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Abstract—Quantum mechanical computers unlike
classical computers can be in a superposition of states
and carry out multiple operations at the same time.
Grover has shown that a quantum computer can do a
random database search in O(

√
N) steps. He has fur-

ther proved that using the superposition of the states
in quantum computing, a quantum computer should
be able to do a search in a single step. He has stated
that the query generated to do this search will require
Ω(NlogN) steps.

In this paper we aim at optimizing the Grover’s search
algorithm. In our algorithm, we have repeated the
inversion step a number of times instead of stopping
after a single step. Measurement after a single step
required a larger number of subsystems which im-
paired the effectiveness of the algorithm leading to
Ω(NlogN) steps in the preparation and processing of
the query. Repetition of the inversion step brought
the the number of subsystems down drastically by in-
creasing the amplitude of the desired state.We have
proved that by doing so the overall effectiveness of
Grover’s algorithm can be brought down to Ω( 3

√
N).
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1 Introduction

The idea of a computational device based on quantum
mechanics was first explored in the 1970’s and early
1980’s by physicists and computer scientists such as
Charles H. Bennett of the IBM Thomas J. Watson Re-
search Center, Paul A. Benioff of Argonne National Lab-
oratory in Illinois, David Deutsch of the University of
Oxford, and the late Richard P. Feynman of the Califor-
nia Institute of Technology (Caltech). The idea emerged
when scientists were pondering the fundamental limits of
computation. They understood that if technology con-
tinued to abide by Moore’s Law, then the continually
shrinking size of circuitry packed onto silicon chips would
eventually reach a point where individual elements would
be no larger than a few atoms. Here a problem arose be-
cause at the atomic scale the physical laws that govern the
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behavior and properties of the circuit are inherently quan-
tum mechanical in nature, not classical. This then raised
the question of whether a new kind of computer could be
devised based on the principles of quantum physics.

Feynman was among the first to attempt to provide an
answer to this question by producing an abstract model in
1982 that showed how a quantum system could be used to
do computations. He also explained how such a machine
would be able to act as a simulator for quantum physics.
In other words, a physicist would have the ability to carry
out experiments in quantum physics inside a quantum
mechanical computer [1].

This dramatic advantage of quantum computers has only
been discovered for these problems so far: factoring, dis-
crete logarithm. However, there is no proof that the ad-
vantage is real: an equally fast classical algorithm may
still be discovered. There is one other problem where
quantum computers have a smaller, though significant
(quadratic) advantage. It is quantum database search,
and can be solved by Grover’s algorithm. In this case the
advantage is provable. This establishes beyond doubt
that (ideal) quantum computers are superior to classical
computers for at least one problem [6]. In this paper we
aim at optimizing the Grover’s search algorithm. Grover
in his algorithm stopped after one single inversion step.
Measurement after a single step required a larger number
of subsystems which impaired the effectiveness of the al-
gorithm. This led to Ω(NlogN) steps in the preparation
and processing of the query. In our modified algorithm,
we have repeated the inversion step a number of times
and because of this the number of subsystems required is
brought down drastically. The increase in the amplitude
of the desired state by the repetition of the inversion step
improved the overall effectiveness of the algorithm. We
established that the lower bound of database search using
Grover’s search algorithm is Ω( 3

√
N).

2 Preliminaries

A quantum bit or qubit is a unit of quantum informa-
tion. That information is described by a state vector
in a two-level quantum mechanical system which is for-
mally equivalent to a two-dimensional vector space over
the complex numbers. Benjamin Schumacher discovered
a way of interpreting quantum states as information. He
came up with a way of compressing the information in a
state, and storing the information on a smaller number
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of states. This is now known as Schumacher compres-
sion. A qubit has some similarities to a classical bit, but
is overall very different. Like a bit, a qubit can have two
possible valuesnormally a 0 or a 1. The difference is that
whereas a bit must be either 0 or 1, a qubit can be 0, 1,
or a superposition of both. The states a qubit may be
measured in are known as basis states (or vectors). As is
the tradition with any sort of quantum states, Dirac, or
bra-ket notation is used to represent them.

A pure qubit state is a linear superposition of those two
states. This means that the qubit can be represented as
a linear combination of (0) and (1):

ω = α(0) + β(1), (1)

where α and β are probability amplitudes and can in
general both be complex numbers.

When we measure this qubit in the standard basis, the
probability of outcome of (0) is α2 and the probability of
outcome of (1) is β2. Because the absolute squares of the
amplitudes equate to probabilities, it follows that α and
β must be constrained by the equation

α2 + β2 = 1, (2)

simply because this ensures you must measure either one
state or the other.

