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123Abstract - This paper examines the potential offered by 
adaptive hardware configurations of a class of weightless 
neural architecture called the Enhanced Probabilistic 
Convergent Network targeted on a Virtex-II pro FPGA 
which is re configurable. 
  The reconfiguration and adaptive capability of the 
Enhanced Probabilistic Convergent Network is a highly 
adaptive architecture offering a very fast, automated, 
uninterrupted responses in potentially electronically harsh 
and isolated conditions. The hardware architecture is tested 
on a benchmark of unconstrained handwritten numerals 
from the Centre of Excellence for Document Analysis and 
Recognition . 
 
Index Terms – Adaptive Neural Network, FPGA, 
Handwritten characters, Reconfiguration. 
 
  

I. INTRODUCTION 
 
Research into reconfiguration of artificial neural networks 
(ANN) is an increasingly significant area of investigation. 
This arises partly due to the improvement in performance 
possibilities offered in that it becomes possible for an 
ANN, when implemented in digital hardware, to be 
capable of adaptation and reconfiguration during learning 
[15]. This may be in response to nonlinear environment. 
However, adaptation and reconfiguration may incur a high 
computation overhead, more so in practical applications 
[2]. This high computation overhead is however 
minimised in the class of neural network investigated in 
this paper, the weightless neural network. This follows 
from the observation that the less the computation 
requirement, the faster an ANN is able respond to new 
input. This reduction in response time becomes very large 
when the ANN is implemented in hardware. 
  Artificial Neural Networks come into being as an attempt 
by humans to model the functionality of the brain and the 
central nervous system. This quest has been fruitful, and 
has yielded very many groups of ANN. Characteristic of 
these groups is the learning and recognition algorithm. 
The learning algorithm of an ANNs develops its 
configuration to allow for efficient subsequent 
recognition. Those that do not utilise weights during 
leaning and recognition are termed weightless ANN and 
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those that do are called weighted NN. Depending on 
whether there is a “teacher” or not, learning may be called 
supervised learning (when there is a teacher) or 
unsupervised learning [3]. ANNs may also be grouped 
depending on whether the error feedback is employed or 
not. Those possessing error feedback are called recurrent 
networks, those that are not are called feed forward 
networks. ANNs may also be grouped depending on the 
principle behind their implementation. Those whose 
behaviour closely mimic the intelligence of natural being 
e.g. the genetic algorithm, and those designed from 
mathematical concepts. Weightless neural networks, also 
called RAM based neural networks [4], are a subgroup of 
those designed from mathematical concept, in this case 
mathematical logic concept. 
  Bledsoe and Browning in their pioneering work [4] 
(around 1959) made the first attempt to base their design 
of neural network on mathematical logic concept. More 
sophisticated networks has naturally been developed 
subsequently. These include the implementation of 
Enhanced probabilistic Convergent Networks (EPCN). 
The EPCN is an enhanced form of PCN [17]. The specific 
enhancements are as detailed in [14]. EPCN is a feed 
forward neural networks incorporating supervised learning 
with the addition that the mathematical logic is minimised 
even further when EPCN is implemented in a hardware. 
  A harware implementation of ANN offers significant 
advantages to a purely software implementation due to 
increased speed. For a weightless NN, the mathematical 
logic is of a reduced complexity than is the case with 
alternative NN when implemented in a digital intergrated 
circuit (IC) -  this allows an increase in speed. These 
advantages, amongst others, motivate the work of this 
paper. 
  The aims and objectives of this paper are two fold. One 
is to present the architecture and implementation of an 
adaptive RAM-based neural network, the Enhanced 
Probabilistic Convergent Network (EPCN) [14], in a 
reconfigurable FPGA. The second is to explore the 
reconfiguration and adaptive properties of the FPGA-
based neural network. The principle EPCN system 
implemented here is generic and highly scaleable. It does 
lend itself well to reconfiguration and adaptation. This 
enhances its capability for prediction and recognition. It is 
thus suited to a multitude of applications. 
  Due to the importance of hardware reconfiguration of 
ANNs, and its relative scarcity, some efforts has been 
dedicated to this area. Simoes [2] employs an ALTERA 
MAX + PLUS II on Eraseable Programming Logic Device 
(EPLD) to implement a weightless NN called the Goal 
Seeking neuron (GSN), in the classification of British mail 
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postal addresses. Spaanenberg [9] shows, by employing 
the Virtex-II 6000 FPGA, learning of NN by 
reconfiguration. Botelho [16] implements Goal Seeking 
Neuron (GSN)  on FPGA. THE GSN, a RAM based 
neural network, was deployed on Khepera mobile robot 
for control and navigation. RAM based neural networks in 
[9],[16], designed on FPGA were deployed in autonomous 
systems. 
  The remainder of this paper is organized as follows. 
Section II presents an overview of the EPCN, while 
section III introduces its hardware configurations. The 
experiments to test the configuration possibilities of FPGA 
based Hardware architecture of EPCN and its results are 
presented in section IV. The analysis of results obtained 
are presented in section V. The paper concludes with areas 
of further research and development in section VI. 

