
 
 

 

  
Abstract— The convergence speed of the standard Least Mean 
Square adaptive array may be degraded in mobile 
communication environments. Different conventional variable 
step size LMS algorithms were proposed to enhance the 
convergence speed while maintaining low steady state error. In 
this paper, a new variable step LMS algorithm using the 
accumulated instantaneous error concept is proposed. 
 
In the proposed algorithm, the accumulated instantaneous 
error is used to update the step size parameter of standard 
LMS is varied.  
 
Simulation results show that the proposed algorithm is simpler 
and yields better performance than conventional variable step 
LMS.     
 

Index Terms—Adaptive filters, adaptive array, variable step 
LMS, moving object tracking. 
 

I. INTRODUCTION 
  Adaptive beam former play an important rule in radar, 

sonar, speech processing and, more recently, in mobile 
wireless communications. It is desired to have a fast 
convergent adaptive antenna with good tracking capabilities 
of desired and interfering signals. This is to improve the user 
capacity for the base stations and the mobile handset in 
wireless communication system. Potential performance 
improvements for including interference reduction ,of 
moving sources, through adaptive beam forming motivates 
the development of fast convergent LMS algorithm. 
 
As one may know, standard LMS is the most likely 
searching adaptive algorithm due to its simplicity, stability 
and performance prosperities. As a result many LMS based 
algorithms have been developed aiming to improve the 
convergence characteristics of the standard LMS. In the 
standard LMS, the step size is fixed and the filter weights 
are updated according to: 
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It can be shown that the value of the step size parameter is 

fixed and governed by: 
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Where maxλ  is the maximum eigenvalue of the underlying 
correlation matrix R. 
 
   The standard LMS was simple, both in the number of 
calculations required for its update and its derivation from 
the method of steepest descent. Moreover it was robust in a 
number of applications. The adaptive feedback constant µ in 
the LMS controls the convergence rate of the filter 
coefficients, in addition to determination of the final excess 
error. 
 
   Since the convergence time is inversely proportional to µ, 
a large µ for fast convergence in tracking applications is 
always selected. However, large step size will result in 
increased misadjust met. 

 
Hence, a set of LMS based algorithms known as variable 

step size algorithms were proposed to overcome this 
problem. In these algorithms the step size of the LMS is 
varied using different approaches. Among these variable 
step size LMS algorithms are the convex combinations of 
adaptive  filters. 

 
Recently, in H. Sayed and others CONVEX 

COMBINATIONS OF ADAPTIVE FILTERS, they used 
two independent filters with large and small step size. In 
their approach they used a mixing parameter to scale the 
output of both filters in order to combine advantages of both 
filters. The draw back of this algorithm is that they used two 
filters working in parallel. Moreover the MSE the switch 
over from the high step size to the small step size MSE in 
non smooth way. In their approach, the output of the filter is 
given by: 

 

              (3) 
  
Where   and  are the outputs of two 

transversal filters at time n. The idea is that if is 
assigned appropriate values at each iteration, then the above 
combination will extract the best properties of filters   
and . 

 
This algorithm, however, introduce computational 

complexity as two different filters are used. Moreover, the 
mixing parameter, namely λ, is a function of the mean 
square error what means more filters need to work in 
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parallel to produce the mean value. In addition, the MSE 
does not converge smoothly to its final steady state value. 

 
In this page, a new algorithm called accumulated 

instantaneous error driven LMS or AIED LMS is introduced 
which is utilizing the accumulated instantaneous error  to 
control the step size µ. The way in which µ is changing 
depends only on the accumulated error. The advantage of 
using accumulated instantaneous error is that less 
complexity as only one filter is required. In addition,  the 
transition from larger step size into smaller one is taking 
place smoothly, as  will be seen from the results. 

 
The AIED LMs provides good convergence 

characteristics with less complexity. It out performs 
standard LMS as well as convex combinations filters. The 
final section of this paper show simulation results for 
application of the algorithm in beam former. 

 

II. THE AIED LMS ALGORITHM 
The step size influences two important parameters, 

namely the MMSE (steady state behavior) and the 
convergence speed (transient behavior). As we have seen the 
step size is directly proportional to the convergence speed. 
However it is inversely proportional to the MMSE. What 
makes the compromise process difficult. 

To overcome this problem, one can start with large step 
size, to enhance the convergence speed, and gradually (in 
jumping steps) reduce it to attain its minimum value, to 
achieve desirable MMSE. One should note that the step size 
should vary within the stability boundaries. 

The way in which the step size is varied is very important. 
To achieve best performance the step size should jump to 
the next, smaller step, at the right moment. Having these 
jumps at the right moments will make the MSE converge 
smoothly and fast to the MMSE value. So the key factor for 
achieving this behavior is in the approach of selecting the 
break point for the MSE curve. By the break point we mean 
the point at which the MSE curve starts converging to its 
steady state, specifically the end of the transient portion of 
the curve as one can see from figure 1. 

