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1Abstract—One of the important and well-researched 
problems in data mining is mining association rules from 
transactional databases, where each transaction consists of a 
set of items. The main operation in this discovery process is 
computing the occurrence frequency of the interesting set of 
items. In practice, we are usually faced with large datasets, 
and an exponentially large space of candidate itemsets. A 
potential solution to the computation complexity is to 
parallelize the mining algorithm. In this paper, firstly, we 
introduce an already proposed sequential mining algorithm 
for discovery of frequent itemsets, which requires just a 
single scan of the database. In the next part, we present four 
parallel versions of the algorithm. The parallel algorithms 
will be compared analytically and experimentally, regarding 
some important factors, such as time complexity, 
communication rate, load balancing, etc. 
 

Index Terms—Parallel Processing, Data Mining, Frequent 
Itemsets, Association Rules, Load balancing 
 

I.   INTRODUCTION 
One of the important and attractive problems in data 
mining [1] is the discovery of Association Rules (ARs) 
from transactional databases, where each transaction 
contains a set of items. ARs are represented in the general 
form of X → Y and imply a co-occurrence relation 
between X and Y, where X and Y are two sets of items 
(called itemsets). X and Y are called antecedent (left-
hand-side or LHS) and consequent (right-hand-side or 
RHS) of the rule, respectively.  

Many evaluation measures are defined to select 
interesting rules from the set of all possible candidate 
rules. The mostly used measures for this purpose are 
minimum thresholds on support and confidence. The 
Support of an AR, X → Y, is the percentage of 
transactions that contain both X and Y, simultaneously. 
This is the probability, P(A∩B). The Confidence of the 
rule is the percentage of transactions containing X, which 
also contain Y. This is equal to the conditional 
probability, P (Y|X).  

For huge datasets, which contain a large number of 
distinct items and a large number of transactions, an 
important factor that an AR mining algorithm is expected 
to have, is scalability, i.e., the ability to handle massive 
data stores. Sequential algorithms cannot provide 
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scalability, in terms of the data dimension, size, or 
runtime performance, for large databases. A solution for 
improving the performance and providing scalability is 
parallel and distributed computing. Employing multi-
processor systems, mining of frequent itemsets can be 
accomplished in a reasonable time. There are various 
metrics to evaluate parallel algorithms, including 
computational complexity, speedup, communication rate, 
load balancing, etc.  

In this paper, we first present a sequential algorithm for 
mining ARs, which is based on bottom-up approach. The 
algorithm is very suitable for sparse datasets (where the 
probability of a specific item in a transaction is low, due 
to the wide variety of items). It scans the database just 
once and stores data in a new format within a special data 
structure, in the main memory. When dealing with sparse 
datasets, this structure is so compressed that can fit into 
memory, even when the size of the original dataset is very 
large. In other words, this sequential algorithm supports 
scalability for sparse datasets. It is a key feature which is 
not supported by other sequential algorithms. However, 
for huge datasets, which have a dense nature, the 
algorithm may encounter with the lack of memory for 
holding the data structures. To give a solution for dense 
datasets, we also present four parallel versions of the 
algorithm and give an illustrating comparison on them.  

The rest of this paper is organized as follows. Section 2 
provides an overview of the sequential and parallel 
algorithms for mining ARs. Section 3 describes the 
proposed sequential algorithm. Section 4 is devoted to 
presenting the parallel versions of the proposed algorithm 
and an analytical comparison over them. Experimental 
results are shown in Section 5. Finally, Section 6 
concludes the paper. 
 

II.   RELATED WORK 
As AR mining is an important issue in the field of data 
mining, it has been well researched and several sequential 
algorithms have already been proposed for this purpose. 
However, there has been relatively less work in parallel 
mining of ARs. In [3] a number of distributed data mining 
algorithms for collective data mining, clustering, and AR 
mining are introduced. [4] gives an overview of some of 
the parallel AR mining methods. Three different parallel 
versions of the Apriori method are presented in [5]. In all 
of these methods, the database is supposed to be 
distributed horizontally among the processors.  

