associated with I. */
 for all paths p do begin
 for all I in p do begin
 If I is not frequent, remove I from p
 else, add I to the set T.
 end
 end
/* Finding the association amongst the elements in T. */
 for all Ij in T, j from 1 to m do begin
 for all reduced paths p do begin
 if Ij € p, put all elements after Ij and before I in r.
 count[j]=count[Ij]
 end
/*Reduce r*/
 for all paths r do begin
 for all I in r do begin
 if I is not frequent with Ij remove I from r
 end
 if r contains more than two frequent items then
 count[r]=count[I]
 end
/*Finding the frequency of reduced paths.*/
 for all reduced paths rk , k from 1 to N do begin
 for all reduced paths rl , l from 1 to N, k ≠ l do

 begin
 If (rk= = rl)

 N=N-1(Delete rl)
 count[k]= count [k]+ count [l]
 fcount[k]=count[k]
 If (rk is contained in rl)
 count[k]= count [k]+ count [l]
 fcount[k]=count[k]
 end
end
/*finding Potential closed frequent itemsets*/

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

 Initialize i to 1
 for all reduced paths rk , k from 1 to N do begin
 if (fcount[k] >= s) and there exists no other path
 containing rk with the same support as that of rk then
 move rk to Ci and increment i by 1;
 else ignore rk
 end
 end
 end

/* finding frequent closed itemsets*/
n=i
for all reduced paths Ck , k from 1 to i-1 do begin
 for all reduced paths Cj , j from 2 to i do begin
 if Ck is contained in any of the Cj with the same support
 then ignore Ck, n=n-1;
 else
 end
end
/* Recovering proper subsets which are closed frequent

itemsets. */
for all reduced paths Ck , k from 1 to n-1 do begin
 for every subset s of Ck containing 2 or more items

begin
 if s is properly contained in any of the Cj, j from 2 to n
 and s is not equal to any of the Cj then
add s to closed frequent itemset if count of s is not equal to

count of Cj;
end
end

The working of above algorithm is explained with the help of
the following example.
Consider a sample database given in Table1. The user defined
minimum support is 20% of 15 transactions. This means 3
transactions.

PC-tree corresponding to the above database is given in

Figure1.

REMOVAL OF INFREQUENT ITEMSETS:
The item numbers 2, 3, 4, 5, 6, 7, 8 become frequent–1
itemsets since their frequencies are greater than or equal to
user defined minimum support. Also, item numbers 1 and 9
are considered to be infrequent since their frequencies are less
than the user defined minimum support value. Hence the
nodes labelled with 1 and 9 are removed from the PC-tree
given in Figure1. The resulting PC-tree is as shown in Figure
2.

REMOVAL REPEATED TRANSACTION HEADS:
The above PC-tree contains repeated transaction heads labeled
with item numbers 5 and 3. They are merged at this level and
the resulting PC- tree is shown in Figure 3.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

REMOVAL OF REPEATED SIBLINGS:
Since Figure 3 does not contain repeated sibling heads, it
represents the Reduced Pattern Count Tree.
Step 3: We reverse the array f of frequent 1- itemsets i.e. f
contains item numbers 8, 7, 6, 5, 4, 3, 2.
Iteration 1
The first element in f is 8. i.e. let the current item number I be
equal to 8.
The Reduced PC-tree contains a node labeled 8 as a
transaction head. Therefore, it is removed from the reduced
PC -tree. The resulting tree is shown in Figure 4.