 
 

II. OVERVIEW OF EPCN 
 
The EPCN consist of two groups of layers with a single 
standalone layer subsequent to each group. The first group 
is called pre-group layer while the second group is called 
main-group layer. The single layer that succeeds the pre-
group is its merge layer, while the single layer that 
succeeds the main-group is called main-group merge 
layer. 
 

 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

The EPCN typically operates on binary threshold images 
as shown in Figure 1(a). 
   Pre-processing will sometimes yield a reduced (in size) 
pattern, Figure 1(b), which will be employed in 
subsequent processes such as learning. Learning of EPCN 
is supervised, generally following the principle of forming 
addresses for the RAM neurons from within the input 
pattern and assigning class identifiers to the addresses so 
formed [14]. This corresponds to the Train-block in Figure 
2.  

 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

 
 
 
 
The recognition process of EPCN is mainly an averaging 
process which occurs in the main-group layer and is 
represented as recognise block in Figure 2. The learning 
and recognition algorithm of EPCN is identical to the 
learning and recognition algorithm of PCN [17]. For 
learning and recognition to proceed connectivity 
(addresses to RAM location) are formed from input space. 
This is done in FPGA by hashing (represented by the 
Hashing block in Figure 2). The output of the hashing 
block is a series of addresses, as shown in Figure 3, that 
represents RAM locations to be modified.  
 
 

III. THE HARDWARE ARCHITECTURE 
 

  Various options were considered with respect to medium 
of hardware implementation. Considering that fabrication 
of a dedicated hardware EPCN does not lend itself  easily 
to modification of structure and topology of EPCN. But 
certain advanced FPGA, e.g. Virtex-II pro, offers more 
possibilities for modification to the structure and topology 
of EPCN easily. An equivalent software implementation is 
as good and as fast as the CPU (and FPU). That is, it could 
be very slow depending on computational demands and 
exceptions handling. 
  The EPCN is an adaptive NN, and to maintain this 
characteristics, an FPGA which is re-configurable is 
required. The Virtex-II pro satisfy these conditions. The 
FPGA, Virtex-II pro requires the logic equations of 
EPCN, and this is described in VHDL using Xilinx ISE. 
By the employment of VHDL, the EPCN was described in 
a hierarchical system that consist of packages and 

Figure 1(a). An example of input data. This 
numeral “9” is part of CEDAR database used in 
this paper

Figure 1(b). A compressed version of numeral
“9” .The effect of compression algorithm
employed is noticeable. 

Figure 2.  The block-diagram of EPCN 
FPGA architecture. 
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modules. Of these modules, the ones relevant to re-
configuration and adaptive behaviour of EPCN are the 
hashing module, and reconfiguration module. 
 
A. Hashing 
 
  In [11] a hashing function based on bit-folding, XOR, 
and pseudo random number generation was developed. 
  In this paper, the hashing function used is derived from 
XOR, and Maximum-length Shift-register code. 
Maximum-length shift-register codes [5] generate a 
systematic code with desired output length; 

n = 2m – 1                             (1) 
where m is the information bit obtainable from input 
pattern.  The code words are normally generated by m-
stage digital shift register with feedback. The generation 
of the code words depend on parity polynomials h(p) 
given by; 

h(p) = pk + hk-1pk-1 + … + h0p0                 (2) 
 The MLSR is preferred to other alternatives because it 
helps to easily reproduce addresses formed. The hashing is 
used for address (connectivity) formation. When an 
address is hashed, the corresponding RAM location will 
be read from or written to as the case may be. Examples to 
illustrate this are given below. 
 