Figure 1: A qubit representation by a Bloch sphere

An important distinguishing feature between a qubit and
a classical bit is that multiple qubits can exhibit quantum
entanglement. Quantum entanglement allows qubits that
are separated by incredible distances to interact with each
other instantaneously (not limited to the speed of light).
No matter how great the distance between the correlated
particles, they will remain entangled as long as they are
isolated [1].

Taken together, quantum superposition and entangle-
ment create an enormously enhanced computing power.
Where a 2-bit register in an ordinary computer can store
only one of four binary configurations (00, 01, 10, or
11) at any given time, a 2-qubit register in a quantum
computer can store all four numbers simultaneously, be-
cause each qubit represents two values. If more qubits are
added, the increased capacity is expanded exponentially
[6].

The class of problems that can be efficiently solved
by quantum computers is called BQP which stands for
bounded error, quantum, polynomial time. Quantum
computers only run probabilistic algorithms, so BQP on
quantum computers is the counterpart of BPP on classi-
cal computers. It is defined as the set of problems solv-
able with a polynomial-time algorithm, whose probability
of error is bounded away from one quarter. A quantum
computer is said to solve a problem if, for every instance,
its answer will be right with high probability. If that so-
lution runs in polynomial time, then that problem is in
BQP [10].

BQP is suspected to be disjoint from NP-complete and
a strict superset of P, but that is not known. Both in-
teger factorization and discrete log are in BQP. Both of
these problems are NP problems suspected to be outside
BPP, and hence outside P. Both are suspected to not
be NP-complete. There is a common misconception that
quantum computers can solve NP-complete problems in
polynomial time. That is not known to be true, and is
generally suspected to be false.

An operator for a quantum computer can be thought of
as changing a vector by multiplying it with a particu-
lar matrix. Multiplication by a matrix is a linear opera-
tion. Daniel S. Abrams and Seth Lloyd have shown that
if a quantum computer could be designed with nonlinear
operators, then it could solve NP-complete problems in
polynomial time. It could even do so for #P-complete
problems. They do not believe that such a machine is
possible [6].

A quantum database search can be solved by Grover’s
algorithm. In this case the advantage is provable. Grover
proved that if a problem has following four properties:

i. The only way to solve it is to guess answers repeatedly
and check them,

ii. There are n possible answers to check,

iii. Every possible answer takes the same amount of time
to check, and

iv. There are no clues about which answers might be
better: generating possibilities randomly is just as good
as checking them in some special order.
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Figure 2: The suspected relationship of BQP to other
problem spaces

then the time for a quantum computer to solve this will
be proportional to the square root of n (it would take an
average of n+1

2 guesses to find the answer using a classical
computer.) [6]

In short, Grover’s algorithm is a quantum algorithm
for searching an unsorted database with N entries in
O(
√

N) time and using O(logN) storage space [7]. Like
many quantum computer algorithms, Grover’s algorithm
is probabilistic in the sense that it gives the correct an-
swer with high probability. Grover proved that the num-
ber of steps taken for a quantum computer to search for
an item in a database will be of O(

√
N) in comparison to

its classical counterpart which will take O(N) steps [7].

Grover further showed that since the quantum computer
can search all N items simultaneously, it is possible to
search an arbitrarily large database in a single query [8].
But in the process of preparing and processing the query,
the over all effectiveness of the algorithm goes down to
Ω(NlogN).

3 Optimization of Grover’s Search Algo-
rithm

Quantum mechanical computers can be in a superposi-
tion of states and carry out multiple operations at the
same time. An algorithm that uses this parallelism is
which searches an N item database for a single marked
item in O(

√
N) quantum queries where each query per-

tains to only one of the N items [7]. Grover has also
justified the quantum approach of being able to access
all the items in the database simultaneously and hence
being able to search an element in a single query [8]. In
the process, the over all effectiveness of the algorithm
dipped down to Ω(NlogN). This is primarily due to the
complexity of the nature of the query generated and the
post processing of the data.

Let a system have N = 2n states which are labeled S1 ,

S2...SN . These 2n states are represented as n bit strings.
Let there be a unique state, say Sv, that satisfies the
condition C(Sv) = 1, whereas for all other states S, C(Sv)
= 0. The problem is to identify the state Sv. Initialize
the system to the superposition: ( 1√

N
, 1√

N
, 1√

N
... 1√

N
)i.e.,

there is the same amplitude to be in each of the N states.
This superposition can be obtained in O(logN) steps [7].

Let the system be in any state S:

In case

C(Sv) = 1, (3)

rotate the phase by π radians ;

In case
C(Sv) = 0, (4)

leave the system unaltered.