The first method is named Count Distribution (CD) 
algorithm, which is a straight- forward parallelization of 
Apriori. In this method, each processor computes the 
partial support of all candidate itemsets from its local 
database partition. At the end of each iteration, the 
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processors exchange their partial supports to measure the 
global supports.  

The second is Data Distribution (DD) algorithm. It 
partitions the candidate itemsets into disjoint sets and 
assign them to different processors. In this algorithm, 
each processor has to scan the entire database (not only 
its local partition) in all iterations, to measure the global 
support. Thus, the algorithm involves a high 
communication overhead.  

The Intelligent Data Distribution (IDD) algorithm is 
the third parallel version of Apriori. Similar to the second 
version, it partitions the candidates, but it selectively 
replicates the database, so that each processor proceeds 
independently. Among the three parallel versions of 
Apriori, the COUNT DISTRIBUTION method is 
reported to perform the best.  

There are also some other parallel algorithms in the 
literature, which outperform the Count Distribution 
algorithm. The FDM (FAST DISTRIBUTED MINING) 
[6] and DMA (DISTRIBUTED MINING OF 
ASSOCIATION RULES) [7] algorithms generate fewer 
candidate itemsets and involve smaller message sizes 
compared to the COUNT DISTRIBUTION algorithm. In 
[8], Schuster and Wolff propose the DDM 
(DISTRIBUTED DECISION MINER) algorithm. They 
report that DDM has a better scalability than COUNT 
DISTRIBUTION and FDM with respect to the minimum 
support threshold. 

In [9], a new sequential AR mining algorithm called 
FastARM has been proposed, which is shown to be 
scalable and efficient when dealing with sparse datasets. 
In order to support the scalability for dense datasets as 
well, we developed four parallel versions of the 
algorithm, which will be discussed in detail, in Section 4. 
Before introduction of the parallelized methods, the 
sequential algorithm will be presented in the next section. 
 

III.   THE SEQUENTIAL ALGORITHM 

For ease of illustration, we assume the transaction 
database as a binary-valued dataset having a relational 
scheme. Each column in this scheme stands for a possible 
item that can be found in any transaction of the data 
warehouse and each tuple represents a transaction. Each 0 
or 1 value indicates the presence or absence of an itemset 
in a transaction, respectively. As an example the relation 
shown in Fig. 1.(b) is the structured form of the dataset of 
Fig. 1.(a), which contains four transactions. 

 
 
 
 
 
 
                       a) A transactional dataset                                    
 
 
 
 
 
 
 

b) A structured presentation of transactions 
 

Fig. 1. A market basket dataset 

As the first step of the algorithm, we divide the relation 
horizontally into some equi-size partitions, each 
containing k tuples. We comment on choosing the best 
value for k latter in this section. In this relation, each 
column contains k bits in each partition, thus the group of 
bits in each partition can be vowed as a k-bit binary code, 
which is equivalent to a decimal number between 0 and 
2k-1. These decimal numbers are the major elements of 
our algorithm. 

The partitioned relation is scanned just once and the 
supports of singletons (1-itemsets) are measured to find 
1-frequent itemsets. Meanwhile, for each partition, all 
nonzero decimal values are extracted. For any column of 
the dataset, which represents a frequent singleton, we 
build a hash table in memory. Each value in this hash 
table, is a non-zero decimal value extracted from a 
partition and its access key is the number of that partition 
(an integer number between 1 and m, where m is the 
number of partitions). Since we do not insert zero values 
into the hash tables, then the values recorded in the hash 
table indicate the regions of the itemset occurrences and 
limits the search space for the next steps.  