  Example I: Suppose the information bit m = 2, and it is 
required to generate addresses in the range 0 to 3.  
Equation (1) becomes 

n = 2m – 1 = 22 – 1 = 3; 
This means that 3 addresses are required. In equation (2) 
the parity polynomial h(p) becomes; 

h(p) = p3 + h2p2 + …+ h0p0                  (3); 
In equation (3) it is seen that the coefficient of p3 is 1. 
Then hi, (i = 0,1,…3) is such that hk-1pk-1 is an integer 
between 3 and 0. This case is shown in Figure 3 , as values 
assigned to “tcol” variable, where tcol represents 
addresses of a layer. There it is seen that all values 
between 0 and 3 have been generated. To distinguish 
between wanted zeros and unwanted zeros, wherever h(p) 
has values greater than 3 or less than 0, this is set to 2n and 
this make the location inaccessible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example II: Suppose ten connectivity are required none of 
which should be greater than 10?.  
Answer:  Recall that 24 > 10 > 23. So that when m = 4; 
equation (1) becomes 

n = 2m – 1 = 24 – 1 = 15; 
and in equation (2), the parity polynomial h(p)  
becomes; 

h(p) = p15 + h14p14 + …+ h0p0                 (4) 
In equation (4) it is seen that the coefficient of p15 is 1. 
And hi, (i = 0,1,…15) is such that hk-1pk-1 is an integer 
between 15 and 0. Since no connectivity should be greater 
than 10, h(p) is set to 2n for those values that are not 
required. An example is shown in Figure 4, here the 
variable “rclas” shows all addresses derived lies between 0 
and 10 inclusive. The “rclas” represents addresses of a 
neuron in the recognition phase.  
  To distinguish between wanted zeros and unwanted 
zeros, wherever h(p) has values greater than 10 or less 
than 0, this is set to 2n and this make the location 
inaccessible. 
  Other addresses are derived similar to example I and II. 
Recall that information bits in a pattern characterise that 
pattern, and thus the connectivity is reproducible. 

 
 
 
 
 
B. Reconfiguration 
 
  The structural architecture of EPCN and the size of its 
neuron is adaptive, changing with learning and 
classification.  During learning and classification, an 
integer number called the division is required for 
adjustment purposes. [14] The term adjustment refers to 
multiplying the integer value in a RAM location by the 
division and dividing by the number of training patterns 
per class. The adjustment is necessary for all classes to be 
treated equivalently when the number of pattern per class 
varies between classes. Tuple-size is the number of bits 
sampled from input data (at once) that characterize 
features of that data.  For a tuple-size of n, 2n – 1 bits are 
sampled. 

Figure 3. Formation of addresses by hashing 
from input patterns. This is prior to the learning 
process. 

Figure 4. Formation of addresses by hashing 
from input patterns. This is prior to the 
recognition process. 
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  In practice the maximum size and structure of EPCN is 
naturally limited by the available hardware resources. The 
number of pre-group layers, the number of main-group 
layers, the tuple-size, and the division are often referred to 
as system parameters. 
The size of pre-group layer and the size of main-group 
layers are modifiable alongside the reconfiguration 
process. 
  The number division used during various adjustment 
phases could be chosen within a value from 1 to 215 . This 
is the binary address range that fits in memory on FPGA. 
The possibility of the variability in  system parameters are 
vital to static and dynamic reconfiguration. Modification 
to the value assigned to division is done by prefixing 
“constant divisn” with a “generic” statement. This is 
normally done before a training and a recognition session 
pair. 
  The EPCN reconfiguration file is stored in 
Programmable Read Only Memory (PROM). Since the 
golden configuration is stored in revision 0 for FPGA’s 
self-test, the EPCN reconfiguration file is stored in 
revision 1. The source-select switch is used to select any 
of the revision at any time required. 
 The FPGA is pre-programmed with various possible 
configuration options. The config-select, SW8, is a group 
of three switches, the combination of which gives the 
selection of one of eight possible configurations of EPCN. 
The source-select, SW9, is a group of two switches, the 
combination of gives the selection of source of 
configuration for EPCN. 
 Using the config-select switches in conjunction with 
config-source switches it was found that it supports to a 
maximum of: 
• Tuple-size = 4; 
• Pre-group layers = 5; 
• Main-group layers = 5; 
• Class = 15; 
• Number of neuron per layer 20-by-15; 
The detection of pattern boundaries is automatically and 
dynamically done by the control unit (figure 2).  
 The functional activities of the pre-processing unit and 
the hashing function (unit)  are monitored by the control 
unit to ensure that the size of the pattern used within the 
EPCN fall within the maximum neuron size possible. 
Secondly, it is always possibile to adjust every pattern size 
appropriately before hashing. This solves the boundary 
problems. The solution to the boundary problems 
increases the range and type of input sources and 
reconfiguration flexibility of EPCN, which will be 
experimented on in section IV. 
  