The possible paths p ending with 8 are {2:5,6,8} {1:2,4,8}.
Since item numbers 2, 4, 5, and 6 do not have user defined

minimum support, there is no frequent path ending with item
number 8.
Iteration 2
The second element in f is 7. It can be seen from Figure 4,
that any of the transactions heads of reduced PC-tree is not
labeled 7.
The possible paths p ending with 7 are {1: 2, 4, 6, 7}, {1: 2, 6,
7}, {1: 4, 5, 7}, {1: 5, 6, 7}, {3: 3, 5, 7}. We see that the item
numbers 3, 5, 6 have user defined minimum support. Let
T={3, 5, 6 }. The only potentially frequent 2-closed itemsets
are C1={5:5, 7} and C2 = {3: 6, 7}. The frequent itemset
{3: 3, 7} is not a closed itemset since support of {3: 3, 7} is
the same as that of its superset {3: 3, 5, 7}.
 Now eliminating all item numbers from p except those from
T, the reduced paths in p are
 {1: 6, 7}, {1: 6, 7,} {1: 5, 7}, {1: 5, 6, 7}, {3: 3, 5, 7}.
The reduced paths in p are
{3:6, 7}, {5:5,7}, {1: 5, 6, 7},{3: 3, 5, 7}.
Now consider the first element of T, i.e. 3. It is clear that there
is only one path having elements after 3 and before 7 and its
support is greater than user defined minimum support.
Therefore, the path C3={3: 3, 5, 7} is a potential closed
frequent 3-item set beginning with 3 and ending with 7. By
similar arguments, it can be shown that {5:5,7} and {3:6,7}are
potential closed frequent itemsets , which begin with 5 and 6,
and end with 7 respectively.
Iteration 3
The third element in f is 6. The possible paths p ending with 6
are {1: 2, 6},{1:2, 4, 6},{3: 5, 6}. Since the item number 5
occurs 3 times, the set T = {5}. Therefore, C4={3: 5 , 6} is
the only one potential closed frequent 2- itemset ending with
6.
Iteration 4:
The next element in f is 5 and is the transactions head of
Reduced PC-tree. Therefore, that particular branch is removed
from the RPC-tree. The resulting tree after removing
5 is shown in Figure 5.

The possible paths p ending with 5 are {1: 4, 5}, {3: 3, 5}.
Since the item number 3 has minimum support, we have
T= {3}. Therefore, C5={3: 3, 5} is the only one potential
frequent 2-itemset ending with 5 .

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Iteration 5
The next element in f is 4. The resulting RPC –tree after
removing the transaction head labeled 4 from Figure 5 is
shown in Figure 6.

The possible paths p ending with 4 are {2: 2, 4}, {1: 2, 3,
4}. Since the item number 2 satisfies user defined minimum
support, we have T= {2}.Therefore, the potentially frequent-2
closed itemset obtained is C6={3: 2, 4}.
Iteration 6
The next element in f is 3. The resulting RPC -tree after
removing transaction head labeled 3 is shown in Figure 7.
The path ending with three is C7={3: 2, 3}. Since this path
satisfies user defined minimum support, and there exists no
other path with the same support containing it, C7 is a
potentially closed frequent itemset.

Iteration 7
The Reduced PC-tree obtained in the previous iteration,
contains only one transaction head, which is 2. The removal of
this node results in an empty tree. Therefore, there is no path
ending with 2. This completes all iterations.
At the end of this iteration we have 6 potentially closed
frequent itemsets. They are C1={5:5, 7} C2={3: 6, 7}. C3={3:
3, 5, 7} C4={3: 5 , 6}, C5={3: 3, 5} C6={3: 2, 4},
C7={3:2,3}
Applying the property of closed frequent itemsets we get
only C1={5:5, 7}, C2={3: 6, 7}. C3={3: 3, 5, 7} C4={3: 5 ,
6} and C6={3: 2, 4} C7={3:2,3}as frequent closed itemsets

along with closed frequent 1-itemsets such as {2}, {3}, {4},
{5}, {6}, {7}, {8}.

III PERFORMANCE ANALYSIS

The above algorithm is checked for data sets having 1K, 5K,
10K, 15K, 20K, 25K and 50K transactions against the support
value .75 % and the result is compared with FP –tree to
discover all frequent itemsets. The time graph is shown in
Figure 8.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

Theoretical Comparisons with some Algorithms:

1. We know that for Apriori algorithm, the database
has to be read at least k times if we have to find
frequent itemsets of length k . For our method, only
one scan is required to discover all closed frequent
itemsets. This will save considerable execution time.