The support of a compound itemset such as AB, is 
easily measured by using the hash tables of its elements 
(i.e., A and B), instead of scanning the whole database 
again. In order to calculate the support of a compound 
itemset, we begin with the smaller hash table (i.e., the one 
having fewer values). For each key of this hash table, we 
first verify if it also exists in the other hash table. This 
verification does not involve any search due to the direct 
access structure of hash table. If a key exists in both hash 
tables, then we perform a logical AND operation between 
the the corresponding values related to that key.        

The result of the AND operation is another integer 
value, which gives the co-occurrences of A and B in that 
partition. If the result is zero, it means that there is no 
simultaneous occurrence of A and B in that partition. We 
build a similar hash table for the compound itemset, AB, 
and insert the non-zero integer values resulted from AND 
operations in this table. The size of this hash table is at 
most equal to the size of the smaller hash table of the two 
elements. Each number stored in this hash table is 
equivalent to a binary number, which contains some 1's. 
The total number of 1's indicates the co-occurrence 
frequency of A and B. Thus we should just enumerate the 
total number of 1's for all integer values, instead of 
scanning the whole database. This measurement can be 
done using logical Shift Left (SHL) or Shift Right (SHR) 
operations over each value and adding up the carry bits 
until the result is zero (i.e., there is no other 1-bits to be 
counted).  

The efficiency of this structure becomes clearer for 
measuring the support of higher dimensional itemsets. As 
we proceed to higher dimensional itemsets, the size of 
hash tables becomes smaller due to new zeros emerging 
from AND operations. These zeros are not inserted into 
the result hash table. 

To measure the support of an itemset, such as AB, the 
number of 1's in the value field of this hash table (in the 
binary form) has to be counted. If this value is equal to 1 
(i.e., 0001), just one SHR operation and thus one 
comparison is enough to count 1's. However, if we had 
searched all the data to find the co-occurrences of A and 
B, the number of required comparisons would have been 

Cheese Coke Egg Beer 
1 1 1 0 
1 0 1 0 
1 1 0 1 
0 1 0 1 

Cheese, Coke, Egg 
Cheese, Egg 
Coke, Cheese, Beer 
Coke, Beer 

Proceedings of the World Congress on Engineering 2008 Vol I
WCE 2008, July 2 - 4, 2008, London, U.K.

ISBN:978-988-98671-9-5 WCE 2008



48 (for reading the value of A and B in all 24 tuples). In 
general, this improvement is much more apparent for 
itemsets of higher dimensions.  

In a similar way, the hash tables of 2-frequent itemsets 
are then used to mine 3-frequent itemsets and in general, 
n-frequent itemsets are mined using (n-1)-frequent 
itemsets. However, we do not use all combinations of 
frequent itemsets to get (n+1)-frequent itemsets. The 
Apriori principle [10] is used to avoid verifying useless 
combinations: "An n-dimensional itemset can be frequent 
if all of its (n-1)-dimensional subsets are frequent". Thus, 
for example if AB and AC are two frequent itemsets, their 
combination is ABC, but we do not combine their hash 
tables unless the itemset BC is also frequent. If all the n-1 
subsets of an n-dimensional itemset are frequent, 
combining two of them is enough to get the hash table of 
the itemset.  

 

IV.   THE PARALLELIZED VERSIONS OF THE MINING 
ALGORITHM 

In the previous section, we introduced a new algorithm 
for discovery of frequent itemsets, in a transactional 
dataset. The structures used in this method are so that it 
has a very good performance, when the database is 
sparse. When the dataset is sparse, the hash tables are 
very small, i.e., we have a high rate of data compression 
and will rarely run out of memory. Moreover, the small 
size of hash tables leads to the efficient measurement of 
the support values. In this case, the algorithm is supposed 
to be scalable. However, when the dataset is dense, the 
size of hash tables is not as compressed as it is for sparse 
datasets. Thus, in some cases we may be faced with lack 
of memory. In other words, the algorithm may not be 
scalable for dense datasets. To provide scalability, in this 
section we introduce four parallel versions of the 
algorithm. The parallel algorithms will be compared 
analytically and experimentally, with respect to some 
important factors, such as time complexity, 
communication rate, load balancing, etc. 

