
  

  

Abstract-- In this paper, a new algorithm for mining frequent 
closed itemsets from large volumes of data is implemented. A 
frequent itemset is maximal if none of its proper supersets is 
frequent. The total number of maximal frequent itemsets M is 
much smaller than that of frequent itemsets F, and we can derive 
each frequent itemset from M. However, M does not contain 
information of the support of each frequent itemset unless it is a 
maximal frequent itemset. Thus, mining only maximal frequent 
itemsets causes loss of information. However, when a transaction 
database is very dense and the minimum support is very low, i.e., 
when the database contains a significant number of large 
frequent itemsets, mining all frequent itemsets might not be a 
good idea. The concept of closed frequent itemsets  solves this 
problem. This approach, uses a tree based data structure called 
Reduced Pattern Count Tree, and discovers all closed frequent 
itemsets in one scan of the database.  On the other hand, the 
current algorithms need at least two scans of the database except 
Pattern Count Tree based algorithm, which requires a single 
scan of the database, but uses Lexicographical Ordered FP-tree 
to discover all frequent patterns.  
Index Terms-- Closed frequent itemsets, Path, RPC-tree, 
Support, Transaction head  

I. INTRODUCTION 
An itemset is closed if none of its proper supersets has the 
same support as it has. The total number of closed frequent  
itemsets C is still much smaller than that of frequent itemsets 
F. Furthermore, we can derive F from C, because a frequent 
itemset I must be a subset of one or more closed frequent 
itemsets, and I’s support is equal to the maximal support of 
those closed itemsets that contain I. 
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In summary, the relation among F, C, and M is M ⊆ C ⊆  F. 
The discovery of association rules is the most well studied 
problem and is an important problem in data mining. Let I= 
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} be a set of items. Let D be a set of 

transactions, where each transaction T contains a set of items. 
A transaction t is said to support an item ii , if  ii , is present in 
t. t is said to support a subset of items X contained in I, if t 
supports each item in X. An itemset X contained in I has a 
support s in D, if s% of transactions in D supports X. An 
itemset with at least the user defined minimum support is 
called a frequent itemset. In order to discover all frequent 
itemsets for a given database, it is enough to find all its closed 
frequent itemsets since  M ⊆ C ⊆  F. 
An association rule [2] is an implication of the form X⇒Y, 
where X⊆ I, Y⊆ I and  X∩Y=φ. The association rule X⇒Y 
[2] holds in the database D with support s if s% of 
transactions in D contains X∪Y. The association rule X⇒Y 
[2] holds in the database D with confidence c if c% of 
transactions in D that contains X also contains Y. Mining of 
association rules is to find all association rules that have 
support and confidence greater than or equal to the user-
specified minimum support and minimum confidence 
respectively [1]. The first step in the discovery of association 
rules is to find all frequent itemsets with respect to the user 
specified minimum support. The second step in forming the 
association rules from the frequent itemsets is straight forward 
as described in [1]. There are many interesting algorithms for 
finding frequent itemsets. The FP- Tree Growth algorithm [2] 
as proposed by Han et al requires two scans of the database to 
discover all frequent itemsets.  The Pattern Count tree (PC-
tree) is the contribution of V.S.Ananthanarayana et al, which 
is a complete and compact representation of the database. 
They discovered frequent itemsets by converting PC-tree to 
LOFP tree [4] in a single database scan. PC-tree [3] is a data 
structure, which is used to store all the patterns occurring in 
the tuples of a transaction database, where a count field is 
associated with each item in every pattern, which is 
responsible for a compact realization of the database. The 
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completeness property of the PC-tree [3] motivated us to 
discover all closed frequent itemsets using Reduced Pattern 
Count-tree. 