 
Smaller step size will result in a curve having its break 

point shifted from that of the larger step size, as one can see 
from the figure 1 above. So one can start with large step 
sizes and change over to the next, predetermined, step size 
at the instant when the MSE curve start bending (break 
point). 

 
Unfortunately doing the transition manually is not 

practical way of doing the transition from one step size to 
another. The MSE gradient is a good measure for the break 
point. Actually the gradient will be close to zero as the curve 
starts converging to the steady state values. Moreover the 
MSE is decreasing function of time and it fluctuates highly, 
due to the stochastic nature of the adaptive filter. Smoother 
MSE can be achieved but it needs ensemble averaging and 
as a result more complexity as parallel filters are required.   

 
 

 
 

 
Fig. 1 MSE for 6 Elements Linear Array for Different Step 
Size Values 

 
 

 
Fig. 2 AIE for 6 Elements Linear Array for fixed stp size 

 
 

To overcome this problem we used the accumulated 
instantaneous error curve to identify the break point for 
smooth transition. The accumulated instantaneous means 
square error, abbreviated AISE here after, is always 
increasing function of time with minimum fluctuation as one 
can see from figure 2.  
 

It can bee seen easily that the AISE curve behave in more 
tidy way than the MSE. It evolves smoothly with small 
fluctuation to its steady state value. One can differentiate 
between two main segments of the AISE curve. The first 
portion is the curved line where the gradient of the SISE 
starts from high values and converge to fixed steady state 
value. The other segment of the curve is linear at which the 
derivative is fixed. It is easier to manipulate the AISE than 
the standard MSE. This is due to the fact that the AISE has 
definite break point which can be identified easily. Actually 
the break point is the point where the curve takes its linear 
behavior as reflected from figure 2. 
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Fig. 3 Prediction Error of AISE for 6 Elements Linear Array 

 
 
To specify this break point we used a predictor. The 

predictor is a good tool for differentiating between curved 
and linear portions of the same curve. This is due to the fact 
that the prediction error will almost zero when the predictor 
work in the linear segment of the curve. The prediction error 
for the predictor is shown in figure 3. This figure shows that 
the prediction error for the AISE is even better to use to 
identify the break point for the transition from one step size 
to another smaller one. Actually the prediction error curve 
has two main linear segments with clear easy to find break 
point. 

 
This break point can be identified by introducing a 

threshold such that when the prediction error decrease 
behind this threshold the algorithm will automatically 
transfer to the next smaller step size. A mathematical 
interpretation for the approach will be presented in the next 
few paragraphs. 
 

III. MATHEMATICAL FORMULATION 

The optimum filter weight vector  optw  , Wiener optimum 

vector, is given by: 

xrxxoptMMSE rRww 1−==
                                                 

(4)                                                                      
Where R is the input correlation matrix and r is the cross 

correlation vector between the desired response and the 
filter input signal. Let the difference between the filter 
weight at time n and the optimal filter weight be given by: 

   optnn wwv −=
                                                           

(5)  Then it can be shown that: 

nn vRIv )2(1 μ−=+                                 (6) 
Since R is positive definite, it has positive eignvalues. As 

a result it can be decomposed into an orthogonal matrix Q 
and an eigenvalue matrix Λ as follows: 

QQR T Λ=                                           (7) 
Where  

),...,,( 110 −=Λ Mdiagonal λλλ               (8)      

Where  mλ  is the  mth  eigenvalue of R. Using equations 
above, it can be shown that the above equation can be 
written as: 

0
' )2( vIv n
n Λ−= μ                                (9) 

Where 
'
nv  is a rotated version of  kv  by Q.A beam 

former satisfying this equation is stable and convergent 
provided that the step size is with in boundaries given 
below: 

max
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Where maxλ  is the largest eigenvalue of the correlation 
matrix R. 

The accumulated instantaneous mean squared error is the 
summation of individual instantaneous squared error values 
for different time instants. The AISE is given by: 
 

2
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The above function is an increasing function of i. The 

function has an interesting characteristic over the MSE 
function. It can bee seen easily that the AISE curve behave 
in more tidy way than the MSE. It evolves smoothly with 
small fluctuation to its steady state value. One can 
differentiate between two main segments of the AISE curve. 
The first portion is the curved line where the gradient of the 
SISE starts from high values and converge to fixed steady 
state value. The other segment of the curve is linear at which 
the derivative is fixed. 
 

It is easier to manipulate the AISE than the standard 
MSE. This is due to the fact that the AISE has definite break 
pint which can be identified easily. Actually the break point 
is the point where the curve takes its linear behavior as 
reflected from figure 4 above. 

To specify this break point we used a predictor. The 
predictor is a good tool for differentiating between curved 
and linear portions of the same curve. This is due to the fact 
that the prediction error will almost be zero when the 
predictor works in the linear segment of the curve. The 
prediction error for the predictor is shown in figure 3. 
 

The predictor is an LMS filter in its own and has a pre 
determined order. The order of the predictor should be 
selected carefully to fit the job perfectly. It is better to keep 
the order as small as possible to improve the convergence 
proprieties having maximum of three taps.   