A.   1st method: Assigning each partition to a processor       
The first method has a work-pool approach. In this 
method, the database is supposed to be distributed 
horizontally among different processors. If not, we 
assume that the master processor distributes (using 
scatter) the database among the other processors. Each 
processor can be assigned one or more partitions of the 
data. For ease of illustration, let's assume that each 
processor is given just one partition, as shown in Fig. 2. A 
slave processor is responsible for measuring the 
occurrence frequency of all items (columns) in its local 
partition. For each item, a processor generates two 
numbers. The first is a decimal number, which is the 
equivalent to the binary number of that item in the 
assigned partition (as described in Section 3). The other 
number is the local support value of the item. The support 
values are returned to the master processor. 

After the master processor receives the local support 
values related to a specific item from all slaves, it is just 
time to measure the global frequency of the item. 
However, it does not measure the global support for all 
items. The following principle is used in order to avoid 

useless measurements for items which are not likely to be 
frequent: In a distributed dataset, an item can be globally 
frequent only if it is frequent in at least one of the local 
parts. Thus, the master processor computes the overall 
support for an item if at least one of the support values 
(received from the slave processors) is greater than the 
MinSupp. 
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        Fig. 2. Horizontally distributing data among the processors 
 

The responsibilities of the master and the slaves will 
change (as follows) when mining compound frequent 
itemsets. When the 1-frequent items are detected, the list 
of frequent items is broadcasted to all slaves, to enable 
them starting discovery of 2-frequent itemsets. For each 
pair of 1-frequent items (whose combination is a 
candidate 2-itemset), a slave processor performs the 
logical AND operation over the decimal numbers related 
to the two items (These decimal numbers had been 
generated during the previous stage). The local support 
value of the candidate 2-itemset is computed by counting 
the 1-bit frequency over the resulting number of AND 
operation. The local supports of each 2-itemset, measured 
by each slave processor are returned to the master 
processor. If at least one of the local support values of an 
itemset is greater than the MinSupp threshold, the master 
computes the global support value of the itemset.  

When all 2-frequent itemsets are detected, the master 
broadcasts the list of them to all processors. To find 3-
frequent itemsets, the slave processors should measure 
the local support values of all candidate 3-itemsets. Each 
candidate 3-itemset is the combination of a 1-frequent 
itemset and a 2-frequent itemset. Hence, the decimal 
number equivalent to a 3-itemset is resulted by 
performing AND operation over the decimal numbers of 
its elements (a singleton and a 2-itemset), which have 
been generated in the first and second stages, 
respectively. The global support value for a 3-itemset is 
similarly computed by the master processor.  

In general, for finding n-frequent itemsets, the master 
processor broadcasts the list of all (n-1)-frequent itemsets 
to all processors. The decimal number of an n-itemset 
(within a partition) is computed by performing AND 
operation over the decimal numbers of a singleton and an 
(n-1)-frequent itemset. So, each slave processor has to 
hold just the locally computed decimal numbers of 1-
frequent and (n-1)-frequent itemsets, which had been 
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generated by itself during the first and the last stages, 
respectively. The numbers generated during the 
intermediate stages are not required to be held.  

It should be noted that in each iteration, the slave 
processors must operate synchronously, because the 
master requires the results from all of them before 
proceeding. 

1) Discussion 
The first method presents a load-balanced parallelism. In 
this method, all slave processors relatively do the same 
amount of work. The slaves are responsible for measuring 
the local support values of different itemsets, while the 
master processor presents the list of itemsets, which are 
globally frequent. 

