
 
 

  
Abstract— The performance of Nearest Neighbor (NN) 

classifier is highly dependant on the distance (or similarity) 
function used to find the NN of an input test pattern. In order to 
optimize the accuracy of the NN rule, a weighted similarity 
function is proposed. In this scheme, a weight is assigned to each 
training instance. The weights of training instances are used in 
the generalization phase to find the NN of an input test pattern. 
To specify the weights of training instances, we propose a 
learning algorithm that attempts to minimize the leave-one-out 
(LV1) error rate of the classifier on train data. The proposed 
approach is assessed using a number of data sets from UCI 
corpora. Simulation results show that the proposed method 
improves the generalization accuracy of the basic NN and 
results are comparable to or better than other methods 
proposed in the past to learn the distance function. 
 

Index Terms— nearest neighbor, weighted metrics, adaptive 
distance measure.  
 

I. INTRODUCTION 
The NN rule is one of the oldest and simplest methods of 

non-parametric pattern classification. The basic rationale for 
NN rule is both simple and intuitive: patterns close in feature 
space are likely to belong to the same class. The NN classifier 
can be represented by the following simple rule: to classify an 
unknown pattern, choose the class of the nearest stored 
training instance. A common extension is to choose the most 
common class among the K Nearest Neighbors (KNN).  

The performance of the NN rule depends crucially on how 
to choose a suitable distance metric. In the past, many 
methods have been developed to locally adapt the distance 
metric. Examples of these include the flexible metric method 
proposed by Friedman [1], the discriminant adaptive method 
by Hasti and Tibshirani [2], and the adaptive metric method 
by Domeniconi et al. [3]. 

The common idea underlying above methods is that they 
estimate feature relevance locally at each query pattern. This 
leads to a weighted metric for computing the similarity 
between the query patterns and training data. For example, in 
[4], an adaptive K-NN classification algorithm is proposed 
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that is based on the concept of statistical confidence from 
hypotheses testing.  

In [5], similar to our proposed method, a simple weighted 
distance measure is proposed that uses a heuristic measure to 
specify the weight of each training instance.  

In [6], a scheme is proposed to learn weighted metrics to 
improve generalization accuracy of NN. The weights may be 
specific for each class and feature, for each individual 
instance, or for both. The learning algorithms derived by 
approximately minimizing the LV1 classification error rate 
of the given training set. 

Another work in this area is the scheme presented in [7] to 
learn the distance function for NN rule. The distance function 
is learned based on maximizing the clustering of objects 
belonging to the same class. The learned distance function is 
used to cluster the objects of a data set. Using the learned 
distance function, a test instance is classified using NN rule 
(LW1NN)or Nearest Cluster Centroid (NCC). 

The weighted metric we use in this paper is based on 
assigning a weight to each instance in the training set. Our 
proposed learning algorithm attempts to specify the weight of 
each training instance such that LV1 classification error of 
the given training set is minimized. The proposed learning 
algorithm is basically a hill climbing search algorithm.      

The rest of this paper is organized as follows. In section 2, 
NN classification with weighted similarity metric is 
described. In section 3, our proposed method of learning the 
weights of training instances is presented. In section 4, 
simulation results are given. Section 5 concludes this paper. 

 

II. NN CLASSIFICATION WITH WEIGHTED SIMILARITY 
METRIC 

We briefly describe the NN rule to introduce the notation. 
For an M-class problem, assume that a set of training 
examples of the form{( Xi, Ci) | i = 1, ..., n} is given. Where, Xi 
is a d-dimensional vector of attributes Xi = [xi1, xi2, ...,xid]T and 
Ci ∈  [1,2, …,M] defines the corresponding class label. To 
identify the NN of a query pattern, a distance function has to 
be defined to measure the distance between two patterns. A 
variety of distance functions has been used for this purpose 
[8]. Euclidean distance has conventionally been used to 
measure the distance (i.e., dissimilarity) between two 
patterns Xi and Xj: 
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This distance function is appropriate when all the input 
attributes are numeric and have ranges of approximately 
equal length. When attribute have substantially different 
range lengths, the attributes can be normalized by dividing 
the individual attribute distances by the range or standard 
deviation of the attributes.  

Instead of working with distance function, we can 
equivalently work with the following similarity measure, 
which normalizes the similarity between two instances Xi and 
Xj by a real number in the interval [0,1]. 
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In above relation, dmax is the maximum distance that a pair 
of instances can have. This is calculated by considering two 
virtual instances having maximum difference in each 
attribute value. That is: 
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Where, iΔ represents the difference between maximum 
and minimum  values of attribute i. Using (2), the most 
similar pattern Xp to a query pattern Q can be formally stated 
as: 
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j n
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The NN rule assumes that all classifiers (i.e., stored 
instances) are equally reliable and uses equation (4) to find 
the NN of a query pattern. This paper is based on the idea that 
some of the stored instances are more reliable classifiers than 
others. We accomplish this by assigning a weight wk to each 
stored instance Xk. The weights of the stored instances are 
used in the test phase to find the most similar pattern Xw to a 
query pattern Q. 