 
II PROPOSED ALGORITHM 

 
The Reduced Pattern Count -tree algorithm (RPCA) does not 
generate any candidate itemsets, and through this algorithm it 
is possible to discover all closed frequent itemsets.  The steps 
to be followed for finding the closed frequent itemsets using 
Reduced Pattern Count tree (RPC –tree) are 
Step 1: Construction of Pattern Count tree [4]. 
Step 2: Reduction of Pattern Count tree to contain only 
frequent items: 
A. Removal of Infrequent items: 
The items, which are not frequent, are removed from the PC -
tree.  
for all items I  in the PC –tree do begin 
 if  I is not frequent ,  delete node I from the PC -tree  
end. 
B. Removal of  Repeated Transactions heads: 
It is assumed that the transaction head in the tree is the node 
through which one or more transactions originate and there 
are n transactions heads in the PC –tree. The above step may 
leave PC-tree with repeated transactions heads. The merging 
algorithm removes such transactions heads. 
for all transactions head h from 1 to n-1 do begin 
    for all transactions head j  from 2 to n do begin 
  if (h = = j) 
     append(h, j); // Appending the transactions head h to j.                      
     end 
  end 
C .  Removal of  repeated Siblings: 
 The PC-tree, which is reduced in the above step, may contain 
repeated sibling heads. i.e. even though  the PC–tree possesses 
different transaction heads, for a particular head any two 
siblings may have same labels. The following algorithm 
removes repeated siblings.  
for all transactions head h from 1 to n do begin 

Remove a transaction head h from PC–tree, which results in 
a tree called  XPC –tree. 
Append all transactions beginning with h from the removed 
branch of PC-tree, to the transaction head h1  having the label 
of  h. 
The transaction head h1  which is obtained in the above step 
is attached to XPC –tree. 

end. 
The resulting tree at the end of this step is called Reduced PC 
–Tree (RPC -tree).  
Step 3: Discover closed frequent itemsets by finding all 
possible paths and its frequency for all one large frequent 
itemsets. 
This step involves several sub-steps. 
Reverse the set of frequent 1-itemsets f in descending order of 
their item number. It is assumed that there are n one frequent 

itemsets in f; p is a path structure to store all possible paths; h 
a transactions head in a reduced PC -tree; I an item in the set f; 
T holds the elements which are frequent with I; m the number 
of elements in T; Count[I]  contains  frequency of an item I; r  
is a path structure to store closed frequent itemsets; fcount[k] 
represents the frequency of reduced path rk; N the number of 
reduced paths in r and s a user defined support. 
       for every item I in f do begin 

Do a preorder scan of the Reduced PC-tree to get all 
possible paths ending with item number I. 

for all transactions heads h in the reduced PC-tree do 
begin  

  if (h> = I)  remove h from the reduced PC -tree; 
  else {store count[I ]  as  first element, all other  elements    
     before I and   element I,  as next in  path p } 
continue search for I in Reduced PC –tree until the end of the 
tree 
 end. 
/*Reduce all the paths in p to contain only frequent itemset 
associated with  I. */ 
      for all  paths p do begin 
          for all I in p do begin 
       If I is not frequent, remove I from p 
              else,  add I to the set T. 
   end 
     end 
/* Finding the association   amongst the elements in T.  */ 
    for all  Ij  in T,  j  from 1 to m   do begin 
 for all reduced paths p do begin  
  if  Ij  € p,  put all elements after Ij and    before I   in r. 
            count[ j ]=count[ Ij ] 
   end 
/*Reduce r*/ 
          for all  paths r do begin 
                 for all I in r do begin 
                          if I is  not frequent with Ij  remove I from r 
                     end 
                    if r contains more than two frequent   items then  
                   count[ r ]=count[ I ] 
          end 
/*Finding the frequency of reduced paths.*/ 
   for all reduced paths rk , k from 1 to N do begin 
          for all reduced paths rl , l from 1 to N, k ≠ l do              

  begin 
                     If (rk= = rl)  

   N=N-1(Delete  rl) 
                          count[ k ]= count [k ]+ count [ l ] 
                          fcount[k]=count[ k] 
                        If ( rk is contained in  rl )  
        count[ k ]= count [k ]+ count [ l ] 
       fcount[k]=count[ k]   
     end 
end 
/*finding Potential closed frequent itemsets*/ 
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     Initialize i to 1     
     for all reduced paths rk , k from 1 to N do begin 
          if ( fcount[ k ] >= s)  and there exists no other path  
          containing rk  with  the same support as that of  rk   then   
              move   rk   to Ci and increment  i by 1; 
          else   ignore rk 
     end 
    end 
 end 

/* finding frequent closed itemsets*/ 
n=i 
for all reduced paths Ck , k from 1 to i-1 do begin 
   for all reduced paths Cj , j from 2 to i do begin 
     if Ck is  contained in any of the Cj with the same support  
      then ignore Ck,  n=n-1; 
     else 
   end    
end    
/* Recovering proper subsets which are closed frequent 

itemsets. */ 
for all reduced paths Ck , k from 1 to n-1 do begin 
   for every subset  s of Ck containing 2 or more items   

begin 
 if s is properly contained in any of the Cj, j from 2 to n      
      and s is not equal to any of the Cj then 
add s to closed frequent itemset if count of s is not equal to 

count of Cj; 
end 
end 
 

The working of above algorithm is explained with the help of 
the following example. 
Consider a sample database given in Table1. The user defined 
minimum support is 20% of 15 transactions. This means 3 
transactions.  