This method can be used by two approaches. The first 
approach aims at reducing the number of 
communications. In this approach, a slave processor first 
measures the local support values for all items and then 
sends the results to the master through a single send 
command. On the other hand, the goal of the second 
approach is to minimize the idle times of the processors. 
In this approach, a slave processor measures the local 
support value of an itemset and sends the result to the 
master, immediately. So, the master does not have to 
remain idle until all the values are measured. However, 
the second approach involves a large number of 
communications, compared to the first approach. To 
present a reasonable solution, we can make a trade-off 
among the two mentioned approaches. For this purpose, 
slave processors should measure the local support values 
of a number of items (instead of one item) and each time 
sends a list of support values  to the master. 

As mentioned in the previous sections, many sequential 
algorithms can not be used for dense datasets, since they 
generally run out of memory. The sequential method 
proposed in this paper, does not also have a good 
performance when applying to dense datasets. This 
challenge was the main reason we decided to present the 
parallelized versions of the algorithm. It will be shown 
through experiments that the first parallelized method 
properly overcomes the lack of memory and has the best 
performance for dense datasets. 

B. 2nd method: Assigning each column to a processor       
In this approach, the data is assumed to be distributed 
vertically among the processors (one or more columns for 
each processor). Let's assume that each processor is 
responsible for one column. Unlike the previous method, 
in this case all the processors start their work 
simultaneously. Each processor constructs the hash table 
and meanwhile measures the support value (as discussed 
in Section 3) for its assigned column. Having n 
processors, the processor Pi sends its constructed hash 
table to all of its subsequent processors (i.e., processors 
Pi+1 to Pn), if the measured support satisfies the MinSupp 
threshold. In the next step, each processor combines its 
own hash table with each of the hash tables received from 
its prior processors in order to detect 2-frequent itemsets. 
Similarly, the processors send the hash tables of the 
discovered 2-frequent-itemsets to their subsequent 
processors, to enable them detecting 3-frequent itemsets. 
This process continues until the maximal frequent itemset 
is found by one of the processors. As an example, 

consider four processors (P0 to P3) which are used to mine 
frequent itemsets in a dataset containing four distinct 
items (A, B, C and D). Fig. 3 monitors the load of each 
processor through the worst case of this parallel process, 
i.e., when all itemsets (all combinations of items) are 
found out as frequent. However, this situation rarely 
occurs in practice, unless the MinSupp threshold has a 
very low value (i.e., about zero). Each row in this Fig. 4 
belongs to one processor and each cell represents an 
itemset whose support is measured by the processor. 
 

A 
B AB 
C AC BC ABC  

P0 
P1 
P2 
P3 D AD BD CD ABD ACD BCD ABCD 

 
Fig. 3. Monitoring loads of the processors when each one is 

initially responsible for a distinct item 
1)  Discussion 
The second method has some advantages and some 
disadvantages in comparison with the first method. The 
main advantage of this method is that it needs too much 
fewer communications among the processors. It has a 
significant effect on the speedup value of the parallelism, 
as will be shown through the experiments. The main 
disadvantage of this method is that the workloads of the 
processors are not balanced. In general, the amount of 
work a processor has to do is related to the sequence 
number of the processor. Thus, the processors of higher 
ranks usually have to do much more work than their 
counterparts. On the other hand, the processors having 
smaller numbers have very light work-load. Another 
reason for imbalanced load is a problem called early 
stopping. This problem occurs when a processor finds out 
that the item assigned to it (for measuring the support 
value) is not frequent. Thus, it will not proceed on 
measuring the support of its combinations. In this 
situation, the processor stops its co-operation, while there 
may exist some other processors, which have a large 
amount of work to do. 
2) Load balancing 
As mentioned in the last subsection, the main 
shortcoming of the second method is that the work-loads 
of different processors are not balanced. The worst case 
occurs when the item assigned to the last processor (Pn) is 
the most frequent singleton. As shown in Fig. 4, the 
processor has to measure the support of this item in 
combination with all other frequent items. So, in this 
case, many combinations of this item are likely to be 
frequent. Thus, a high amount of work has to be 
performed by Pn. On the other hand, if the least frequent 
item is assigned to Pn, most combinations will be 
infrequent and Pn will have a relatively balanced work-
load. For ease of illustration, consider the example shown 
in Fig. 4. Assume that the attribute D is the most frequent 
item, which is assigned to the last processor (P3). Since D 
is a frequent item, many of the combinations containing 
D (such as BD, ABD, ABCD, etc) are likely to be 
frequent, and so, P3 has a large amount of work 
compared to the other processors.  