By using such a selective inversion followed by an inver-
sion about average operation, Grover showed that the
magnitude of the amplitude in marked state(s) can be
increased by a certain amount [8]. The inversion about
average operation is defined by the following unitary op-
eration

Dij =
2
N

(5)

if i 6= j and as;

Dij = −1 +
2
N

(6)

if i = j.

This can be physically implemented as a product of three
local unitary matrices [7].

Assume that D is applied to a superposition with each
component of the superposition, except one, having am-
plitude equal to 1√

N
; the one component that is different

has amplitude of - 1√
N

. The one that was negative, now
becomes positive and its magnitude increases to approx-
imately 3√

N
, the rest stay virtually unchanged as shown

in the figure 3.

Consider a quantum system composed of multiple subsys-
tems. Each subsystem has an N dimensional state space
like the one used in the Grover’s search algorithm [7].
Each basis state of a subsystem corresponds to an item
in the database. It is shown that with a single quantum
query, pertaining to information regarding all N items,
the amplitude (and thus probability) in the state corre-
sponding to the marked item(s) of each subsystem can be
amplified by a small amount. By choosing the number of
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Figure 3: The inversion about average operation is ap-
plied to a superposition in which all but one of the com-
ponents amplitude is initially 1√

N
; one of the components

is initially at amplitude of - 1√
N

.

subsystems to be appropriately large, and by repeating
such queries, this small difference in probabilities can be
estimated by making a measurement to determine which
item of the database each subsystem corresponds to - the
item pointed to by the most subsystems is the marked
item.

Consider a tensor product of η identical quantum me-
chanical subsystems - all subsystems have an N dimen-
sional state space. Each of the N basis states corresponds
to an item in the database. All subsystems are placed in
a superposition with equal amplitude in all N states.

Assuming N to be a power of 2, the state of each subsys-
tem is initialized by taking a set of log2N qubits which
gives N states. The system consists of η such subsystems.
Each qubit is placed in the superposition ( 1√

2
)((0) + (1)),

thus obtaining equal amplitudes in all N states. Denoting
the N states by S1, S2...SN , the state vector is propor-
tional to ((S1)+(S2) +...+ (SN ))η which may be written
as ((S1 S1...S1) + (S1 S1..S2) +...+ Nη such terms).

Query the database as to whether the number of subsys-
tems (out of the η subsystems) in the state corresponding
to the marked item, is odd or even. In case it is odd, in-
vert the phase; if it is even, do nothing. This is achieved
by using the technique described in section 3.2.

Let S1 be the state corresponding to the marked item.
The state vector after this operation becomes as (±(S1

S1...S1) ± (S1 S1...S2) ...Nη such terms). The sign of each
term is determined by whether the state corresponding
to the marked item (-S1) is present an odd or even num-
ber of times in the respective term. This state vector can
be factored and written as ((S1)+(S2)+...+ (SN ))η. The
system is now in a tensor product of η identical quantum
mechanical subsystems, each of which has an N dimen-
sional state space. In each of the subsystems, the phase

of the amplitude in the basis state corresponding to the
marked item is inverted.

Note that by a single operation on the multi-system wave
function, the wave function of each subsystem has been
altered in a suitable way. Using a single query, the phase
of the amplitude in the state corresponding to the marked
item in each of these η subsystems is inverted - the reason
it needs only a single query is that the new phase can have
only two possible values (±1). The only statistic needed
from the oracle is: Is the number of subsystems in the
state corresponding to the marked item is odd or even?

After this a single inversion about average operation is
carried out on each of the subsystems separately.Since
the system is in a tensor product of η identical quantum
mechanical subsystems, each subsystem can be indepen-
dently operated on.This increases the amplitude of the
marked state, which was negative, by a factor of 3 by an
inversion about average operation.The state vector af-
ter carrying out this operation becomes approximately:
(3(S1)+(S2) +...+ (SN ))η.

This is where the Grover’s algorithm stops and makes a
measure of the number of subsystems in the marked state
[8]. In our algorithm we apply the inversion step and
inversion about the average step a number of times. The
state vector after single inversion is (3(S1)+(S2) +...+
(SN ))η which may be written as (3η(S1 S1...S1) + 3η−1(S1

S1...S2) +...+ Nη such terms).

The next inversion step is carried in a similar way as the
first inversion step. The state vector after this opera-
tion becomes (± 3η(S1 S1...S1) ± 3η−1(S1 S1...S2) ±...+
Nη such terms). The sign of each term is determined by
whether the state corresponding to the marked item (S1)
is present an odd or even number of times in the respec-
tive term. This state vector can be factored and written
as ( -3(S1) + (S2) +...+ (SN ))η.