2. If N is the number of transactions in the given
database, our method requires exactly one scan to
read the N transactions and construct Reduced
Pattern Count Tree. Therefore our algorithm is in
O(N), where as Apriori, which depends on size of
large itemsets Lk, is in O(k*N).

3. Even though the algorithms Max Miner[10] or Pincer
search[9] can discover closed frequent itemsets by
examining obtained maximal frequent itemsets, they
require more than one database scan and involve
candidate generation method. Since our approach
uses a single data structure which is a compact and
complete representation of the given database, and
does not use any candidates generation method, it is
clearly space efficient.

4. The algorithm CHARM, is found be efficient for
discovering closed association rules [12] but requires
multiple passes to discover all frequent closed
itemsets. It is calculated by taking the sum of the
lengths of all tidsets scanned from disks, and then
dividing the sum by the tidset lengths for all items in
the database.

5. The Algorithm AClose [11] is an Apriori –like
algorithm that directly mines closed frequent
itemsets, but involves candidate generation method.
This algorithm can perform an order of magnitude
better than Apriori for low support values, but for
high support values, it can in fact be worse than
Apriori. This is because for high support the number
of frequent itemsets is not too much, and the closure
computing step of AClose dominates computation
time. Like Apriori, Aclose could not be run for every

low values of support. The generator finding step
finds many generators to be kept in the memory.

6. In view of all the above, our approach is extremely
effective in efficiently mining all the closed frequent
itemsets, and is able to gracefully handle very low
support values, even in dense datasets.

IV CONCLUSION

In this paper, we proposed a novel method for discovering
closed frequent itemsets directly by reducing PC-tree, which
requires only one scan of the database. Also, it is found that
the algorithm is more time efficient than FP-tree, Apriori,
Aclose etc since these algorithms require more than one scan
of the database. In addition, our algorithm works for any small
support value. However, execution time increases a little as
the size of the database increases. As a future investigation a
method may be developed to improve the time efficiency of
our method.

REFERENCES
[1] Jiwaei Han, Micheline Kamber “Data Mining Concepts and Techniques”.

[2] Arun K Pujari – “Data mining Techniques. “

[3] Ananthanarayana V. S, Subramanian, D.K., Narasimha Murthy, M-
Scalable, distributed and dynamic mining of association rules pp559-566,
2000.

[4] Ananthanarayana V. S, Subramanian, D.K., Narasimha Murthy, M-
“Scalable, distributed and dynamic mining of association rules using PC –
tree” IISc –CSA, Technical Report, (2000).

[5] Rakesh Agrawal, Tomasz Imielinski, Arun Swami, “Mining Association
Rules between Sets of Items in Very Large databases.” Proc of, ACM
SIGMOND Conf Management of Data , pp,207-216,1993

[6] Rakesh Agarwal, Ramakrishnan Srikant,- “Fast algorithms for mining
Association Rules in Large databases” Proc of, 20th Int’l conf very large
Databases, pp, 478-499,1994

[7]Fayyad U. M., Piatetsky-Shapiro G.,Smith P., Uthurusamy R.
(Eds.):Advances in Knowledge discovery and Data mining.

[8]Han, J., Pei, J., Yin, Y. Mining Frequent Patterns without Candidate
Generation, Proc. Of ACM-SIGMOD, (2000).

[9] D-I. Lin and Z.M. Kedem. Pincer-Search: A new algorithm for discovering
the maximum frequent set. In the 6th Intl. conf. Extending Data base
Technology, March 1998.

[10] R.J Bayardo.” Efficiently mining long patterns from databases”. In ACM
SIGMOD conf. Managemnet of Data, June 1998.

[11]N. Pasqquier, Y Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In 7th Intl. Conf. on Database Theory,
January 1999.

[12] Mohammed J.Zaki and Ching-Jui Hsiao “CHARM:An Efficent
Algorithm for closed Assocaition Rule Mining”

[13] IBM/Quest/Synthetic data.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

