
Maximal Frequent Itemsets Mining
Using Database Encoding

Mohammad Nadimi-Shahraki, Norwati Mustapha, Md Nasir B Sulaiman, Ali B Mamat

Abstract—Frequent itemsets mining is a classic
problem in data mining and plays an important role in
data mining research for over a decade. However, the
mining of the all frequent itemsets will lead to a massive
number of itemsets. Fortunately, this problem can be
reduced to the mining of maximal frequent itemsets. In this
paper, we propose a new method for mining maximal
frequent itemsets. Our method introduces an efficient
database encoding technique, a novel tree structure called
PC_Tree and also PC_Miner algorithm. The database
encoding technique utilizes Prime number characteristics
and transforms each transaction into a positive integer that
has all properties of its items. The PC_Tree is a simple tree
structure but yet powerful to capture whole of transactions
by one database scan. The PC_Miner algorithm traverses
the PC_Tree to mine maximal frequent itemsets.
Experiments verify the efficiency and advantages of the
proposed method.

Index Terms—Database encoding, Frequent itemsets,
Maximal frequent itemsets, Prime numbers.

I. INTRODUCTION
Since the introduction of the Apriori algorithms [2],

frequent pattern mining plays an important role in data
mining research. The problem of mining all frequent
itemsets is that if there is a large frequent itemset with
size L, then almost all 2L candidate subsets of the items
might be generated. There are many contributions to
enhance performance of mining all frequent itemsets.
They have been mostly done base on three basic
frequent itemsets mining methodologies: Apriori, FP-
growth and Eclat [8]*.

In real application, the number of frequent itemsets
produced from a transaction database can be very huge

Mohammad Nadimi-Shahraki is with Department of Computer
Engineering of Islamic Azad University, Najafabad branch, Iran and
he is currently pursuing the Ph.D. degree in computer science from the
University of Putra Malaysia, Emails: nadimi.mh@gmail.com.

Assistant Prof. Dr. Norwati Mustapha, Associate Prof. Dr. Md Nasir
B Sulaiman, and Associate Prof. Dr. Ali B Mamat are with Faculty of
Computer Science and Information Technology, University of Putra
Malaysia (UPM), 43400 UPM, Selangor, Malaysia. Emails:
{norwati,nasir,ali}@fsktm.upm.edu.my.

and it becomes impossible to find all frequent itemsets
[5]. A reasonable solution is identifying a small
representative set of itemsets from which all other
frequent itemsets can be derived. Since frequent itemsets
are upward closed, it is sufficient to find out only all
maximal frequent itemsets (MFI). In particular, maximal
frequent itemsets are those itemsets that are frequent but
none of their supersets are frequent. Maximal frequent
itemsets provide a compact representation of frequent
itemsets effectively. In fact, they form the smallest set of
itemsets from which all frequent itemsets can be derived
[4].

In this research, we propose a new method to discover
maximal frequent itemsets. Our method introduces an
efficient database encoding technique, a tree structure
called Prime-based encoded and Compressed Tree or
PC_Tree and also PC_Miner algorithm. The database
encoding technique utilizes prime numbers
characteristics and transforms transaction database to a
flat file called encoded file which each transaction
presents by a positive integer.

The experiments shows that by applying this database
encoding technique, the size of transaction database can
be reduced more than half. The PC_Tree is a novel and
simple tree structure but yet efficient consists of a root
and some sub trees as the children of the root to capture
whole of transactions by one database scan. The
PC_Miner algorithm traverses the PC_Tree and prunes
search space using the PC_Tree properties. It builds gcd
(greatest common divisor) set of the nodes of the tree
which are in search space to mine maximal frequent
itemsets.

The rest of the paper is organized as follows. Section
2 introduces the basic concepts and reviews some related
works. The PC_Tree and the PC_Miner are described in
section 3. The experimental results show in section 4
and section 5 contains some conclusions and future
works.

II. PRELIMINARIES AND RELATED WORK
Let DB be a transaction database and X be the set of

items from 1 to n. An itemset X is frequent if it contains
at least σ transactions, where σ is the minimum support.
An itemset X is a maximal frequent itemset if it is a
frequent itemset and no superset of it is also a frequent
itemset.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

mailto:Nadimi.mh@gmail.com

When the frequent patterns are long, mining all
frequent itemsets is infeasible because of the exponential
number of frequent itemsets. Researchers now turn to
find Maximal Frequent Itemsets (MFI) [3]. Because
mining of MFI is faster and all frequent itemsets can be
built up from MFI and can be counted for support in a
single scan of the database. Moreover, we can focus on
any part of the MFI to do supervise data mining. Many
efficient algorithms have been developed for mining
maximal frequent itemsets in static database that mostly
using the horizontal or vertical database layout.