{ }arg max . ( , )
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j n
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                                        (5) 

III. LEARNING WEIGHTS OF TRAINING INSTANCES MATH 
In this section, we present a greedy algorithm that attempts 

to maximize LV1 classification rate on the given training set 
(using NN classifier) by specifying the weights of training 
instances. For an M-class problem, assume that N labeled 
instances {Xi, i=1, 2, ... , n} from different classes are 
available. 

Note that, assigning a large weight to a training instance 
increases its influence and can be used to classify many 
instances in LV1 test. In contrast, setting the weight of a 
training instance to zero will reduce the similarity of that 
instance with any test instance to zero (i.e., appears to be far 
away from any input test pattern).  

The basic component of our proposed learning scheme is 
an algorithm that can specify the optimal weight of a training 
instance assuming that the weights of all other instances are 
given and fixed. The weight of an instance specified using 
this algorithm is optimal in the sense that it maximizes the 
LV1 classification rate (under the mentioned conditions). 
Starting with an initial weight vector (i.e., {wi =1.0, 

i=1,2,...,n}), the overall learning scheme is to use this 
algorithm to adjust the weight of each training instance in 
turn. After a single pass over all instances, it is still possible 
to improve LV1 classification rate by a new pass over the 
data. The search for globally optimum solution can be 
stopped after a certain number of passes or when no 
improvement was observed during the last pass over the 
training set. Note that, the learning scheme is a greedy 
optimization technique since LV1 classification rate never 
decreases during this learning scheme.  

Without loss of generality, in the following, we present the 
algorithm that specifies the optimal weight wk (a number in 
the interval [0, ∞]) of a training instance Xk є Class T. To find 
the optimal value of wk, in the first step, wk is set to zero. This 
effectively removes the influence of Xk and the instance is not 
used to classify any test instance in LV1 test. Using wk=0., 
instances from class T that are classified correctly in LV1 test 
are marked. Note that, these instances will be classified 
correctly regardless of the value wk. Instances of ClassT that 
are misclassified are also marked. These instances will be 
misclassified regardless of the value of wk. At this stage, the 
true classification of unmarked instances depends on the 
value of wk. The score S of any unmarked instance (i.e., Xt) in 
the training set is calculated using the following definition: 
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The interesting property of the score of a pattern (i.e., 
S(Xt)) is that using any value wk > S(Xt), pattern Xt will be 
classified as class T in LV1 test. This is due to the fact that 
using any value of the wk > S(Xt), the following relation can 
be easily derived from (6).  

   { }. ( , ) max . ( , ),
1

w X X w X X j tk t k j t j
j n

μ μ> ≠
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                    (7) 

This in turn means that using any value wk > S(Xt), pattern  
Xk will be the nearest neighbor of Xt. To find the optimal 
value of wk, unmarked instances are ranked in ascending 
order of their scores. Assuming that L instances {X1, X2, 
…XL}are in the list, choosing any value of wk between two 
successive scores (i.e., S(XP) < wk < S(XP+1)), all instances 
that their scores are smaller than wk will be classified as class 
T. To find optimal value of wk, for a list of L instances, L+1 
thresholds must be examined. The corresponding LV1 
accuracy for any chosen value of wk can be easily calculated 
as we know the true class of each instance. The best value of 
wk is the one maximizing LV1 classification rate. In our 
implementation, we choose the thresholds in the middle of 
two successive scores. The above steps for finding optimal 
weight of an instance are summarized in Table I.  

 

IV. 4. SIMULATION RESULTS 
We used six data sets available from the UCI repository to 

evaluate the prediction accuracy of the proposed scheme. All 
these data sets only contain numerical attributes. Table II 
gives a short summary of the data sets we used in the 
experiments. 
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Table I. Algorithm for finding optimal weight wk of 
training instance Xk є Class T 

1. Set wk = 0. 

2. Mark instances of Class T that are classified correctly. 

3. Mark instances of ClassT that are misclassified. 

4. Use (6) to rank unmarked training instances in 
ascending order of their scores. 

5. Find the best vale of wk resulting in maximum LV1 
classification rate.  

 
 

Table II. Statistics of the data sets used in experiments 
Data Sets #  of Instances # of Features # of Classes 
Diabet 768 8 2 
Glass 214 9 6 
Heart_h 294 13 5 
Heart_s 270 13 2 
Ionosphere 351 34 2 
Vehicle 846 18 4 

 
Attributes of each data set were first normalized to the 

interval [0,1]. In data sets having missing values (i.e., 
Heart-h), missing values were replaced by the average value 
of that attribute in the data set. Using Euclidean distance 
function for a normalized data set having n attributes, the 
maximum possible distance between two instances is . The 
similarity of each pair of instances in the training set was then 
calculated using (2).  

Ten-fold cross validation (10-CV) was used to evaluate the 
scheme proposed in this paper. In this, the data set is divided 
into ten disjoint groups of approximately equal size. Using 
nine partitions (i.e., using 90% of data) as training data, the 
proposed learning method was used to specify the weights of 
training instances. Ten passes over training data was used to 
specify the weights. Using the weighted training instances, 
classification accuracy on the test partition was measured. 
This process was repeated until all partitions were uses in the 
test phase. The 10-CV test was repeated ten times and 
average classification rate on test data was calculated as the 
performance of the scheme.  