In order to overcome the discussed problem and to 
balance the workloads of the processors, we use a 
technique called index swapping. As the first step, each 
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processor is responsible for measuring the support value 
of a single item. When the support values for all 
singletons are measured and before going on measuring 
the support values of combinations, we swap the indices 
of processors such that: Pn is the processor which is 
responsible for the least frequent item,… and P0 is the 
processor which is responsible for the most frequent one. 

C. 3rd method: Using processor Pk for k-itemsets 
The third method introduces a pipeline approach. In this 
approach the k-th processor, say Pk is responsible for 
mining k-frequent itemsets. For example, the first 
processor (P1) just finds frequent singletons, builds hash 
tables for them and sends the hash tables to the next 
processor. The hash tables built by each processor are 
immediately forwarded to the next processor. Each 
processor (say Pk), except the first one, receives hash 
tables from its prior processor (Pk-1) and constructs new 
hash tables from their combinations (using AND 
operation). Fig. 5 shows the worst case of this pipeline 
process (when all itemsets have an acceptable support 
value) using 4 processors for a dataset containing 4 
distinct items (A, B, C and D).  
 

Fig. 4. Monitoring loads of the processors when the k-th 
processor searches for k-itemsets 

1) Discussion 
As the experimental results will show, the third method 
generally requires the least amount of communications 
among the three parallel methods. This is the main reason 
of the improved speedup value of this method compared 
to the second method. It also has another advantage in 
comparison with the second method. The third method is 
safe from the problem of early stopping which is a typical 
challenging problem of the second method, as discussed 
in the previous section. The main disadvantage of the 
third method is the imbalanced loads of the processors. 
Let n be the number of all distinct items. The number of 
potential candidate k-itemsets is obtained from C(k,n). As 
we know, the value of C(k,n) equals the value of C(n-
k,k). In other words, by increasing k from 1 to n/2, the 
value of C(k,n) also increases, while it decreases for 
values of k increasing from n/2 to n. That's why in 
general, by increasing the rank of processors along the 
pipeline, the workload first increases and then begins 
decreasing. This general case can be seen in Fig. 4.  
 

V.   EXPERIMENTAL RESULTS 
We conducted a set of experiments to evaluate the 
performances of the proposed parallel methods with 
respect to different factors, and also compare them with 
other parallel algorithms. The algorithms were 
implemented in C++ and run concurrently on 5 systems 
with 3GHz Intel processor and 1 GB RAM. For 
communication, we used the message passing interface 
(MPI). Data used in different parts of our experiments 
were generated randomly, such that the probability of an 

item being present in a transaction is 0.002 (if we need a 
sparse dataset) or 0.2 (if we need a dense dataset). 

A. Comparison in terms of the communication rate       
Communications between the processors in order to 
transfer a piece of data are performed by some MPI 
functions such as MPI_Send, MPI_Recv, MPI_Scatter 
and MPI_Gather. There is also another MPI function, 
named MPI_WTime, which can be used for measuring 
the response time of a set of instructions within the 
program code. We used this function in the code 
wherever a communication between the processors was to 
be performed. The total communication time was then 
computed by gathering the total communication times 
from all processors and summing them up by one of the 
processors.  

For message passing, it is desirable to reduce the 
communication rate because of its time overhead. For 
networks of workstations (as in our experiment), this 
challenge is more important rather than in multiprocessor 
systems, since the communication latency is more 
significant in such environments. 