The Pincer-Search algorithm [9] uses horizontal data
format. It didn’t construct the candidates in a bottom-up
manner like Apriori. The Pincer-Search algorithm
combines a bottom-up and a top down techniques to find
the maximal frequent itemsets. The bottom up process
finds frequent itemsets, and non frequent itemsets. Then
non frequent itemsets are used by a top down process to
refine a set of potential maximal frequent itemsets.
MaxMiner [4] is another algorithm for finding the
maximal elements. It uses a breadth-first traversal of the
search space; and reduces database scanning by using a
look ahead pruning strategy. DepthProject demonstrated
an order of magnitude improvement over previous
algorithms for mining maximal frequent itemsets [1].
Both DepthProject and Mafia [5] mine a superset of the
MFI, and require a post-pruning to eliminate non-
maximal patterns. Recently a new two-way-hybrid
algorithm for mining maximal frequent itemsets has
been proposed [6]. A flexible two-way-hybrid search
method is given. The two-way-hybrid search begins the
mining procedure in both the top-down and bottom-up
directions at the same time. Moreover, information
gathered in the bottom-up can be used to prune the
search space in the other top down direction. The
experiments showed that pruning strategies are implied
in this method, can reduce the original search space.

III. THE PROPOSED METHOD
In this research, we proposed a new method to

discover maximal frequent itemsets efficiently. Our
method introduces an efficient database encoding
technique, a tree structure called PC_Tree and also
PC_Miner algorithm.

A. The Database Encoding
The presentation and encoding of database is an

important consideration in almost all algorithms. The
most commonly used layout is the horizontal database
layout and vertical one [12]. In both layouts, the size of
the database is very large. Reducing of the size of the
transaction database can enhance performance of
mining algorithms.

In our algorithm, transaction database is transformed
to a new presentation by database encoding in a data
pre-processing phase. The database encoding is a useful
technique which can reduce the size of database and
improve the efficiency of mining. In this research,
instead of maintaining a large table in the transaction

database, one encoded file is considered. The encoded
file is a flat file created by the database encoding
technique as a new presentation of transaction database.

The encoded file includes positive integers called
Value. Every Value presents the entire items that occur
in the transaction. In fact, all items in one transaction are
converted into only one positive integer that has all
properties of these items. Our database encoding
technique makes use of prime number characteristics.

An integer P is a prime integer or prime number if
P>1 and only positive divisors of P are 1 and P. A
positive integer N can be expressed as a product of
prime numbers and this factorization is unique except
for the order of the factors. Let p1, p2… pr be the

distinct prime factors of N, so that p1 < p2 <…< pr. All

repeated factors can be collected together and expressed

using exponents, such that N = p1
m1 p2

m2 … pr
mr,

where each mi is a positive integer, called the

multiplicity of pi, and this factorization of N is called the

standard form of N [7]. For example, N = 1800=23
* 32

*

52. For our purposes, we are particularly interested in
multiplicity mi = 1 because there is no duplicated item

in transactions.
To facilitate the process of the database encoding

technique used in our method, let’s examine it through
an example. Let the transaction database, DB, be the first
two columns of Table 1 with six transactions and item
set I= {A, C, D, T, W}.

Table 1. A transaction database and its VTID
TID Items Encoded V

TID

1 A,C,T,W 2,3,7,11 462
2 C,D,W 3,5,11 165
3 A,C,T,W 2,3,7,11 462
4 A,C,D,W 2,3,5,11 330
5 A,C,D,T,W 2,3,5,7,11 2310
6 C,D,T 3,5,7 105

Each item ij is presented by one prime number Pj as

shown in third column of Table 1. We used very simple
equation (1) to compute value VTID for every
transaction. In fact equation (1) makes a new composite
integer by using the prime numbers. The VTID is product
all considered prime numbers according to participated
items in the transaction. For example for fourth
transaction where itemsets = {A, C, D, W} using
equation (1), V4=2*3*5*11=330.

VTID=∏Pi (1)

The fourth column of Table 1 shows computed VTID

for all transactions. By this way, the encoded file is
much smaller can be loaded into memory more easily
than the original transaction database. Our experiments

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

on some benchmark datasets showed that by applying
this database encoding technique, the size of database
can be reduced more than half as shown in Fig 2.

