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Abstract—Recently, various

assumptions (e.g. GAP assumptions).

efficient and highly secure encryption scheme.

In this paper, we will describe a new generic con-
struction that converts a one-way secure KEM to an
Having no
restriction for the application field of the KEM, our
construction yields to a wider class of hybrid encryp-
The resulting hybrid scheme is more
efficient than the Fujisaki-Okamoto construction in
terms of the number of the hash functions and the
Besides, the ci-
phertext size is shorter than REACT. We also show
an application of our construction on bilinear pair-

efficient IND-CCA secure PKE scheme.

tion schemes.

tightness of the security reduction.

ings.
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1 Introduction

In order to encrypt arbitrary long messages, hybrid en-
cryption schemes are devised which consist of two inde-
The first layer is called as the public
key layer where simply Public Key Encryption (PKE)
is performed to generate a uniformly distributed shared
key and the corresponding ciphertext for that key. This
construction could be considered as a simpler form of an
encryption scheme and is defined as Key Encapsulation
Mechanism (KEM). The second layer uses the shared key
to encrypt the actual message via symmetric key encryp-
tion and this operation performed on the symmetric layer
is called as Data Encapsulation Mechanism (DEM). It is
required that the key space of the KEM is the same as
the key space of the DEM. This two-layered approach is
proposed in the work of Shoup and it is referred in the
literateur as KEM/DEM framework. In recent years, a
number of generic constructions of KEMs have been in-
troduced, some of which do not fit Shoup’s framework.
Generally, KEMs that are secure in a strong sense are
obtained from standard PKE schemes, which only need

pendent layers.
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hybrid encryption
schemes have been proposed, which could be consid-
ered based on one-way or OW-PCA secure KEMs.
However, OW-PCA secure KEMs require the secu-
rity of the encryption scheme to be based on stronger
Hence, it is
more advantagous to construct a generic conversion
which can adapt to all type of KEMs resulting in an

to be weakly secure.

Apart from the advantages in message sizes and effi-
ciency, KEM/DEM framework provides the highest se-
curity level for the hybrid encryption scheme, namely In-
distinguishability under Chosen Ciphertext Attack (IND-
CCA). Clearly, this could be achieved by combining an
IND-CCA secure KEM with an IND-CCA secure DEM,
however there are efficient IND-CCA secure hybrid en-
cryption schemes, where the underlying KEM is not IND-
CCA secure as in the case of Kurosawa-Desmedt hybrid
scheme. Besides, Baek et al described two conversions
from a weakly secure KEM to IND-CCA secure encryp-
tion scheme in the random oracle model. Here, the KEM
is based on the security of One-Wayness against Plain-
text Checking Attack (OW-PCA), which is a stronger
condition than one-wayness, where the special plaintext
checking oracle is not required. Hence, it is more advan-
tagous to construct a generic conversion which can adapt
to all type of KEMs resulting in an efficient and highly
secure hybrid encryption scheme. In this point of view,
we aim to introduce a new generic construction based on
a one-way KEM and obtain an efficient and IND-CCA
secure PKE scheme.

1.1 Related Work

The first KEM/DEM framework originated in the work
of Shoup [10], who described different type of KEMs and
DEMSs, both satisfying the IND-CCA security. Kuro-
sawa et al presented the notion of a Tag-KEM, which
is the generalization of a KEM and developed the Tag-
KEM/DEM framework [2]. The Tag-KEMs are obtained
either from PKEs or from KEMs and in [2], hybrid
encryption schemes based on Fujisaki-Okamoto conver-
sion [7], Bellare-Rogaway Scheme [4] and REACT [8] are
described. Besides, Baek et al defined two different trans-
formations that convert any OW-PCA KEM into an PKE
scheme secure in the sense of IND-CCA in random oracle
model [3]. Their constructions are related to the schemes
REACT and DHIES [1] and they prove that if the under-
lying KEM is not OW-PCA secure, REACT and DHIES
are not IND-CCA secure. OW-PCA security of these hy-
brid schemes generally reduces to a GAP problem, which
is a weaker problem than a computational problem since
a GAP problem is solving a computational problem by
accessing the corresponding decisional oracle. At last,
Bentahar et al extend the concept of KEM to the setting
of Identity Based and Certificateless Encryption [5].
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1.2 Owur Contribution