 In Fig. 1, we have plotted the LV1 error-rate of the 
classifier during the learning process for one fold in 10-CV 
experiment. Using nine portions of the Diabetes data, Fig. 1 
shows the LV1 error-rate as the weight of each instance is 
updated using the proposed method. The initial LV1 
error-rate was 19.41% at the beginning of the run. After 10 
passes of the proposed method, LV1 error-rate was reduced 
to 6.85%, which proves the effectiveness of the scheme. It 
can also be seen that LV1 error-rate never increases during 
this process.   

Table III gives the 10-CV classification rate on various 
data sets. For comparison, we have also reported the 
classification rate of basic NN. As seen, the proposed method 
could improve the generalization accuracy of the basic NN 
classifier for 4 out of 6 data sets. All improvements are  

 
Fig. 1. LV1 classification error rate during the weight 

learning algorithm 
 

Table III. 10-CV classification rate on various data sets 
Data sets 1NN Proposed 
Diabetics 70.36 75.13 
Glass 69.38 67.62 
Heart_h 78.31 80.69 
Heart_s 75.41 81.11 
Ionospher
e 86.49 92.86 

Vehicle 69.52 68.10 
 
Statistical significance was determined by a paired t-test 

on the accuracy of the 10 runs of 10 fold cross validation. The 
improvement in accuracy is more than 3.3% for these data 
sets. In case of Glass and Vehicle data sets, our proposed 
scheme has caused a small drop in classification rate. 

In Table IV, we compare the performance of our proposed 
method in comparison with the methods (i.e., LW1NN and 
NCC) presented in [7] that uses clustering to learn the 
distance function for NN rule. The performance of C4.5 
decision tree algorithm that was run with its default 
parameter settings is also reported for these data sets. The 
best result on each data set is indicated in bold. As seen, the 
performance of our proposed method is comparable or better 
than these algorithms. 
 

Table IV. 10-CV classification rate of various methods 

Data sets 
Propose

d 
NCC LW1NN C4.5 

Diabetics 75.13 73.07 68.89 74.49
Glass 67.62 66.41 73.50 67.71
Heart_h 80.69 81.54 77.55 80.22
Heart_s 81.11 81.70 77.52 78.15
Ionospher
e 

92.86 86.73 91.73 89.74

Vehicle 68.17 65.94 69.86 72.28

V. CONCLUSIONS 
In this paper, we introduced a new technique for adapting 

the distance function in NN classification method. This was 
achieved by assigning a weight to each training instance. We 
proposed a greedy algorithm for learning the weights of 
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training instances. The learning algorithm attempts to 
maximize LV1 classification rate, which is the true estimate 
of the generalization ability of the classifier. Simulation 
results proved that the scheme could improve the 
generalization ability of basic NN rule. 

Although not addressed in this paper, the proposed scheme 
can be easily extended to improve generalization speed of 
NN rule by reducing the number of stored instances. This is 
very important case of high dimensional problems having 
large number of training data.  

REFERENCES 
[1] J. H. Friedman, Technical Report 113, Stanford University Statistics 

Department,   Flexible metric nearest-neighbor classification, 1994.  
[2] T. Hastie, R. Tibshirani, "Discriminant adaptive nearest neighbor 

classification", IEEE Transaction on Pattern Analysis and Machine 
Intelligence, vol. 18 no. 6, 1996, pp. 607-615. 

[3] C. Domeniconi, J. Peng, and D. Gunopulos , "Locally adaptive metric 
nearest neighbor classification", IEEE Transaction on Pattern Analysis 
and Machine Intelligence vol. 24, 2002, pp. 1281-1285. 

[4] J. Wang, P. Neskovic, and L. N. Cooper, "Neighborhood selection in 
the k-nearest neighbor rule using statistical confidence", Pattern 
Recognition, vol. 39, 2006, pp. 417–423. 

[5] J. Wang, P. Neskovic, and L. N. Cooper, "Improving nearest neighbor 
rule with a simple adaptive distance measure", Pattern Recognition 
Letters, vol. 28, 2007, pp. 207-213. 

[6] R. Paredes, and E. vidal, "Learning weighted metrics to minimize 
nearest-neighbor classification error", IEEE Transaction on Pattern 
Analysis and Machine Intelligece, vol. 28 no. 7, July 2006, pp. 
1100-1110. 

[7] C. F. Eick, A. Rouhana, A. Bagherjeiran, and R. Vilalta, "Using 
clustering to learning distance functions for supervised similarity 
assessment" Engineering Applications of Artificial Intelligence, 
Vol.19, no. 4, June 2006, pp. 395-401. 

[8] D. R.Wilson, T. R. Martinez, "Reduction Techniques for 
Exemplar-Based Learning Algorithms", Machine Learning, vol. 38 no. 
3, 2000, pp. 257-286. 

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008