 

IV. EXPERIMENTS AND RESULTS 
. 
The experimentation carried out here explores various 
configurations of EPCN. The EPCN was designed and 
implemented using Xilinx ISE. It was then testes in 
software by simulations prior to these experiments. The 
Source of database used in these experiments is:- 

• The centre of Excellence for Document Analysis and 
Recognition (CEDAR), University at Buffalo, State 
University of New York, USA. Department of 
Computer Science. Unconstrained handwritten 
numbers from CEDAR were resized and binarised to 
16-by-24 in dimension. 

  The config-select switch consist of three switches while 
the source-select switch is made up of two switches. In 
any session, learning or recognition, a combination of the 
three switches on SW8 yields eight possible 
configurations which enables variation of configuration 
and system parameters of EPCN architecture. The config-
source, consist two switches which are used to select 
sources of configuration. The various configurations of 
EPCN in these experiments resides in PROM (in Revision 
1) and are fetched during reconfiguration automatically. 
    Preliminary investigations, that includes the available 
size of  both the internal and external synchronous 
dynamic random access memory (SDRAM), has revealed 
that hardware resources supports maximum of 5 layers of 
pre-group and maximum of 5 layers of main-group. 
Guided by these hardware resource constraints, the 
experiment aims to explore various configuration 
possibility of EPCN and to determine the possible 
optimum configuration of EPCN. To this end, three 
experiments were performed on FPGA based EPCN using 
the database mentioned above. They are:- 
• A case where division = 1000; main-group layers = 3; 

pre-group layer increase from 1 through to 5. 
• A case where division = 1000; pre-group layer = 3; 

main-group layer increase from 1 through to 5. 
• In the third experiment, the main-group layers = 3; 

pre-group layer = 3; division is increase from 100 
through to 700. 

Results of these experiments were recorded. They are 
graphically displayed in  Figures 5,6, and 7. 
 These same experiments has been performed on the 
software version of EPCN [14], by employing the same 
CEDAR database. 
 
 
 

 
 
 
 
  
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5: A plot of % recognition against number of 
pre-group layer; division = 1000; main-group layers = 
3; pre-group layer increase from 1 through to 5. 
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V. ANALYSIS 
 
The advantages of the FPGA implementation are that it is 
able to exploit the reconfiguration and adaptive capability 
of the EPCN which is advantageous for many situations 
for which an intelligent machine requires very fast, 
automated, uninterrupted responses, and in potentially 
electronically harsh and isolated conditions. 
  Figure 5 shows that the maximum percentage recognition 
occurs when the pre-group layer is 3. Figure 6 shows that 
the maximum percentage recognition occurs when the 
main-group layer is 4. Figure 7 shows that the maximum 
percentage recognition occurs when the division  is 300.  
Comparing Figures 5, 6, and 7, it may be observed that the 
performance is least dependent on division and that 
performance is most dependent on main-group layers. 
These results are identical to the result obtained from the 
PC-based EPCN [14] when same input databases are used 
hence demonstrating the validity of the FPGA 
implementation. Further investigation and experimentation 
shows that the optimum system parameters are:- 
Main-group layers = 4; 
Pre-group layers = 3; 
Division = 300; 
These values are naturally dependent on the database 
employed and the number of classes. 

  Also it is noteworthy that the hardware is of the order of 
105 faster than an equivalent software implementation. A 
comparison between the speed of the FPGA-based EPCN, 
an optically enhanced Multilayer percepteron (MLP) 
[6][7], and a software based EPCN is shown in Table 1.  

 
There is clearly a substantial gain in speed by the FPGA-
based EPCN over a software implementation.  
Different databases may give rise to different results (in 
Table 1). The results in Table 1 also depend on 
cofiguration complexity and on source of database 
employed. The order of magnitude appears more general 
and thus more reliable. 
  Hardware constraints has been considered, and compared 
to an equivalent software EPCN. These are tabulated in 
Table 2. 
 

 
From Table 2 and Figures 5,6 and 7, it is deductable that 
the possibility of 16-bit word-lenght has a great effect on 
the identical result obtainable both from the hardware and 
the software EPCN. 
   
 

VI. CONCLUSION 
     
  The FPGA based EPCN has been shown to be adaptive 
and reconfigurable. The results obtained here are 
comparable in performance terms to that of software-
based EPCN. 
   A shortcomming of these experiments is that interaction 
effects of these parameters were not investigated. This 
may be considered as an area of further experimentation 
and development. 
  
 
 
 

Figure 6: A plot of % recognition against number of 
main-group layer; division = 1000; pre-group layers = 
3; main-group layer increase from 1 through to 5. 

Figure 7: A plot of % recognition against division; 
the main-group layers = 3; pre-group layer = 3; 
division is increase from 100 through to 700. 
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