 
 

PC-tree corresponding to the above database is given in 

Figure1. 

 
 
REMOVAL OF INFREQUENT ITEMSETS: 
The item numbers 2, 3, 4, 5, 6, 7, 8 become frequent–1 
itemsets since their frequencies are greater than or equal to 
user defined minimum support. Also, item numbers 1 and 9 
are considered to be infrequent since their frequencies are less 
than the user defined minimum support value. Hence the 
nodes labelled with 1 and 9 are removed from the PC-tree 
given in Figure1. The resulting PC-tree is as shown in Figure 
2. 

 
REMOVAL REPEATED TRANSACTION HEADS: 
The above PC-tree contains repeated transaction heads labeled 
with item numbers 5 and 3. They are merged at this level and 
the resulting PC- tree is shown in Figure 3. 
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REMOVAL OF REPEATED SIBLINGS: 
Since Figure 3 does not contain repeated sibling heads, it 
represents the Reduced Pattern Count Tree. 
Step 3: We reverse the array f of frequent 1- itemsets   i.e. f 
contains item numbers 8, 7, 6, 5, 4, 3, 2. 
Iteration 1 
The first element in f is 8. i.e. let the current item number I be 
equal to 8. 
The Reduced PC-tree contains a node labeled 8 as a 
transaction head. Therefore, it is removed from the reduced 
PC -tree. The resulting tree is shown in Figure 4. 

 
 
 

The  possible paths p ending with 8  are {2:5,6,8} {1:2,4,8}. 
Since item numbers 2, 4, 5, and 6 do not have user defined 

minimum support, there is no frequent path ending with item 
number 8. 
Iteration 2 
The second element in f is 7. It can be seen from  Figure 4, 
that any of the transactions heads of reduced PC-tree is not 
labeled  7. 
The possible paths p ending with 7 are {1: 2, 4, 6, 7}, {1: 2, 6, 
7}, {1: 4, 5, 7}, {1: 5, 6, 7}, {3: 3, 5, 7}. We see that the item 
numbers 3, 5, 6 have user defined minimum support. Let 
T={3, 5, 6 }. The only potentially frequent 2-closed itemsets  
are C1={5:5, 7} and C2 = {3: 6, 7}. The frequent itemset     
{3: 3, 7} is not a closed itemset  since support of {3: 3, 7} is 
the  same as that of its superset  {3: 3, 5, 7}.  
 Now eliminating all item numbers from p except those from 
T, the reduced paths in  p  are  
 {1:  6, 7},   {1: 6, 7,} {1: 5, 7}, {1: 5, 6, 7}, {3: 3, 5, 7}. 
The reduced paths in  p are 
{3:6, 7}, {5:5,7},  {1: 5, 6, 7},{3: 3, 5, 7}.  
Now consider the first element of T, i.e. 3. It is clear that there 
is only one path having elements after 3 and before 7 and its 
support is greater than user defined minimum support. 
Therefore, the path C3={3: 3, 5, 7} is a potential closed  
frequent 3-item set beginning with 3 and ending with 7. By 
similar arguments, it can be shown that {5:5,7} and {3:6,7}are  
potential closed frequent itemsets , which begin with 5 and 6, 
and end with 7 respectively. 
Iteration 3 
The third element in  f is 6. The possible paths p ending with 6 
are {1: 2, 6},{1:2, 4, 6},{3: 5, 6}.  Since the item number 5 
occurs 3 times, the set   T = {5}. Therefore, C4={3: 5 , 6} is 
the only one potential closed frequent 2- itemset ending with 
6. 
Iteration 4: 
The next element in f is 5 and is the transactions head of 
Reduced PC-tree. Therefore, that particular branch is removed 
from the RPC-tree. The resulting tree after removing  
5 is shown in Figure 5. 

 
 

The possible paths p ending with 5 are {1:  4, 5}, {3:  3, 5}. 
Since the item number 3 has minimum support, we have 
T= {3}. Therefore, C5={3: 3, 5} is the only one potential 
frequent 2-itemset ending with 5 . 
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Iteration 5 
The next element in f is 4. The resulting RPC –tree after 
removing the transaction head labeled 4 from Figure 5 is 
shown in  Figure 6.  
 