We will describe a new generic construction that con-
verts a one-way secure KEM to an efficient IND-CCA
secure PKE scheme. Hence, our scheme converts a very
weak primitive to an asymmetric encryption scheme that
is highly secure in the random oracle model. As a warm
up, we will extend the Bellare Rogaway’s generic con-
struction, which applies to any trapdoor one-way permu-
tation f. However, this first attempt results in a mal-
leable scheme when the hash functions are replaced by
a real function such as SHA. Hence, with a simple mod-
ification, we obtain an IND-CCA secure hybrid encryp-
tion scheme without increasing the ciphertext length and
with a tighter security reduction than Fujisaki-Okamoto
transformation. Our construction requires one less hash
function than Fujisaki-Okamoto transformation and has
a shorter ciphertext compared to a KEM-based encryp-
tion scheme that employs REACT. Finally, we require the
KEM to be one-way secure thus, having no restriction for
the application field of the KEM, our construction yields
to a wider class of hybrid schemes.

We show also an application of our construction on the
Sakai Kasahara Key Construction, which uses bilinear
pairings.

1.3 Outline of the Paper

In section 2, we will state the definitions of KEM, DEM
and PKE together with the security notions associated
to them. Next, we present the new construction together
with an application in section 3 and give the security
proof. Finally, we conclude our proposals in section 4.

2 Definitions and Building Blocks

In order to introduce the new definitions and security no-
tions, at first, we give some notations and conventions.
Given a set S, z < S defines the assignment of a uni-
formly distributed random element from the set S to the
variable x. S, and M represents the random coin space
and the message space. A function e(k) is defined as
negligible for any constant ¢ and k > ko, if there exists
ko € N such that € < (1/k)°.

2.1 Key Encapsulation Mechanism (KEM)

In Shoup’s model, a KEM consists of three algorithms:
Key generation, encryption and decryption algorithms.
The formal definition of the KEM is as follows:

e Key Generation Algorithm Keygen(l): A probabilis-
tic algorithm that takes a security parameter [ € N
and generates a public and a secret key pair (pk, sk).

e Key Encryption Algorithm Enc{ka M(r): A deter-

ministic algorithm that takes as input the recipient’s
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public key pk and a random string r € S,., outputs a
pair (k, c), where k € Sy is a random session key and
c is the encapsulation of k. The key space is defined
as Si, which is the key space of the DEM.

KEM(c): The de-

e Key Decryption Algorithm Decy;
cryption algorithm that recovers k from c.

For soundness, we require that for any (¢, k) that are
generated by EnckaM(r), DecBFM (c) = k must hold.

A one-way secure KEM requires that the adversary can-
not recover the random session key k from the ciphertext
¢ with non-negligible probability. The formal definition
is as follows.

Definition 1 (One-Wayness (OW)):

Given a KEM = (Keygen(l),EncﬁEM(r),DecggEM(c))
and a probabilistic polynomial time adversary A in the
following experiment:

Experiment OW(l, KEM, A)
(pk, sk) «— Keygen(l)

(k,c) « EncﬁEM(T)

k' — A(pk,c)

If ¥ = k return 1

else return 0

The success of the attacker A with running time ¢ in
breaking the one-wayness of KEM is defined as

SuccQ gy = PrlOW (I, KEM, A)=1]

Remark 2.1. Baek et al defined the security notion
OW-PCA for a KEM with a stronger requirement, which
means that an attacker breaks the ome-wayness of the
KEM by accessing a Plaintext Checking (PC) oracle that
decides on input of a pair of (k,c) whether c encrypts
k. The definition of this security notion is given in Ap-
pendix. In our paper, the new generic construction does
not require the KEM to be OW-PCA.

2.2 Data Encapsulation Mechanism (DEM)

In hybrid encryption, a KEM is combined with a DEM,
which is a symmetric encryption scheme. A DEM con-
sists of two algorithms; Enc(k,m) and Dec(k, c), where
k € S and m € M, which are defined by the security
parameter [ of the KEM. In our generic construction we
will implement the DEM by a one-time pad, where the
DEM only needs to be IND-CPA secure and the resulting
PKE scheme will be secure against IND-CCA.