In the first part of this experiment, we used a synthetic 
sparse dataset having 100k transactions and 100 distinct 
items. The dataset was generated randomly, such that the 
probability of an item being present in a transaction is 
0.002. Using this dataset we compared the 
communication times of the proposed parallel mining 
methods, proposed in this paper. In the next step, we 
repeated the experiment using a dense dataset of the same 
number of items and transactions. This dataset was also 
generated randomly. Each Item was generated by the 
probability of 0.2 to be present in transactions. Figures 5 
and 6 present the results of the two parts of this 
experiment, for different values of MinSupp.  
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Fig. 5. Communication times of the parallel mining methods, for 

different values of MinSupp, using a sparse dataset 
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Fig. 6. Communication times of the parallel mining methods, for 

different values of MinSupp, using a dense dataset 
Comparing Figures 6 and 7, we see a high gap between 

the relative efficiency of the first method in two cases. As 

P1 A B C D     
P2    AB AC BC AD BD CD 
P3    ABC ABD ACD BCD  
P4     ABCD    
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shown in Section 4, the first method is the only method 
(among the three) in which the dataset is distributed 
horizontally. In this method, a processor has to return the 
decimal numbers computed from its local data, even if 
they are all zero. In other words, it does not efficiently 
make use of the hash tables. Thus, it performs 
approximately similar on dense and sparse data. On the 
other hand, the other two methods, which distribute the 
dataset vertically, use hash tables just similar to the 
sequential algorithm and throw away any zero value 
resulting in any stage. When the dataset is dense, the 
probability of emerging zero decimal numbers in a 
partition decreases. So, the hash tables lose their 
interesting feature of data compression, since they contain 
too many entries. When a hash table which is going to be 
sent is too large, the processor will have to split and send 
it through more than one transfer. That's why the second 
and the third methods are sensitive to the nature of the 
dataset, whether it is dense or sparse. 

B. Comparison in terms of the Speedup factor       
Speedup is a measure of relative performance between a 
multiprocessor system and a single processor system, 
which is defined in equation (1). 
 
Speedup = ts/tp ,                                                               (1) 
 
where ts and tp are the execution times on a single 
processor and a multiprocessor, respectively. 

In order to compare the speedup factors of the methods 
in different cases, in this experiment, we generated some 
dense datasets, each containing a different number of 
items. For each case, we first executed the sequential 
algorithm and measured the response time. Then using 5 
processors, each of the parallel algorithms were run and 
the execution times were measured. The speedup factor of 
each parallel method was then calculated using equation 
(1). Fig. 7 presents a comparison between the methods in 
terms of the speedup factor. 
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Fig. 7. Speedup factors of the parallel mining methods, for 

different numbers of items, using a dense dataset 

It can be seen in Fig. 8 that for datasets having not too 
many items (attributes), the first parallel method provides 
the best speedup value. The most likely reason is the 
optimal load balancing it supports. Another reason is that 
this method is not as sensitive to dense datasets as the 
others are. On the other hand, when the dataset has a large 
no. of items, the load balanced version of the second 
method outperforms the first method. This is probably 
due to the increasing of the no. of communications in the 
first method, as the number of items increases. 

VI.   CONCLUSION 
In this paper, first, we introduced a sequential mining 
algorithm for mining of frequent itemsets, which requires 
just a single scan of the database. Then, we presented four 
parallel versions of the algorithm. The parallel algorithms 
were compared analytically and experimentally, with 
respect to some factors, such as communication rate, 
response time, computation/communication ratio and load 
balancing. We Showed that each of the proposed methods 
has some advantages and of course a number of 
disadvantages. For sparse datasets, the load balanced 
version of the second method seemed to be more efficient 
than the others. However, when the database is dense, it 
was illustrated why the first method is the best to be used 
as a parallel mining algorithm, especially where the no. of 
items is not too large. 
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