After this a single inversion about average operation is
carried out on η the subsystems separately. This increases
the amplitude of the marked state, which was negative,
by an inversion about average operation. The state vector
after carrying out this operation becomes approximately:
(5(S1) + (S2) +...+ (SN ))η.

Next the inversion step is followed by the inversion about
the average step n-1 times. After n-1 steps, the state vec-
tor can be written as ((2n-1)(S1) + (S2) +... + (SN ))η.
After the nth step, the state vector becomes (±(2n-1)η(S1

S1...S1) ± (2n-1)η−1(S1 S1...S2) ± ... + Nη such terms.
This state vector can be factored and written as (-(2n-
1)(S1) + (S2) +...+ (SN ))η. Now, we do the inversion
about the average step for the nth time. The state vector
after carrying out this operation becomes approximately:
((2n+1)(S1) + (S2) +...+ (SN ))η.

Now, in the final step the algorithm makes a measurement
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that projects each subsystem into one of its basis states
that points to an item in the database. The item that
the most subsystems point to is the marked item.

Assume the number of subsystems (i.e. η) and the num-
ber of steps iteration carried out (i.e. n) to be sufficiently
large. The probability of obtaining the basis state cor-
responding to the marked item (SN ) in each of the η

subsystems is approximately (2n+1)2

N and the probability
of obtaining another basis state is approximately 1

N . We
assume number of subsystems (i.e. η) and the number of
steps iteration has been carried out (i.e. n) to be suffi-
ciently large. The algorithm assumes 2n+1 ≈ 2n, since
n À 1. Hence the probability of finding a subsystem in
the marked state can be written as 4n2/N.

It follows by the law of large numbers, that out of η

subsystems, 4n2η
N ± O(

√
n2η
N ) lie in state S1 while η

N

± O(
√

η
N ) lie in each of the other basis state [3]. To test

the lower limit of the algorithm, we now put η = n =
3
√

N . This will lead to the probability of obtaining the
basis state corresponding to the marked state item (S1)
in each of the η subsystems to be 4 ± O(1). Hence, the
item that the most subsystems point to is the marked
item.

4 Conclusion and Comparison with
Grover’s Algorithm

The Grover’s single step search algorithm made the mea-
surement after a single inversion step [8]. This made the
probability of obtaining the basis state corresponding to
the marked item in each of η subsystems approximately
9
N . This implied that out of η subsystems, 9η

N ± O(
√

η
N )

lie in state S1 while η
N ± O(

√
η
N ) lie in each of the

other basis state. This made the requirement to make
the number of subsystems (i.e. η) large enough to ne-
glect the uncertainty caused by O(

√
η
N ) term. As shown

by Grover this number comes out to be Ω(NlogN) [8].
This hampers the overall effectiveness of the algorithm.
While in Grover’s original algorithm the number of sub-
systems has been kept to 1 while iterating the inversion
steps to O(

√
N). This way the amplitude and hence the

probability of obtaining the desired state reaches O(1).

In our optimised algorithm,the advantages of both the al-
gorithms have been merged. The algorithm uses the ad-
vantage of going through multiple inversion steps and of
having multiple subsystems to get a more efficient form.
This takes over all Ω( 3

√
N) quantum steps in compari-

son to O(
√

N) steps and Ω(NlogN) steps used inGrover’s
Algorithm.

References

[1] A. Elitzur and L. Vaidman in Foundations of Physics 23,
1993, pp. 987-997.

[2] C. Durr and P. Hoyer, A quantum algorithm for finding
the minimum, lanl preprint, quant-ph/9602016.

[3] D. Beckman, A.N. Chari, S. Devabhaktuni and J.Preskill
in Phys. Rev. A 54(1996), 1034-1063.

[4] D. Deutsch and R. Jozsa in Proc. Royal Society of Lon-
don, A400, 1992, pp. 73-90.

[5] http://whatis.techtarget.com

[6] http://www.wikipedia.com

[7] L.K.Grover, Quantum Mechanics Help in Searching for
a Needle in a Haystack, Phys. Rev. Letter 79, 325-328,
1997.

[8] L.K.Grover, Quantum Computers can Search Arbitrarily
Large Databases by a Single Query, Phys. Rev. Letter 79,
4709-4712, 1997.

[9] M. Boyer, G. Brassard, P. Hoyer and A. Tapp, Tight
bounds on quantum searching, Proc., PhysComp 1996
(lanl e-print quant-ph/9605034).

[10] W. Feller, An Introduction to Probability Theory and its

Applications, Vol. I and II, John Wiley Publishers,1971.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008