2.3 Public Key Encryption (PKE)

A PKE scheme consists of three algorithms: Key gen-
eration, encryption and decryption algorithms that are
defined as follows:
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e Key Generation Algorithm Keygen(l): A probabilis-
tic algorithm that takes a security parameter [ € N
and generates a public and a secret key pair (pk, sk).

e Encryption Algorithm Encrypt;:kKE (m): A proba-
bilistic encryption algorithm that takes as input the
recipient’s public key pk and a message m € M and

encrypts the message into the ciphertext C.

e Decryption Algorithm DecryptbEE(C):

cryption algorithm that recovers m from C.

For soundness, DecryptbEP(C) = m must hold given
any ((pk, sk), m) that are generated by the above func-

tions.

For the PKE scheme we require the highest level of se-
curity, namely IND-CCA, where the adversary cannot
extract one bit of information about the message from
the ciphertext. In this security notion, the attacker has
access to the decryption oracle O except for the query on
the challenge. Basically, a decryption oracle is an oracle
decrypting ciphertexts for an adversary. Clearly, PC ora-
cle remains weaker than a decryption oracle because it is
generally easier to check the solution of a problem than
to compute it. The formal definition of this notion is as

follows.

Definition 2 (IND-CCA):

Given a PKE scheme and a probabilistic polynomial time

adversary A=(A41, A3) in the following experiment:

Experiment IND-CCA(l, PKE, A)

(pk, sk) — Keygen(l)

(mo, my, s) «— AP (pk) with |mg| = |m]|
b<0,1;

c— EncryptkaE(mb)

b — A9(C, s)

If ¥ =breturn 1

else return 0

The advantage of the attacker A with running time ¢ is

defined as

Ad NS = |Pr =] - 4

Hence, a PKE scheme is IND-CCA secure if the advan-
tage of A is negligible in the security parameter . Here,

s is a state information.

3 A New Generic Construction

In this section, we present a new generic construction
based on a one-way KEM and obtain an IND-CCA secure
PKE scheme. For this purpose, we start by extending the
Bellare Rogaway’s generic construction for a KEM that
we call as Conversion P1. Next, we will modify P1 to
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The de-

overcome the disadvantages of P1 and obtain an efficient
and non-malleable hybrid encryption scheme.

Conversion P1: In [2], Kurosawa et al present a hy-
brid encryption scheme in the Tag-KEM/DEM frame-
work by modifying the Bellare-Rogaway generic construc-
tion. However, their scheme does not change the encryp-
tion function of Bellare and Rogaway’s scheme, which
consists of a one-way permutation f and two random or-
acles H and G.

More specifically, a ciphertext C' of Bellare and Rog-
away’s scheme has the following form:

C = (c1,¢c2,¢3) = (f(r),G(r) ©m, H(r||m))

In this scheme, when one-time pad is generalized to any
one-time secure DEM and the tag c3 = H(r||m) is modi-
fied to H(r||c2), one obtains the construction in [2]. Here,
the session key of the DEM is G(r), which is computed by
applying the secret key to ci, namely f~! and obtaining
the random element r.

Our first generic construction P1 also uses two hash func-
tions but the random session key and its ciphertext is
computed differently. In our new construction P1, which
takes as input any OW-PCA KEM and turns it to a
IND-CCA secure encryption scheme in the random ora-
cle model, we need two hash functions H and Hj, where
Hy : S — {0,1}™ and Hj : {0,1}* — {0,1}*1. Here,
n is the bit-length of the plaintext and ki is a security
parameter. Specifically,

e Key Generation Algorithm Keygen(l): A probabilis-
tic algorithm that takes a security parameter [ € N
and generates a public and a secret key pair (pk, sk).

e Encryption Algorithm EncryptngE (m): This al-
gorithm first runs the key encryption algorithm
EnckaM(r) of the KEM and outputs the pair (¢, k),
where k is the random session key and c is the en-
capsulation of k. Next, the message m is encrypted
using the DEM, which is one-time pad for our con-
struction. The DEM outputs co = m® H(k) and to
provide non-malleability, an additional component
of c3 = Hs(m,k) is used. Here, k is the shared
key computed by the KEM. Finally, the ciphertext
C = (c1,¢2,¢3) = (e,m & Ha(k), H3(m,k)) is the
output of the EncryptngE (m).