B. The PC_Tree & PC_Miner Algorithms
It this research, we introduce a novel and simple tree

structure called Prime-based encoded and Compressed
Tree or PC_Tree. Mostly, researchers have proposed
tree structure in static and incremental frequent itemset
mining [10, 11] that motivate us to introduce a simple
tree structure but yet efficient.

A PC_Tree is a tree structure consists of a root and
some sub trees as the children of the root. Node’s
structure in the tree has three fields: Value, Count, and
Link. The Value field records which transaction this
node represents, the Count field registers the number of
records reaching this value. Database encoding and tree
construction can be done with together by only one
database scan.

To illustrate the construction of the PC_Tree, figure
1 shows the PC_Tree for table 1. Firstly, the root node is
created and it is considered that all Values can be as a
divisor for root node. Then PC_Tree construction
algorithm reads a Value from encoded file called Next
and calls the function Tree_construction. The function
Tree_construction is performed such that every child
node can divide its parent node for example node 165 is
a divisor for the parent node 330 and if the Next is equal
value of the current node then current node’s count is
increased by 1 like 462:2.

Fig 1. The PC_Tree for Table 1.

The PC_Tree has some nice properties as described

below:
Property 1: Nodes are arranged according to VTID
order, which is a fixed global ordering.
Property 2: The frequency of itemsets X registered in
node N is equal the sum all Count field of N-tree (sub
tree from root to N). For example frequency of itemset
X= {ACTW} or Value=462 is equal 1+2=3. As a good
result, there is no need to database scan for counting of
itemsets and its subset that registered in the PC_Tree.
Property 3: According to property 2, the frequency of
itemset X registered in node N is less than frequency of
itemset Y registered in node M where M is a child of N
in the PC_Tree.

Property 4: Given σ as minimum support and Y is a
child for X in the PC_Tree, If Count (Y) ≥ σ and Count
(X) < σ then Y is a Maximal Frequent itemset.

As showed in section 3.1, the output of the database
encoding phase is the encoded file includes all VTID for
0< TID < |D| where |D| is number of transactions.
Therefore in the worst case, maximum number of nodes
in the PC_Tree is |D|.

Let us introduce our PC_Miner algorithm and show
how it mines MFI. The PC_Miner utilizes gcd theory.
The greatest common divisor of two integers a and b,
not both zero, is the largest of the common divisors of a
and b; it is denoted gcd (a, b). For example, gcd (12, 16)
= 4, gcd (5, 11) =1, and gcd (0, 12) = 12. If a and b are
not both 0, then gcd(a, b) is an integer between 1 and
min(|a|, |b|) [7].

 The PC_Miner algorithm traverses the PC_Tree. It
prunes search space using the properties of the PC_Tree
and builds the gcd sets to find the MFI.

For example, Given the transaction database shown
in Table 1 which its PC_Tree shown in Fig 1 and let
σ=3. According to the PC_Tree properties and gcd set
used in PC_Miner algorithm, node 462:1+2 (or itemset
ACTW) and node 165:1+1+1 (or itemset CDW) will be
discovered as MFI.

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of our

method. All the experiments are performed on PC with
CPU Intel P4 2.8 GHz, 1 Gigabytes main memory, and
running Microsoft Windows XP. All the algorithms are
implemented using Microsoft Visual C++ 6.0.

In first experiment, the Synthetic data used in our
experiments are generated using IBM data generator
which has been used in most studies on frequent
itemsets mining. We generate five datasets with number
of items 1000, average transaction length 10 and number
of transaction 1000 to 10000 that called D1, D2, D4, D8,
and D10 respectively. In these experiments, our database
encoding technique shows good results that it can reduce
the size of these datasets more than half as shown in
Figure 2.

0
1
2
3
4
5
6
7

D1 D2 D4 D8 D10

S
iz

e
of

 d
at

as
et

 (1
00

 K
B

) Original
dataset

Encoded
File

Fig 2. The results of Database encoding technique

Most important result is, in our technique a prime

number is considered for each item independent of the
size of items. Obviously the size of items in real
transaction databases is bigger than the size of items in

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

benchmark datasets. It means our database encoding
technique can be more efficient for reducing the size of
real transaction database.

In second experiment, we show accuracy and
correctness of the PC_Miner. The test dataset
T10.I6.D10K is also generated synthetically by the IBM
data generator. Figure 3 shows the numbers of maximal
frequent itemsets discovered for the tests at varying
minimal supports on this dataset.