 
In the proposed STVS-LMS algorithm, at every iteration 

time the prediction error, of the AISE predictor, is compared 
to a predetermined threshold. If the error is less than the 
threshold, the step size is changed to a smaller one. The 
process will proceed until the minimum step size is 
achieved. The proposed STVS-LMS is summarized below: 
 
Proposed STVS_LMS Algorithm 

a. Initialization  
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i. Decide order of the beam former M  

ii.  Decide initial step size nμ  for  n=1, the step size 

decrement and  

boundaries 

iii.   Decide the length ( pM ) of the predictor and its 

step size ( pμ ) 

iv.   Decide N, adoption course iteration numbers 

v.   Decide the threshold for the smooth transition 

b.  For n=1,2,3,…..N 

i. Find instantaneous squared error, 

n
H

nnn XWde −=  

ii. Find accumulated instantaneous squared error,  
2

1 ))(()( nenAISM n
i=∑=  

iii. Find prediction error for the AISM (PEAISM) 

iv. If  PEAISM is less than threshold decrement the 

step size  

v. Find new step size 

vi. n
H

nnn XWde −=  

vii. nnnnn XeWW μ+=+1  

IV. SIMULATION RESULTS AND DISCUSSION 
The simulated results for linear array will be presented in 

this section. The array parameters, inter-element separation 
and number of elements, will be fixed during the beam 
forming adoption course except for complex weights, 
amplitude and phase, of individual elements. The number of 
elements will be six and the inter-element separation will be 
fixed at λ5.0=dx , where lambda is the wave length of the 
operating frequency. 

 
The proposed AIED-LMS algorithm is used to drive/steer 

the linear beam formers. The algorithm parameters will be 
determined for each scenario. These parameters include the 
step size decrement, predictor order, predictor step size, 
threshold among others will be given as the initialization 
parameters for the algorithm at the beginning of the 
adoption course.  

 
In each scenario the number of interferers, co-channel 

interference, will be varied. Usually the number of 
interferers will be below that of the antenna/beam-former 
elements. The direction of arrival of different interferers and 
target will be varied too. Moreover different combination of 
target signal to interference and desired signal to noise ratios 
are applied to different scenarios.  

 
The performance of the beam former and as a result the 

algorithm driving it will be tested for these scenarios with 

many variables. Specifically the speed of convergence of the 
steering process for the main beam as well as nulls will be 
illustrated by performance measuring indices. These 
performance indices are mainly the mean square error and 
the array factor.  Accumulated error and weight’s magnitude 
will be used when required.  

 
In the simulation, a binary phased shift keying (BPSK) 

modulation scheme with a unit energy pulse was employed. 
The channel is assumed to be an AWGN channel. All 
displayed results have been averaged over two hundred 
independent runs. 

 
In what follows, the proposed AIED algorithm 

performance will be highlighted in view of the below 
scenario. Simulation was run for a six elements linear array 
with inter-elements separation of half wave length. The 
channel is AWGN with SNR ratio of 10 dB and 0dB SIR. 
Both the desired and unwanted interferers are binary phase 
shift keying (BPSK) modulated with unity power. The angle 
of arrival for the desired signal is 0=iθ , while that of the 

unwanted interferer is located at 35=iθ . The standard 

LMS was run for two different values of step size, μ , 
which are .008 and .001. On the other hand a value which 
between 0.008 to .001 was selected for the AIED-LMS 
algorithms. The experiment has been run a two hundred 
independent times. 

 
At first it is important to see how the AIED-LMS out 

performs standard LMS as well as Convex Combinations in 
null steering capabilities. Figure 4 shows the MSE for 
AIED-LMS and that of the standard LMS for different step 
size values. As one can see the STVS converge faster with 
minimum steady state error. Actually the proposed 
algorithms combine convergence speed characteristics of 
LMS with large step size and at the same time steady state 
characteristics of the small step size LMS.  

 
Similarly figure 5 shows the convex combinations versus 

the standard LMS for the same scenario. Comparing both 
figures one can easily see that AIED-LMS out performs 
both standard LMS as well as Convex Combinations. It 
converges fast and smoothly to its steady state values 

V. CONCLUSION 
The LMs is a simple and robust adaptive algorithm and 

has been used in variety of applications. Recently, more 
advance versions of the LMS have given significant 
improvements in convergence prosperities. However these 
algorithms introduced complexity to meet a satisfactory 
performance. A new algorithm, the AIED LMS, introduced 
the concept of accumulated instantaneous error to control 
the step size parameter.  

Based on simulation results for adaptive beam former, it 
is apparent that the AIED LMS is fast convergent algorithm 
and outperforms both standard as well as convex LMS 
algorithms. This can be seen easily form figures 4 & 5 
Moreover the structure of the AIED is les complex than that 
of convex where only one filter is required.  
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Fig. 4 AIED versus LMS (µ=.001 and µ=.008) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Convex combination versus LMS (µ=.001 and   
µ=.008) 
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