e Decryption Algorithm DecryptiX¥(C): The de-
cryption algorithm recovers m from C' first by ap-
plying the secret key sk to c¢; to obtain k’. Next,
Hs (k') is computed and xored with co. Finally, it is
checked whether Hz(m/, k') = c3. If they are equal,
m' is returned, otherwise C' is rejected.
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The difference between the first construction P1 and the KEM is run and compared to ¢;. If they are equal,
construction in [2] is that, when the secret key is applied m/' is returned, otherwise C' is rejected.

to ¢1, namely to the encapsulation of the session key k,
we do not fully invert the KEM and obtain the random
element r as in [2], but only compute the random key k.

Theorem 3.1. Suppose there exists an adversary A
which distinguishes P2 within a time bound T4 and with
advantage € in less than qm,, qu, and qp random or-
The construction PI is based on a OW-PCA secure acle calls. Then there exists an algorithm R which in-
KEM and can be proven IND-CCA secure in the ran- wverts KEM with probability ¢ > qHz?:qu — 2% and in
dom oracle model with a tlght reduction cost. How- time Tp < Ta + qDqH;O0, where o is the time to compute
ever, this could only be achieved for the encryption of EncK EM (r).

fixed length messages since P! can be proven insecure
for some instantiations of the hash function such as SHA,
which is an iterative hash function. More specifically,
if the hash function Hs is instantiated with SHA as
Hs(m,k) = SHA(1||k||m) and the hash function Hs(m)
is instantiated as Hao(k) = SHA(0||k), one can easily
construct the encryption of m||m’ by using the cipher-
text (C = c1,m & SHA(0||k), SHA(1||k||m)) that was
obtained previously by the adversary.

Proof. Given the PKE scheme P2 = (Keygen(l),
Encrypt[KFE (m), DecryptHFF(C)), the goal of the re-
duction algorithm R is to invert the KEM given (pk, c¢*)
and obtain k*. During this procedure, the reduction will
use the adversary A who tries to distinguish the encryp-
tion Cg = (c*,mg @ h5,h3) given by the algorithm R
where h3 and hj are picked at random from the ranges
of Hy and Hs by R. The proof is as follows:

3.1 Modified Generic Construction: P2

1. The algorithm R is given pk as the public key and
c* as the challenge ciphertext of the KEM, who will
recover the shared key k* using the adversary A.

To overcome the message size limitation of the construc-
tion P1, we present a modification of P1, which we define
as P2. This new construction takes as input any one-way

KEM and results in an IND-CCA secure hybrid encryp- 2. R returns A (pk, Hs, Hs) as the public parameters of

tion SCheme in the random Oracle mOdel. Since the secu- P2 and simulates the Challenger for A by answering
rity assumption on the KEM is changed to one-wayness, the random oracle and decryption queries of A. Here
there is no need for a PC oracle resulting in a construc- H,, H3 are random oracles controlled by R

tion that is applicable for a wider class of primitives. The

ciphertext size does not increase and the only additional 3. Hz-queries: On each new input k, R picks a random

operation is an xoring. Specifically, ho € {0,1}", returns that value to A and inserts the
tuple (k, ha) to the H;List.

¢ Key Generation Algorithm Keygen(l): A probabilis- 4. Hs-queries: On each new input (k,m), R picks a

tic algorithm that takes a security parameter [ € N random hs € {0,1}", returns that value to A and
and generates a public and a secret key pair (pk, sk). inserts the tuple (k,m, hs) to the HsList.

e Encryption Algorithm Encrypt!hKF(m): This algo- 5. Decryption queries: On each new input (c1, ¢z, c3),
rithm first runs the probabilistic key encryption al-
gorithm EncliPM(r) of the KEM and outputs the e R computes for each entry (ki,m;,hs;) in the
pair (c, k), where k is the random session key and HjList the value r; = hg; @ cs.
¢ is the encapsulation of k. Next, the message e For each r;, R checks whether KEM(r;) =
m is encrypted as ca = m @& Ha(k) and to pro- (c1,k;). If not, R returns reject.

vide non-malleability, an additional component of

= r & Hz(m, k). Here, r is the random string
that is used by the EnclFM(r) algorithm of the
KEM and the range of H3 is the group that the ran-
dom element r is selected from. Namely, r € S,

and Hs : {0,1}* — S,. Finally, the ciphertext . Challenge: Using the value c*, R generates the chal-

e Otherwise, R computes Ha(k;) using the sim-
ulation of Hs as above and checks whether
m; ® Ha(k;) = co. If not, R returns reject, else
R returns m;.