0

500

1000

1500

2000

2500

5% 4% 3% 2% 1%
Minimal support

N
um

be
rs

 o
f M

FI

Fig 3. Numbers of MFI for T10I6D10k

In third experiment, we compare the performance of

the PC_Miner algorithm with the Apriori algorithm. In
order to evaluate the effectiveness of our new algorithm,
we applied it as well as Apriori to four IBM dataset
generated in experiment 1. Figure 4 shows the
performance of two algorithms as a function of the
numbers of transactions.

As shown in Figure 4, when number of transaction is
less than 5000 Apriori slightly outperforms the
PC_Miner in execution time. When the numbers of
transactions are increased, the execution time of Apriori
degraded as compared to the PC_Miner.

0
1
2
3
4
5
6
7
8

D1 D2 D4 D8 D10E
xe

cu
tio

n
Ti

m
e

(1
00

0
se

c) Apriori

PC_Miner

Fig 3. Performance of PC_Miner vs. Apriori

V. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a new method to discover

maximal frequent itemsets efficiently. Our method
introduces an efficient database encoding technique, a
tree structure called Prime-based encoded and
Compressed Tree or PC_Tree and also PC_Miner
algorithm. The experiments showed the database
encoding technique can reduce the size of transaction
database more than half and it can enhance the
performance of mining algorithms. And also we showed

that our PC_Miner algorithm can discover all MFI using
this encoding technique.

Here have been considered some direction as future
works. The first, using the optimal data structures, better
memory management and pruning method to enhance
the efficiency of our method. Then, it can be extended to
generate the frequent itemsets. Finally, It will be
improved by a new matrix structure which keeps all
information about current frequent itemsets for
incremental mining of frequent itemsets in dynamic
databases where transaction database is updated or
minimum support threshold can be changed [11].

REFERENCES
[1] R. C. Agarwal, C. C. Aggarwal, and V. V. V. Prasad, "Depth

first generation of long patterns," Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and
data mining, pp. 108-118, 2000.

[2] R. Agrawal and R. Srikant, "Fast algorithms for mining
association rules," Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, vol. 1215, pp. 487499, 1994.

[3] S. Bashir and A. R. Baig, "HybridMiner: Mining Maximal
Frequent Itemsets Using Hybrid Database Representation
Approach," 9th International Multitopic Conference, IEEE
INMIC 2005, pp. 1-7, 2005.

[4] R. J. Bayardo Jr, "Efficiently mining long patterns from
databases," Proceedings of the 1998 ACM SIGMOD
international conference on Management of data, pp. 85-93,
1998.

[5] D. Burdick, M. Calimlim, and J. Gehrke, "Mafia: A maximal
frequent itemset algorithm for transactional databases,"
Proceedings of the 17th International Conference on Data
Engineering, pp. 443-452, 2001.

[6] F. Chen and M. Li, "A Two-Way Hybrid Algorithm for
Maximal Frequent Itemsets Mining," Fuzzy Systems and
Knowledge Discovery, 2007. FSKD 2007. Fourth International
Conference on, vol. 3, 2007.

[7] T. T. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
algorithms: MIT Press Cambridge, MA, USA, 1990.

[8] J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent pattern
mining: current status and future directions," Data Mining and
Knowledge Discovery, vol. 15, pp. 55-86, 2007.

[9] D. I. Lin and Z. M. Kedem, "Pincer-Search: A New Algorithm
for Discovering the Maximum Frequent Set," Advances in
Database Technology--EDBT'98: 6th International Conference
on Extending Database Technology, Valencia, Spain, March 23-
27, 1998: Proceedings, 1998.

[10] N. Mustapha, M. N. Sulaiman, M. Othman, and M. H. Selamat,
"FAST DISCOVERY OF LONG PATTERNS FOR
ASSOCIATION RULES," International Journal of Computer
Mathematics, vol. 80, pp. 967-976, 2003.

[11] M. Nadimi-Shahraki, N. Mustapha, M. N. Sulaiman, and A.
Mamat, "Incremental updating of frequent pattern: basic
algorithms," Proceedings of the second International
Conference on Information Systems Technology and
Management (ICISTM 08), pp. 145-148, 2008.

[12] M. J. Zaki, "Scalable algorithms for association mining,"
Knowledge and Data Engineering, IEEE Transactions on, vol.
12, pp. 372-390, 2000.

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008

	INTRODUCTION
	Preliminaries and Related Work
	The Proposed Method
	The Database Encoding
	The PC_Tree & PC_Miner Algorithms

	Experimental Results
	Conclusion and Future Works