 
The  possible paths  p ending with 4  are   {2:  2, 4}, {1: 2, 3, 
4}. Since the item number 2 satisfies user defined minimum 
support, we have T= {2}.Therefore, the potentially frequent-2 
closed itemset obtained is C6={3: 2, 4}. 
Iteration 6 
The next element in f is 3. The resulting RPC -tree after 
removing transaction head labeled 3 is shown in Figure 7. 
The path ending with three is C7={3: 2, 3}. Since this path 
satisfies user defined minimum support, and there exists no 
other path with the same support containing it, C7 is a   
potentially closed frequent itemset. 

  

 
Iteration 7 
The Reduced PC-tree obtained in the previous iteration, 
contains only one transaction head, which is 2. The removal of 
this node results in an empty tree. Therefore, there is no path 
ending with 2. This completes all iterations. 
At the end of this iteration we have 6 potentially closed 
frequent itemsets. They are C1={5:5, 7} C2={3: 6, 7}. C3={3: 
3, 5, 7}  C4={3: 5 , 6}, C5={3: 3, 5} C6={3: 2, 4}, 
C7={3:2,3} 
Applying the property of closed frequent  itemsets we get 
only  C1={5:5, 7}, C2={3: 6, 7}. C3={3: 3, 5, 7}  C4={3: 5 , 
6} and  C6={3: 2, 4}  C7={3:2,3}as frequent closed itemsets 

along with closed frequent 1-itemsets such as {2}, {3}, {4}, 
{5}, {6}, {7}, {8}. 

III   PERFORMANCE ANALYSIS 

The above algorithm is checked for data sets having 1K, 5K, 
10K, 15K, 20K, 25K and 50K transactions against the support 
value .75 % and the result is compared with  FP –tree to 
discover all frequent itemsets. The time graph is shown in 
Figure 8. 
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Theoretical Comparisons with some Algorithms: 

1.  We know that for  Apriori algorithm, the database 
has to be read at least  k times if we have to find  
frequent itemsets of length k . For our method, only 
one scan is required to discover all closed frequent 
itemsets.  This will save considerable execution time. 

2. If N is the number of transactions in the given 
database, our method requires exactly one scan to 
read the N transactions and construct Reduced 
Pattern Count Tree. Therefore our algorithm is in 
O(N), where as Apriori,  which depends on size of 
large itemsets Lk,  is in O(k*N). 

3. Even though the algorithms Max Miner[10] or Pincer 
search[9] can discover closed frequent itemsets by 
examining  obtained  maximal frequent itemsets, they 
require more than one database scan and involve 
candidate generation method.  Since our approach 
uses a single data structure which is a compact and 
complete representation of the given database, and 
does not use any candidates  generation method, it is 
clearly space efficient. 

4. The  algorithm CHARM,  is found be efficient for 
discovering closed association rules [12] but requires 
multiple passes to discover all frequent closed 
itemsets.   It is calculated by taking the sum of the 
lengths of all tidsets scanned from disks, and then 
dividing the sum by the tidset lengths for all items in 
the database. 

5. The Algorithm AClose [11] is an Apriori –like 
algorithm that directly mines closed frequent 
itemsets, but involves candidate generation method. 
This algorithm can perform an order of magnitude 
better than Apriori for low support values, but for 
high support values, it can in fact be worse than 
Apriori. This is because for high support the number 
of frequent itemsets   is not too much, and the closure 
computing step of AClose dominates computation 
time. Like Apriori, Aclose could not be run for every 

low values of support. The generator finding step 
finds  many generators to be kept in the memory. 

6. In view of all the above,  our approach is extremely  
effective in efficiently mining all the closed frequent 
itemsets, and is able to gracefully handle very low 
support values, even in dense datasets.       

IV  CONCLUSION 

In this paper, we proposed a novel method for discovering 
closed  frequent itemsets directly by reducing PC-tree, which 
requires only one scan of the database. Also, it is found that 
the algorithm is more time efficient than FP-tree, Apriori, 
Aclose etc since these algorithms require more than one scan 
of the database. In addition, our algorithm works for any small 
support value. However, execution time increases a little as 
the size of the database increases. As a future investigation a 
method may be developed to improve the time efficiency of 
our method.  
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