C = (a1,c2,¢3) = (¢, m @ Ha(k),r & Hs(m, k)) is lenge ciphertext for A as follows:
the output of the EncryptngE(m).

e Upon receiving the equal length messages

e Decryption Algorithm DecrypthKF(C):  The de- (mg,m1), R chooses at random 3 € {O 1}.

cryption algorithm recovers m’ from C first by ap- . ik o 1k £ an o
plying the secret key sk to c¢; to obtain k’. Sec- ?Opﬁl;: at }leuuzl*u "2 e ;L3 ug Hs ( o k‘n;u
ondly, Ha(k") is computed and xored with ca. Next, WHERE b TCDTesents ¥ e
Hs(m', k') is computed and xored with ¢z to obtain * R generates the challenge ciphertext as
the random element 7. Finally, Encli”™ (') of the C = (c",mp @ h3, h3).
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7. R answers A’s random oracle and decryption queries
as before.

8. A outputs its guess 3. R will pick at random an
entry from [HzList V HsList] and returns the & to
the challenger.

3.2 Security Analysis

When we analyze the simulation of the random oracles,
the answers to the random oracles queries are uniformly
distributed. The simulation of the decryption oracle is
nearly perfect but there are cases when a valid cipher-
tect C = (e, ¢, c3) is rejected if the corresponding tuple
(m, k) has not been queried to the oracle Hs since the
computation of r depends on the tuples listed in HgList.
Consequently, the adversary needs either to guess a right
value for the output of H3 without querying Hs and for
r at the same time, in other words, he needs to guess a
correct value for c3. And the probability that A guesses
a correct value for c3 is only ﬁ Here k; is a security
parameter such that ¢ > 2% and ¢ is the order of the
group S, which is the range of Hs.

Let H be the event that algorithm A issues a query for
Hy(k*) or H3(m, k*), namely k* appears in some tuple on
the [HoList V HsList]. Due to the above written facts,
Pr[H] is equal in both the real and simulated attacks,
even in the case when A does not issue a query for k*.
The decryption of the challenge is independent of A’s
view since Hs(k*) or Hz(m, k*) are independent of A’ s
view.

Besides, Pr[H] > 2¢ due to the following facts:
By the definition of A = |Pr[3 = ]—1| > ¢ *

If k* ¢ [HoList V HsList] = Pr(8 = §'|-H] = §

Pr(8 = @] = Pr(8 = B'|H]Pr[H] + Pr(8 = §'| -H|Pr[-H|
< Pr[H] + Pr[3 = §'|~H|Pr[-H]
= Pr[H] + iPr[-H] =} + L Pr[H]
Pr(3=p'] > Pr[8 = §'|~H|Pr[-~H]=3% — 3 Pr[H]
5~ yPrlH) < Prig =) < }
= —3PriH] < Pr(f=p] -3
= [Pr[8 = B']—3| < 3Pr(H] (**)
Combining (*) and (**), we obtain

e <|Pri3 =@ - L < LPr[H] = PrlH] > 2

This result shows that the correct session key k* takes
place in the union list with probability at least 2¢. Since
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at the end of the simulation, a random tuple from the
union list is selected, the probability that this tuple is the
correct answer is at least 2¢ due to the qm, + qm,

qHo+qHg
total entries in the union list. When the total number
of hash queries are taken as equal qr, = g, = qm , the
correct session key k* is in the union list with probability

at least <.
qH

Claim: The view of A in the simulation is identical to
the view in the real attack, if A does not correctly guess
the value of c3. One can define the event Guesscs as
A’s correctly guessing the value of c3, which occurs with
probability 52;. This event results in a linear term that
is subtracted from the final result. Hence,

Pr(SuccessR] > = — Jg-.

When the reduction cost of the schemes P2 and P1 are
compared, there is a loss of LH in P2 due to the removal
of the PC oracle. However, qbreaking OW-PCA security
means breaking its one-wayness by accessing an oracle
that solves an easier problem, which corresponds to solv-
ing a GAP problem. Solving GAP problems could be
easier than solving a computational problem or some-
times there might be no groups on which one can define
the GAP problem. Consequently, P2 generates a flexible
and efficient hybrid encryption scheme that is based on
a one-way KEM and allows encryption of arbitrary size
messages as opposed to Pj.

3.3 Application on Bilinear Pairings

An application of our generic construction P2 in iden-
tity based setting is presented using the Sakai Kasahara
Key Construction which is based on bilinear pairings.
In [6], Chen and Cheng present an efficient IBE scheme
using this key construction and Fujisaki-Okamoto trans-
formation. Their scheme SK-IBE uses four hash func-
tions and security proof requires reductions to intermedi-
ate schemes with tightness of O(EE—). However, when our

new construction P, is applied instead of the Fujisaki-
Okamoto transformation, three hash functions is used
and the same computational problem can directly be re-
duced to the scheme with the tightness O(;%)- The new

scheme SK-IBE2 is presented as follows.

e Setup: Given a security parameter ki, the parame-
ters of the scheme is generated as follows.

1. Generate two cyclic groups G and F' of prime
order g and a bilinear pairing é : G1 X Gy — F.
Pick a random generator P» € G and set
P, = ¢(P,), where ¢ is an isomorphism form
Go to G

2. Pick a random z € Z; and compute zP.

3. Pick two cryptographic hash functions
Hy: F — {0,1}" and H3 : {0,1}" x F — Z;
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The message space is M = {0,1}"™. The ciphertext
space is C' = G7 x {0,1}" x Z}. The master public
key is (q,Gl,GQ,F,Q/),é,n,Pl,PQ,xpl,Hl,HQ,H3)
and the master secret key is x.

e Extract: Given an identity ID4 € {0,1}*, the mas-
ter public key and the master secret key, the algo-

rithm returns ds = mpg.

e Encrypt: Given a plaintext m € M and an identity
ID 4, the following steps are performed.
1. Select a random element r € Zj.

2. Compute Ly = H1(ID4)P, + zP; and
k=eé(P,P)".

3. Set the ciphertext to C =
(rLa,m @ Hy(k),r ® Hs(m, k)).

U, V,w) =

e Decrypt: Given C = (U, V,W) and d 4,

1. Compute k' = é(U,d4) and m' =V & Ha (k')
2. Compute ' = W @ Hs(k',m’)

3. If 'L 4 # U, return reject, else return m’ as the
plaintext.

Theorem 3.2. Suppose the hash functions Hy, Ho, H3
are random oracles and there exists an IND-ID-CCA ad-
versary A that runs in time at most t and has advantage
€ against the scheme SK-IBE2 making at most qp > 0
private key extraction queries, qp > 0 decryption queries
and qm, , qr,, g, > 0 hash queries to Hy, Ha, Hs. Then
there is an algorithm B that solves the k-BDHI problem
where k = qu, with advantage at least

£
qrr, (qry+qm3)

4ap.

2k1

The security proof is presented in Appendix and uses the
same technique as in [9].

4 Conclusion

In this paper, we proposed a new generic construction
P, that is based on a weakly secure KEM and result in
IND-CCA secure hybrid encryption scheme. When com-
pared to hybrid encryption schemes based on OW-PCA
KEMs such as REACT, our construction achieves shorter
ciphertext size than REACT scheme that is employed as
in [3]. Besides, when compared to the Fujisaki-Okamoto
transformation, our construction is more efficient in terms
of the number of hash functions and the tightness of the
reduction cost. A summarizing table is shown as below,
where |c| is the size of the key encapsulation and |h| is the
size of the output of the hash functions. The only disad-
vantage of our construction P, compared to REACT is
the additional factor 1/gy at the reduction cost, where
gy is the total number of H-queries. However, OW-PCA
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assumption on the KEM requires solving a GAP prob-
lem, whereas our constructions can be reduced to harder
computational problems due to the removal of the PC
oracle.

Table 1: Comparison of KEM-Based Constructions in
Public Key Setting

Scheme | Assumption | Ciphertext size | Tightness
REACT* | OW-PCA c/+3 |h tight
Py OW-PCA c[+2 |h tight
Fujisaki- 2
Okamoto ow lc[+2 [h] O(¢/qir)
PQ oW |C|+2 |h| O(e/qH)

* REACT implemented as in [3]
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Appendix

In this appendix, we review the security notion of OW-
PCA and give the security proof of the theorem 3.2.

OW-PCA Notion for a KEM

The security notion of OW-PCA is defined for encryption
schemes in [9] and its analogous for KEMs is defined in
[11]. We first begin with the definition of a PC oracle.

Definition 3 (Plaintext Checking (PC) Oracle):

Given a KEM = (Keygen(l), Enc(pk,r), Dec(sk, c)), the
PC oracle decides on input a random session key k € Sy,
and an encapsulation ¢ of that key, whether ¢ encrypts
k. Obviously in the case of a deterministic scheme, PC
oracle is useless since the decision could be made by reen-
cryption.

Definition 4 (OW-PCA):

Given a KEM = (Keygen(l), Enc(pk,r), Dec(sk,c)) and
a probabilistic polynomial time adversary A in the fol-
lowing experiment:

ISBN:978-988-98671-9-5

Experiment OW-PCA (I, KEM, A)
(pk, sk) «— Keygen(l)

r & S, (k,¢) — Enc(pk,r)

k'« APC(pk,c)

If k¥ = k return 1

else return 0

The success of the attacker A in breaking the OW-PCA
of KEM is defined as follows. Here, A has the running
time ¢ and makes gpc queries to the PC oracle.

SuccQ e = PrlOW-PCA(I, KEM, A)=1]

Proof of Theorem 3.2

Algorithm B is given as input a random k-BDHI
instance (Pp, Py, xPs,2?Ps, ...,x"P;), which computes
é(Py, Py)Y/* using the attacker A as follows.

e B chooses an index I with 1 < I < ¢y, as its guess
for the challenge identity that A attacks.
Here ho € Z;, represents the Hy(IDy).

e B prepares the public parameters for A as follows [6]:

1. B randomly chooses different hq,...,hx_1 € Ly.

2. B sets f(z) = Hf;ll(z + h;). One can easily
reformulate f(z) to the form f(z) = 321 ¢;27.
The constant term ¢ is non-zero because h; # 0

and different and ¢; are computable from h;.
3. B computes Qs = Zf;ol cit'Py = f(z)P, and

1Qo = xf(2)Py = Zf:_()l ¢t P;.

z k—2 i
zf—i(-h),', = D0 d;?’
and a;-:h,;QQ = ﬁf(:l?)PQ = fz(fl:)PQ =

Zf;(? djzi Py for i € [1,k — 1].
5. B computes Q1 = ¥(Q2).

6. Bsets T/ = Z:.:ll c;z' "' P, and computes
To = e(P(T"), Q2 + co Po).

4. B computes f;(z) =

e B passes the public parameters to A as

Mpk = (Q7G17G27Fvwvévn7Q17Q27xQ1 - hOQl)'
Here, H1,H> and Hj3 are random oracles controlled
by B. By setting FPpu = Q1 — hoQ:1 the private
key for the challenge identity is dop, = Q2 since
é(hoQ1 + Ppub), %Qg) = é(Q1,Q2). Also note that
é((hi + ho)Q1 + Poup), 775 @2) = €(Q1,Q2) for
t=1,..,k — 1. Hence M represents valid public
parameters for SK-IBE2.

e M -queries: Upon receiving a query ID; to the ran-
dom oracle H; for some j € [1,qm,], B checks if
(IDj, hj+ ho, ﬁ@g) exists in HiList. If the entry
exists in the list, B returns h; + hg. Otherwise, B
does the following:
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1. If the query is on the I —th distinct ID, namely
ID; = IDy, Bstores (IDy, hy, L) in H;List and

returns hg.

2. Else, B inserts the tuple (ID;, h; + ho, ﬁQg)

to the H;List and returns h; 4+ ho to A.

e Hs-queries: On each new input k;, B chooses a ran-
dom &; € {0,1}", inserts (k;,&;) to the HyList and

returns &; to A.

e Hs-queries: On each new query (m;,k;) to the Hs
oracle, B chooses a random hz; € Zj, inserts the

tuple (my, ki, hs;) to HsList and returns hg; to A.

d; = h;ﬂQg Else, B aborts the game.

Decryption query:

B first looks to the H;List.
list, then B queries Hy(ID;).
ID; = 1Dy, B does the following;:

1. B computes for each entry (k;, m;, hs;) in the

HsList the value r; = hs; @ cs.

2. For each r;, B checks whether (r;2Q1) = U; and

é(Q1,Q2)" = k;. If not, B returns reject.

3. Else, B computes Hs(k;) using the simulation of
H, as above and checks whether m,; ® Ha(k;) =
V;. If not, B returns reject, else, B outputs m;.

Here we are rejecting basically a decryption query
whose corresponding (m;, k;) has not been queried

to the random oracle Hs.

If d; #1, namely ID; # IDj, B tries to perform
the decryption by first computing é(U;, d;) and then
A decryption query in the
form of (C;,ID;) can easily be answered since the
decryption key for ID; is known to the adversary B.

querying Hy(é(U;, d;)).

e Challenge: Upon receiving the two equal length mes-
sages mg, m1 and the challenge identity I D, B gen-

erates the challenge ciphertext as follows:

1. If the I-th query on H; has been issued and
ID; =1D., and so d., =1 B continues, else B

aborts the game.

2. Else if the tuple corresponding to 1D,y is on the
H;List and so d.;, #1, B aborts the game. Oth-
erwise, B inserts the tuple (IDgp,ho, L) into
the list and continues. Note that, at this stage,

Hl(IDch) = ho and dch =1.
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Extraction-query: Upon receiving a private key ex-
traction query ID; for some i € [1,gg]|, B first checks
HyList. If ID; does not exist in the list, B queries
H,(ID;) and checks the value d;, which is the last
entry of the corresponding tuple. If d; #1, B returns

Upon receiving a decryption
query (C;,IDy) for some i € [1,qp], where C; =
(U;, Vi, Wy) = (rizQ1,m; & Ho(k;), r; & Hs(my, ki),
If ID; is not on the

If d; =1, namely

3. B chooses 3 € {0,1} and r € Z} at random and
return rQ, as U*.

4. B chooses h% € {0,1}" at random, which is sup-
posed to represent Ha(k*)

5. B chooses W* € Z;
6. B returns C* = (U*,mg @ h3, W*).

e B answers A’s random oracle queries, private key
extraction and decryption queries as before. Note
that following the rules, the adversary will not issue
the extraction query on ID., only whose d., =1
and the decryption query on (ID.p, C.p,). And thus,
B always can answer other queries without aborting
the game.

e A outputs its guess 3’. B picks a random entry k;
from the [H,List VHsList], computes T = k" and
returns (T/Tp)'/. Tt is clear that é(Py, Py)Y/* =
(T/To)V/<0 if T = é(Q1,Q2) /.

Security Analysis

The simulation of the decryption oracle is nearly perfect
but there are cases when a valid ciphertect C' = (¢y, co, ¢3)
is rejected if the corresponding tuple (m, k) has not been
queried to the oracle Hs. Consequently, the adversary
needs either to guess a right value for the output of Hj
without querying Hs and the correct value for r at the
same time, or guess a correct value for ¢z, which occur
with probabilities of 2%1 as previously.

Claim: The view of A in the simulation is identical to
the view in the real attack, if A does not correctly guess
the value of ¢3. One can define the event Guesscs as
A’s correctly guessing the value of ¢z and the event H
as the event that A queries the oracles Hy or Hs for
k= ¢é(Q1,Q2)"/*. Then, we have

Pr[SuccessB] = Pr[H] = |Pr|f' = B|-Guesscs] — %

51
Also by the definition of A, we have |Pr[3' = 8] — 3| > .

Pr(SuccessB] = |Pr[8' = B|-Guesscs] — %
> |Pr[f’ = ] — Pr[Guesscs] — %

> P e T Pr(Guesscs]

Due to the total decryption queries A makes,

Pr(Guesscs] < 4. Thus, for qu, = qu, = qu, = qu

Pr[SuccessB] > <

@y (any Famg) 2 @

An improvement on the efficiency of the SK-IBE2 could
be the obtained by dropping the Hs function and di-
rectly multiplying the message m to the session key
k = é(P,P2)". Then the messages are selected from
the group F.
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